The following 846 words could not be found in the dictionary of 615 words (including 615 LocalSpellingWords) and are highlighted below:

20x20   20x20sandpile   20x20x20   2i   2min   30s   41x41   50x50   Abelian   about   above   absolute   accepted   accommodate   according   across   activity   actually   added   addition   addresses   affect   affected   affects   against   algebraic   algorithm   all   alpha   always   amsmath   amssymb   an   An   analysed   and   another   anywhere   appear   appears   applied   Applied   applies   approach   arbitrarily   area   arise   around   asks   associated   assumed   at   attachment   automata   automatically   avalanch   avalanche   Avalanche   avalanches   average   averaging   away   Ax   Bak   bar3   be   become   before   begin   behavior   Behavior   behaviour   being   believed   below   beta   between   Between   Biological   block   book   border   Both   boundaries   boundary   Boundary   bounded   broad   btw   build   Builds   builds   but   by   called   Cambridge   can   carpet   case   Category   cellular   central   centre   certain   changes   Chaos   character   characterised   Characteristic   characteristic   check   children   chosen   class   classic   cluster   cm   coefficients   Colours   combined   Combines   competition   Complex   complexity   components   computational   Concepts   conclude   concludes   conclusion   conditions   confirmed   conjectured   Consequences   Consequently   Conservation   conservation   conserved   consider   Consider   consistent   constant   constituents   constraints   constructed   Contents   control   cooled   coordinates   correlatin   correlation   Correlation   correlations   corresponding   cos   cosine   counts   covering   Critical   critical   Criticality   crossover   crucial   crust   cut   cutoff   decade   decay   define   defines   degree   density   dependance   dependancy   depinning   described   desirable   determines   deviation   different   difficult   digraph   dimensionalities   dimensions   discussion   Discussion   Disorder   disorder   dissapation   dissipating   distance   distinct   distribution   Distributions   distributions   distrubution   Divergence   diverges   does   dot   doubt   driven   Driver   driving   drop   drum   due   duration   dynamical   dynamics   Dynamics   Each   each   earth   earthquake   easier   edge   effect   effects   either   elastic   elements   Emergent   en   Energy   energy   enquiry   ensuring   epsilon   eqnarray   equilibrium   essential   Essentially   essentially   eta   etc   event   events   eventually   everywhere   evident   exactly   example   Example   exceeded   except   exhibit   exhibited   exhibiting   exhibits   exist   exists   exp   expect   expectation   experimental   exponent   exponential   exponents   extended   Extended   External   extremal   fabled   fall   far   Fast   few   field   Fig   finding   fingerprints   finish   Finite   finite   flat   Flicker   floor   Fluctuations   fluctuations   Focus   following   follows   For   for   force   Force   form   formed   former   found   frac   fractal   Fractal   Fractals   frequency   friction   from   frustrated   funciton   function   Function   Functions   functions   fundamental   further   Further   Furthermore   future   gamma   gave   generating   genuine   geometrical   give   given   gives   giving   glass   global   globally   gradient   grain   grains   Grains   grid   guieses   half   having   he   height   Hence   hence   hieght   highly   his   His   histogram   how   however   However   ice   identification   identified   Identifying   If   if   Implementation   Implemented   important   in   In   including   increases   increasing   indicate   indicates   indicating   indicator   influence   infty   Initially   input   instantaneous   instead   int   interacting   interactions   intercept   interesting   internal   Internal   interval   into   introduced   Introduction   Invariance   invariance   invariant   involved   its   Jensen   jpg   jump   jumps   just   key   kind   L20   L21   L41   L50   lack   lambda   langle   large   larger   later   latex   lattice   law   laws   leading   leads   least   left   length   lies   life   Lifetime   lifetime   lifetimes   like   likely   lim   limit   Linear   liquid   local   locations   log   logarithmic   loglog   long   low   lower   lowest   made   magnitude   magnitudes   main   major   many   Marginally   matlab   Mature   maximum   mean   Measure   measurements   measures   memory   mentioned   Metastable   metastable   method   Method   might   mixed   model   modelled   models   moment   monitored   Moore   more   moved   movement   much   Multiplicatively   must   Natural   nature   Navigation   need   needed   neighbourhood   no   Noise   noise   none   nonlinear   normalized   Note   notes   Notes   nothing   Now   now   number   Numerical   observe   obtain   Obtain   obtained   obtains   occurs   Of   of   off   often   omega   on   one   ones   only   Only   open   or   order   organization   Organized   organized   origin   Original   Originally   other   out   over   overwhelmed   p0   paper   parameter   particles   patterns   pcolor   pere   performed   periodic   pertubation   Pertubation   Perturb   phase   Phase   phenomena   Phenomena   physical   Physical   pi   Piano   piano   pile   piles   pink   plate   plot   plotted   Plotting   png   point   points   position   positions   positive   possess   possibly   potentially   Power   power   powspec   practical   practice   prepared   presented   Press   prevalent   probability   Probability   probably   procedures   process   producing   properties   propoerties   propogating   proxy   Ps   quad   quake   quantity   quenched   question   quickly   quite   radius   rand   random   range   rangle   rate   rather   re   real   realistic   reality   recorded   Ref   ref   Reference   Refers   regime   region   related   relationship   Relaxation   relaxation   relaxed   release   Release   releases   relieved   remain   reponse   represent   represents   required   Requires   rescaling   respect   respond   response   Response   responsible   rest   results   retains   rice   right   rightarrow   rise   rotating   rs   rt   rule   rules   said   same   sand   sandpile   Sandpile   sandpiles   satisfied   say   scale   Scale   scales   scaling   Scaling   Sci   Sciences   second   section   See   see   seen   Self   self   separation   Separation   series   set   Sf   showed   shown   side   sigma   signal   signature   sim   similar   simple   simultaneous   since   single   site   sites   Size   size   sizes   Sleforganization   slipping   slope   slow   Slow   small   So   so   soc   some   sometimes   somewhat   Sornette   Sources   space   Spatial   spatial   specific   Spectra   spectrum   Spectrum   spring   Springer   square   stable   Stable   standard   start   state   states   States   stationary   statistical   statistics   step   stored   strain   strengthening   stress   strongly   sub   Sub   Substantially   such   sum   Super   super   superposition   supposed   surf   switching   symmetric   synchronization   synchronize   system   System   systems   Systems   Table   take   taken   takes   taking   Tang   tapping   tau   temperature   temporal   Temporal   temporally   tend   tension   Tension   terms   text   than   that   the   The   them   then   there   therefore   These   these   they   They   this   This   those   though   threshold   Threshold   thus   Thus   time   to   today   tomorrow   Tools   toppled   topplings   total   Total   towards   tr   transformation   transition   transitions   true   truncated   ts   tuned   tuning   two   typical   Typically   under   underlying   units   University   until   up   Updating   ups   used   useful   usepackage   using   v070108   v070110   value   values   vanishingly   variable   variables   variation   various   vector   vectors   Verlag   very   vs   was   water   We   we   weaking   were   What   whelming   when   Where   where   whether   Which   which   whilst   White   width   Wiesenfeld   wikipedia   will   With   with   within   without   words   world   would   xy   years   yield   yielded   Yielded   z0   zeros  

Clear message

(Substantially taken from notes made of Ref [1] and [2])

Introduction

Threshold Dynamics

(Sornette) An important sub-class of SOC is the out-of-equilibrium systems driven by constant rate, with many interacting components. They possess the following fundamental properties:

  1. A highly nonlinear behaviour: essentially a threshold response;
  2. A very slow driving rate;
  3. A globally stationary regime, characterised by stationary statistical properties;
  4. Power distributions of event sizes and fractal geometrical propoerties (including long-range correlations).
  5. The threshold dynamics is crucial according to [2] since they accommodate the important separation of time-scales

  6. Thus, the slipping of the earth's-crust in earth-quake events is a key example of such dynamics.

Example System: Piano

Consider a piano being moved on a carpet floor.

Fig. 1

NB: Requires a threshold for release .. consider in the case of the piano, if it were on a plate of ice, applied force would be relieved automatically, quickly. With a threshold for activity (release) tension can build.

Sources of SOC

Concepts

Metastable vs. Marginally Stable States

Metastable

Marginally Stable

Scale Invariance

Refers to a function that retains the same essential form under re-scaling, i.e. a transformation

latex error! exitcode was 2 (signal 0), transscript follows:

. For example, the function,

latex error! exitcode was 2 (signal 0), transscript follows:

under re-scaling gives:

latex error! exitcode was 2 (signal 0), transscript follows:

or

latex error! exitcode was 2 (signal 0), transscript follows:

Which is not a simple rescaling of the function f(x). However, consider the function:

latex error! exitcode was 2 (signal 0), transscript follows:

then under re-scaling:

latex error! exitcode was 2 (signal 0), transscript follows:

or

latex error! exitcode was 2 (signal 0), transscript follows:

Consequently, the function is said to not change its character under re-scaling, the system is said to be 'scale-free'. Plotting such a function in log-log space will yield,

latex error! exitcode was 2 (signal 0), transscript follows:

having intercept log(A) and slope

latex error! exitcode was 2 (signal 0), transscript follows:

.

Identifying SOC

SOC is identified in a system by at least two properties:

  1. Power-laws in Spatial correlations or Response distributions;
  2. Power-laws in (temporal) Power Spectra.

In practice, since it is often easier to obtain Response Distributions rather than the spatial correlation funciton, finding power-laws in the former is often assumed to indicate spatial scale-free behaviour. This is not always the case, but appears a useful (and practical) indicator.

Response Distributions

As mentioned above, often used as a proxy for distrubution of the spatial correlation function. In practice, a vector of response magnitudes to an applied pertubation (at a given system size) is obtained, and a simple histogram is obtained that leads to a probability distribution.

Method: (For a system at a supposed critical state)

  1. Perturb system at low frequency;
  2. Measure response of system in terms of energy/reponse-size etc. E.g for sandpile:
    • Total # grains involved in response (s);

    • Avalanche lifetimes (time taken for system to become sub-critical) (t).

  3. Obtain response distributions, and check for algebraic scaling, e.g.
    • latex error! exitcode was 2 (signal 0), transscript follows:
      
      

      latex error! exitcode was 2 (signal 0), transscript follows:
      
      

Notes

Temporal Fluctuations

This asks 'by how much does an event today affect tomorrow, or very far into the future?'. Focus of enquiry is thus on the temporal correlation function:

latex error! exitcode was 2 (signal 0), transscript follows:

where

latex error! exitcode was 2 (signal 0), transscript follows:

indicates the average of the variable
latex error! exitcode was 2 (signal 0), transscript follows:

at constant
latex error! exitcode was 2 (signal 0), transscript follows:

.

Spatial Correlation Functions

We consider a system described by a field n(r,t) where n represents the local density of particles (for example) in a liquid.

We have the Correlation Function

latex error! exitcode was 2 (signal 0), transscript follows:

where the spatial coordinates in r are vectors of length d.

Note that the spatial correlation function is for some given time interval. Hence it measures the instantaneous correlation across the dimensions of the system. In practice, it is quite difficult to obtain the spatial correlation function

Extended Numerical Example: The Sandpile

The sandpile system:

A relationship exists between any of the Abelian sand-pile event-size measurements:

  1. size (s): total number of topplings in the avalanche;
  2. area (a): number of distinct sites which toppled;
  3. life-time (t): duration of the avalanche; and
  4. radius (r): maximum distance of a toppled site from the origin.

(Sornette) Between any two such measures, a relationship,

latex error! exitcode was 2 (signal 0), transscript follows:

exists, with the exponents being related to one another, e.g.

latex error! exitcode was 2 (signal 0), transscript follows:

For the Abelian sand-pile

latex error! exitcode was 2 (signal 0), transscript follows:

in two-dimensions and
latex error! exitcode was 2 (signal 0), transscript follows:

.

Implementation

   1 function [z0] = gradient(p0,L)
   2 
   3 x(:,:,1) = p0(2:L+1,1:L) - p0(2:L+1,2:L+1);
   4 x(:,:,2) = p0(1:L,1:L) - p0(2:L+1,2:L+1);
   5 x(:,:,3) = p0(1:L,2:L+1) - p0(2:L+1,2:L+1);
   6 z = mean(x,3);
   7 z0 = zeros(L+2,L+2);
   8 z0(2:L+1,2:L+1) = -z;

For

Yielded avalanch size events (s) as follows:

Fig.2 P(s) v. s; boundary-addition only, L = {10,20,30}

Fig.3 20x20 Mature sandpile

Jensen concludes (p.16) that: We conclude that [..] small avalanches in real sandpiles exhibit behavior that is consistent with the expectation of SOC. However, the SOC-like behavior is cut off and overwhelmed by the large avalanches in the system. Hence we must conclude that real physical sandpiles do not exhibit scale-invariant behavior in space and time.

Implementation II

Original BTW set-up:

Fig. Fractal patterns formed with 41x41 scale BTW sand-pile. Colours represent different values of z.

Critical Response

  1. Linear size l

    latex error! exitcode was 2 (signal 0), transscript follows:
    
    
    that is, the average radius from the pertubation site to the affected lattice points.
  2. Total Energy Release s total number of sites that must be relaxed before all sites are under-critical;

  3. Lifetime t total number of simultaneous relaxation procedures that must be performed until all sites are under-critical.

As can be seen in Fig. below, Total Energy Release yielded interesting (and classic) properties for the loglog plot. A region of power-law scaling covering here a decade of scales, then transition at

latex error! exitcode was 2 (signal 0), transscript follows:

to an exponential decay process.

Fig. Probability distribution for the Total Energy Release (total # sites to be relaxed for sub-critical everywhere) for the fractal sand-pile. Both L=21 and L=41 are shown

Implementation III

Critical Response

Critical response distributions were prepared by taking a histogram of the vector of response data as mentioned under critical response above. Each showed at least a power-law section of one decade, with switching to exponential decay evident for large event size.

Linear Size

Total Energy

Avalanche Lifetime

Power Spectrum

A Power Spectrum was prepared following the method in [2]:

  1. Total dissapation counts (# of over-critical sites being relaxed at each time-point) were recorded for each applied pertubation, producing a vector of length avalanche lifetime for each pertubation;
  2. These vectors were combined by random superposition on an arbitrarily chosen time series (in this case, around an average of 10 points pere time-value was chosen);
  3. The constructed time-series was then truncated to just the central (major) fluctuations about the mean to take out the start and finish which have only a few vectors added to them;
  4. This series is then used as the time-series t to input to the power-spectrum function [attachment:powspec.m]. Essentially, this applies a DFFT, obtains the normalized magnitude of the response, and takes only half of the symmetric distribution. This is then plotted against f for each F(t), giving the shown distribution.

Power-spectrum of the above model

Discussion

The results presented for the 50x50 model with random grain addition are very similar to that of ref [2]. Here, the same case is analysed for Avalanche Lifetime distributions to yield a power spectrum with exponent -1.57, whilst cluster sizes (Total Energy) gave exponent -1.0. The signature '1/f' case in the paper is that of a 20x20x20 model.

So we would conclude with Jensen that the sand-pile, in its various guieses gives mixed results with respect to SOC. It appears that some systems with some dimensionalities and boundary conditions satisfied can yield the fabled 1/f noise and power-law distributions in spatial/critical response variables. Jensen addresses this point towards the end of his book, when he asks the question of whether 'tuning' is actually required for these so-called 'self-organized' critical systems. It would appear, for the sand-pile at least, that this is true. His main conclusion is that SOC is probably prevalent in the small avalanches of these systems. The larger ones appear to be a more periodic process, and in those systems where SOC fingerprints are not found, are likely over-whelming the SOC dynamics of the small avalanches.

In physical sand-piles, such results are somewhat confirmed, with specific experimental set-ups, such as the rotating drum etc., or using different constituents of the pile (e.g. rice), indicating that as in the computational world, some degree of tuning is required in the physical reality to observe SOC dynamics.

Finite Size Scaling

(Sornette, p.327) In the case of the sand-pile, for measurements from within the set

latex error! exitcode was 2 (signal 0), transscript follows:

introduced above we have,

latex error! exitcode was 2 (signal 0), transscript follows:

Where the exponent

latex error! exitcode was 2 (signal 0), transscript follows:

determines the variation of the cut-off of the quantity x within the system of system-size L.

However, scaling for the avalanche sizes (s) are in doubt, possibly due to the effect of large avalanches dissipating at the border which strongly influence the statistics.

See Also

  1. w:Self-Organized Criticality

  2. w:Scale-Invariance

  3. w:Bak-Tang-Wiesenfeld Sandpile

  4. w:1/f (pink) Noise

  5. w:Flicker Noise

  6. w:White Noise

Reference


CategorySciNotes

Leviathan: SciNotes/SelfOrganizedCriticality (last edited 2010-08-13 23:51:05 by sangus)