Publication List

The publications listed are those for which I have made significant contributions. For a full list of publications, including all LIGO, PPTA and IPTA publications, follow this link.
  1. Clarke, Chastain, Lasky, Thrane (2023) Nuclear physics with gravitational waves from neutron stars disrupted by black holes. Submitted to Astrophys. J. Lett. (arXiv:2302.09711)
  2. Anzuini, Pons, Gomez-Banon, Lasky, Bianchini, Melatos (2023) Magnetic dynamo caused by axions in neutron stars. Phys. Rev. Lett. 130, 071001 (arXiv:2211.10863)
  3. Baker, Lasky, Thrane, Ashton, Cantos, Lakerink, Leslie, Poole, and Reichart (2023) GWCloud: a searchable repository for the creation and curation of gravitational-wave inference results.. Accepted for publication in Astrophys. J. Supp. (arXiv:2204.13267)
  4. Powell, Sun, Gereb, Lasky, and Dollmann (2023) Generating transient noise artifacts in gravitational-wave detector data with generative adversarial networks. Class. Q. Grav. 40, 035006 (arXiv:2207.00207)
  5. Sarin, Lasky, Nathan (2023) Missed opportunities: GRB 211211A and the case for continual gravitational-wave coverage with a single observatory.. Mon. Not. R. Astron. Soc. 518, 5483 (arXiv:2210.14938)
  6. Abbott et al. (2022) Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run. Submitted to Astrophys. J. (arXiv:2210.10931)
  7. Lasky, Thrane (2022) Background Memories. Sci. China-Phys. Mech. Astron. 65, 119531
  8. Knee, Romero-Shaw, Lasky, McIver, Thrane (2022) A Rosetta Stone for eccentric gravitational waveform models. Astrophys. J. 936, 172 (arXiv:2207.14346)
  9. Romero-Shaw, Lasky, and Thrane (2022) Four eccentric mergers increase the evidence that LIGO--Virgo--KAGRA's binary black holes form dynamically. 940, 171 (arXiv:2206.14695)
  10. Clarke, Romero-Shaw, Lasky, and Thrane (2022) Gravitational-wave inference for eccentric binaries: the argument of periapsis. Mon. Not. R. Astron. Soc. 517, 3778 (arXiv:2206.14006)
  11. Huebner, Huppenkothen, Lasky, Inglis, Ick, and Hogg (2022) Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes. Astrophys. J. 936, 17 (arXiv:2205.12716)
  12. Kouvatsos, Lasky, Quitzow-James and Sakellariadou (2022) Detectability of the gravitational-wave background produced by magnetar giant flares. Phys. Rev. D 106, 063007 (arXiv:2203.07905)
  13. Romero-Shaw, Thrane, and Lasky (2022) When models fail: an introduction to posterior predictive checks and model misspecification in gravitational-wave astronomy. PASA 39, e025 (arXiv:2202.05479)
  14. Sarin, Lasky, Hernandez Vivanco, Stevenson, Chattopadhyay, Smith, and Thrane (2022) Linking the rates of neutron star binaries and short gamma-ray bursts. Phys. Rev. D 105, 083004 (arXiv:2201.08491)
  15. Sarin and Lasky (2022) Multimessenger astronomy with a kHz-band gravitational-wave observatory. PASA 39, e007 (arXiv:2110.10892)
  16. Huebner, Huppenkothen, Lasky and Inglis (2022) Pitfalls of periodograms: The non-stationarity bias in the analysis of quasi-periodic oscillations. Astrophys. J. Supp. 259, 32 (arXiv:2108.07418)
  17. Lasky (2021) Gravitational Wave Astronomy. Multimessenger Astronomy in Practice, by Filipovic and Tothil
  18. Lasky and Thrane (2021) Did Goryachev et al. detect megahertz gravitational waves?. Phys. Rev. D 104, 103017 (arXiv:2110.13319)
  19. Romero-Shaw, Lasky and Thrane (2021) Signs of eccentricity in two gravitational-wave signals may indicate a sub-population of dynamically assembled binary black holes. Astrophys. J. Lett. 921, L31 (arXiv:2108.01284)
  20. Payne, Sun, Kremer, Lasky, and Thrane (2021) The imprint of superradiance on hierarchical black hole mergers. Astrophys. J. 931, 79 (arXiv:2107.11730)
  21. Zevin, Romero-Shaw, Kremer, Thrane and Lasky (2021) Implications of Eccentric Observations on Binary Black Hole Formation Channels. Astrophys. J. Lett. 921, L43 (arXiv:2106.09042)
  22. Easter, Lasky and Casey (2021) Can we measure the collapse time of a post-merger remnant for a future GW170817-like event?. Submitted to Phys. Rev. D (arXiv:2106.04064)
  23. Sarin, Hamburg, Burns, Ashton, Lasky and Lamb (2021) Low-efficiency long gamma-ray bursts: A case study with AT2020blt. Mon. Not. R. Astron. Soc. 512, 1391 (arXiv:2106.01556)
  24. Sarin, Ashton, Lasky, Ackley, Mong, and Galloway (2021) CDF-S XT1: The off-axis afterglow of a neutron star merger at Z = 2.23. Submitted to Astrophys. J. Lett. (arXiv:2105.10108)
  25. Huebner, Lasky, and Thrane (2021) Memory Remains Undetected: Updates from the Second LIGO/Virgo Gravitational-Wave Transient Catalog. Phys. Rev. D 104, 023004 (arXiv:2105.02879)
  26. Smith et al. (2021) Bayesian inference for gravitational waves from binary neutron star mergers in third-generation observatories. Phys. Rev. Lett. 127, 081102 (arXiv:2103.12274)
  27. Hernandez-Vivanco, Lasky, Thrane, Smith, Chatterjee, Banik, Motta and Thomas (2021) Temperature dependent appearance of exotic matter makes nascent neutron stars spin faster. Submitted to Phys. Rev. D (arXiv:2101.04782)
  28. Calderon Bustillo, Leong, Dietrich, Lasky (2021) Mapping the Universe expansion: Enabling percent-level measurements of the Hubble constant with a single binary neutron-star merger detection. Astrophys. J. Lett. 912, L10 (arXiv:2006.11525)
  29. Calderon Bustillo, Lasky, and Thrane (2021) Black-hole spectroscopy, the no-hair theorem and GW150914: Kerr versus Occam. Phys. Rev. D 103, 024041 (arXiv:2010.01857)
  30. Sarin and Lasky (2021) The evolution of binary neutron star post-merger remnants: a review. General Relativity and Gravitation 53, 59 (arXiv:2012.08172)
  31. Strang, Melatos, Sarin and Lasky (2020) Inferring properties of neutron stars born in gamma-ray bursts with plerion-like X-ray plaeau. Mon. Not. R. Astron. Soc. 507, 2843 (arXiv:2107.13787)
  32. Romero-Shaw, Kremer, Lasky, Thrane, and Samsing (2021) Gravitational Waves as a Probe of Globular Cluster Formation and Evolution. Mon. Not. R. Astron. Soc. 506, 2362 (arXiv:2011.14541)
  33. Ashton, Lasky, Nathan, and Palfreyman (2020) Flickering of the Vela pulsar during its 2016 glitch. Submitted to Nature Astronomy: (arXiv:2011.07927)
  34. Payne, Talbot, Lasky, Thrane and Kissel (2020) Gravitational-wave astronomy with a physical calibration model. Phys. Rev. D 102, 122004 (arXiv:2009.10193)
  35. Romero-Shaw, Lasky, Thrane and Calderon Bustillo (2020) GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. Astrophys. J. Lett. 903, L5 (arXiv:2009.04771)
  36. Halliday, Kelleher, Lasky, et al. (2020) Halliday's Fundamentals of Physics. Wiley, 1st Australia and New Zealand Edition
  37. Sarin, Lasky, and Ashton (2020) Interpreting the x-ray afterglows of gamma-ray bursts with radiative losses and millisecond magnetars. Mon. Not. R. Astron. Soc. 499, 5986 (arXiv:2008.05745)
  38. Hernandez Vivanco, Smith, Thrane and Lasky (2020) A scalable random forest regressor for combining neutron-star equation of state measurements: A case study with GW170817 and GW190425. Mon. Not. R. Astron. Soc. 499, 5972 (arXiv:2008.05627)
  39. Abbott et al. (2020) GW190814: Gravitational waves from the coalescence of a 23 Msun black hole with a 2.6 Msun compact object. Astrophys. J. Lett. 896, L44 (arXiv:2006.12611)
  40. Payne, Banagiri, Lasky and Thrane (2020) Searching for anisotropy in the distribution of binary black hole mergers. Phys. Rev. D 102, 102004 (arXiv:2006.11957)
  41. Ackley et al (2020) Neutron star extreme matter observatory: A kilohertz-band gravitational-wave detector in the global network. PASA 37, e047 (arXiv:2007.03128)
  42. Easter, Ghonge, Lasky, Casey, Clark, Hernandez Vivanco and Chatziioannou (2020) Detection and parameter estimation of binary neutron star merger remnants. Phys. Rev. D 102, 043011 (arXiv:2006.04396)
  43. Romero-Shaw et al. (2020) Bayesian inference for compact binary coalescences with Bilby: Validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Mon. Not. R. Astron. Soc. 499, 3295 (arXiv:2006.00714)
  44. Sarin, Lasky and Ashton (2020) Gravitational waves or deconfined quarks: what causes the premature collapse of neutron stars born in short gamma-ray bursts?. Phys. Rev. D 101, 063021 (arXiv:2001.06102)
  45. Huebner, Talbot, Lasky and Thrane (2020) Thanks for the memory: measuring gravitational-wave memory in the first LIGO/Virgo gravitational-wave transient catalog. Phys. Rev. D 101, 023011 (arXiv:1911.12496)
  46. Divarkala, Thrane, Lasky and Whiting (2020) Memory effect or cosmic string? Classifying gravitational-wave bursts with Bayesian inference. Phys. Rev. D 102, 023010 (arXiv:1911.07998)
  47. Thrane, Oslowski and Lasky (2020) Ultra-relativistic astrophysics using multi-messenger observations of double neutron stars with LISA and the SKA. Mon. Not. R. Astron. Soc. (arXiv:1910.12330)
  48. Romero-Shaw, Lasky, and Thrane (2019) Searching for Eccentricity: Signatures of Dynamical Formation in the First Gravitational-Wave Transient Catalogue of LIGO and Virgo. Mon. Not. R. Astron. Soc. 490, 5210 (arXiv:1909.05466)
  49. Hernandez Vivanco, Smith, Thrane, Lasky, Talbot, and Raymond (2019) Measuring the neutron star equation of state with gravitational waves: the first forty binary neutron star mergers. Phys. Rev. D 100, 103009 (arXiv:1909.02698)
  50. Banagiri, Coughlin, Clark, Lasky, et al. (2020) Constraining the Gravitational-Wave Afterglow From a Binary Neutron Star Coalescence. Mon. Not. R. Astron. Soc. 491, 4945 (arXiv:1909.01934)
  51. Ashton, Lasky, Graber, and Palfreyman (2019) Rotational evolution of the Vela pulsar during the 2016 glitch. Nature Astronomy: 3, 1143 (arXiv:1907.01124)
  52. Hernandez Vivanco, Smith, Thrane, and Lasky (2019) Accelerated detection of the binary neutron star gravitational-wave background. Phys. Rev. D 100, 043023 (arXiv:1903.05578)
  53. Sun, Melatos, and Lasky (2019) Tracking continuous gravitational waves from a neutron star at once and twice the spin frequency with a hidden Markov model. Phys. Rev. D 99, 123010 (arXiv:1903.03866)
  54. Abbott et al. (2019) Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. Astrophys. J. 875, 160 (arXiv:1810.02581)
  55. Ashton, Huebner, Lasky, Talbot et al. (2019) Bilby: A user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Supp. 241, 27 (arXiv:1811.02042)
  56. Martynov et al. (2019) Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys. Rev. D 99, 102004 (arXiv:1901.03885)
  57. Easter, Lasky, Casey, Rezzolla, and Takami (2019) Computing fast and reliable gravitational waveforms of binary neutron star merger remnants. Phys. Rev. D 100, 043005 (arXiv:1811.11183)
  58. Sarin, Lasky, and Ashton (2019) X-ray afterglows of Short gamma-ray bursts: Magnetar or Fireball?. Astrophys. J. 872, 114 (arXiv:1812.08176)
  59. Talbot, Thrane, Lasky, and Lin (2018) Gravitational-wave memory: waveforms and phenomenology. Phys. Rev. D 98, 064031 (arXiv:1807.00990)
  60. Macpherson, Lasky, and Price (2018) The trouble with Hubble: Local versus global expansion rates in inhomogeneous cosmological simulations with numerical relativity. Astrophys. J. Lett. 865, L4 (arXiv:1807.01714)
  61. Macpherson, Price, and Lasky (2018) Einstein's Universe: Cosmological structure formation in numerical relativity. Phys. Rev. D 99, 063522 (arXiv:1807.01711)
  62. Woan, Pitkin, Haskell, Jones, and Lasky (2018) Evidence for a minimum ellipticity in millisecond pulsars. Astrophys. J. Lett. 863, L40 (arXiv:1806.02822)
  63. Lower, Thrane, Lasky, and Smith (2018) Measuring eccentricity in binary black hole inspirals with gravitational waves. Phys. Rev. D 98, 083028 (arXiv:1806.05350)
  64. Sarin, Lasky, Sammut and Ashton (2018) X-ray guided gravitational-wave search for binary neutron star merger remnants. Phys. Rev. D 98, 043011 (arXiv:1805.01481)
  65. Zhu, Thrane, Oslowski, Levin and Lasky (2018) Inferring the populsation properties of binary neutron stars with gravitational-wave measurements of spin. Phys. Rev. D 98, 043002 (arXiv:1711.09226)
  66. Abbott et al. (LIGO-Virgo Collaboration) (2017) Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817. Astrophys. J. Lett. 851, L16 (arXiv:1710.09320)
  67. Abbott et al. (LIGO-Virgo Collaboration) (2017) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101 (arXiv:1710.05832)
  68. Abbott et al. (LIGO-Virgo Collaboration) (2017) Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (arXiv:1710.05834)
  69. Thrane, Lasky, and Levin (2017) Challenges testing the no-hair theorem with gravitational waves. Phys. Rev. D 96, 102004 (arXiv:1706.05152)
  70. Lasky, Leris, Rowlinson, and Glampedakis (2017) The braking index of millisecond magnetars. Astrophys. J. Lett. 843, L1 (arXiv:1705.10005)
  71. McNeill, Thrane, and Lasky (2017) Detecting Gravitational Wave Memory without Parent Signals. Phys. Rev. Lett. 118, 181103 (arXiv:1702.01759)
  72. Macpherson, Lasky and Price (2017) Inhomogeneous Cosmology with Numerical Relativity. Phys. Rev. D 95, 064028 (arXiv:1611.05447)
  73. Glampedakis and Lasky (2016) The freedom to choose neutron star magnetic field equilibria. Mon. Not. R. Astron. Soc. 463, 2542 (arXiv:1607.05576)
  74. Lasky, Thrane, Levin, Blackman and Chen (2016) Detecting gravitational-wave memory with LIGO: implications of GW150914. Phys. Rev. Lett. 117, 061102 (arXiv:1605.01415)
  75. Sun, Melatos, Lasky, Chung and Darman (2016) Cross-correlation search for continuous gravitational waves from a compact object in SNR 1987A in LIGO Science Run 5. Phys. Rev. D 94, 082004 (arXiv:1610.00059)
  76. Ravi and Lasky (2016; submitted) A neutron star progenitor for FRBs? Insights from polarisation measurements. Mon. Not. R. Astron. Soc. (arXiv:1601.06131)
  77. Lasky et al. (2016) Gravitational-wave cosmology across 29 decades in frequency. Phys. Rev. X 6, 011035 (arXiv:1511.05994)
  78. Lasky and Glampedakis (2016) Observationally constraining gravitational wave emission from short gamma-ray burst remnants. Mon. Not. R. Astron. Soc. 458, 1660 (arXiv:1512.05368)
  79. Rosado, Lasky, Thrane, Zhu, Mandel, and Sesana (2016) The most distant observable massive objects. Phys. Rev. Lett. 116, 101102 (arXiv:1512.04950)
  80. Howell, Rowlinson, Coward, Lasky, et al. (2015) Hunting gravitational waves with multi-messenger counterparts: Australia's role. PASA (Invited review as part of a special issue on Gravitational Wave Astronomy) 32, e046 (arXiv:1511.02959)
  81. Shannon, Ravi, Lentati, Lasky, et al. (2015) Gravitational waves from binary supermassive black holes missing in pulsar observations. Science 349, 6255 (arXiv:1509.07320)
  82. Lasky (2015) Gravitational Waves from Neutron Stars: A Review. PASA (Invited review as part of a special issue on Gravitational Wave Astronomy) 32, 034 (arXiv:1508.06643)
  83. Messenger et al. (2015) Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors. Phys. Rev. D 92, 023006 (arXiv:1504.05889)
  84. Glampedakis and Lasky (2015) Persistent crust-core spin lag in neutron stars. Mon. Not. R. Astron. Soc. 450, 1638 (arXiv:1501.05473)
  85. Lü, Zhang, Lei, Li and Lasky (2015) The millisecond magnetar central engine in short GRBs. Astrophys. J. 805, 89 (arXiv:1501.02589)
  86. Lasky, Melatos, Ravi and Hobbs (2015) Pulsar timing noise and the minimum observation time to detect gravitational waves with pulsar timing arrays. Mon. Not. R. Astron. Soc. 449, 3293 (arXiv:1503.03298)
  87. Haskell, Priymak, Patruno, Oppenoorth, Melatos and Lasky (2015) Detecting gravitational waves from mountains on neutron stars in the Advanced Detector Era. Mon. Not. R. Astron. Soc. 450, 2393 (arXiv:1501.06039)
  88. Aasi et al. (The LIGO Scientific Collaboration) (2015) A directed search for gravitational waves from Scorpius X-1 with initial LIGO. Phys. Rev. D 91, 062008 (arXiv:1412.0605)
  89. Coward, Branchesi, Howell, Lasky and Böer M. (2014) The detection efficiency of on-axis short gamma-ray burst optical afterglows triggered by aLIGO/Virgo. Mon. Not. R. Astron. Soc. 445, 3575 (arXiv:1409.2600)
  90. Priymak, Melatos, and Lasky (2014) Cyclotron line signatures of thermal and magnetic mountains from accreting neutron stars. Mon. Not. R. Astron. Soc. 445, 2710 (arXiv:1409.3327)
  91. Ravi and Lasky (2014) The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts. Mon. Not. R. Astron. Soc. 441, 2433 (arXiv:1403.6327)
  92. Lasky, Haskell, Ravi, Howell and Coward (2014) Nuclear equation of state from observations of short gamma-ray burst remnants. Phys. Rev. D 89, 047302 (arXiv:1311.1352)
  93. Lasky and Melatos (2013) Tilted torus magnetic fields in neutron stars and their gravitational wave signatures. Phys. Rev. D 88, 103005 (arXiv:1310.7633)
  94. Mastrano, Lasky and Melatos (2013) Neutron star deformation due to multipolar magnetic fields. Mon. Not. R. Astron. Soc. 434, 1658 (arXiv:1306.4503)
  95. Lasky, Bennett and Melatos (2013) Stochastic gravitational wave background from hydrodynamic turbulence in differentially rotating neutron stars. Phys. Rev. D 87, 063004 (arXiv:1302.6033)
  96. Fluke, Malec, Lasky and Barsdell (2012) Three-dimensional shapelets and an automated classification scheme for dark matter haloes. Mon. Not. R. Astron. Soc. 421, 1499 (arXiv:1112.4532)
  97. Lasky, Zink and Kokkotas (2012) Gravitational Waves and Hydromagnetic Instabilities in Rotating Magnetized Neutron Stars. (arXiv:1203.3590)
  98. Killedar, Lasky, Lewis and Fluke (2012) Gravitational lensing with three-dimensional ray tracing. mnras 420, 155 (arXiv:1110.4894)
  99. Zink, Lasky and Kokkotas (2012) Are gravitational waves from giant magnetar flares observable?. Phys. Rev. D 85, 024030 (arXiv:1107.1689)
  100. Fluke and Lasky (2011) Shape, shear and flexion - II. Quantifying the flexion formalism for extended sources with the ray-bundle method. Mon. Not. R. Astron. Soc. 416, 1616 (arXiv:1101.4407)
  101. Lasky, Zink, Kokkotas and Glampedakis (2011) Hydromagnetic Instabilities in Relativistic Neutron Stars. Astrophys. J. Lett. 735, L20 (arXiv:1105.1895)
  102. Lasky and Doneva (2010) Stability and quasinormal modes of black holes in tensor-vector-scalar theory: Scalar field perturbations. Phys. Rev. D 82, 124068 (arXiv:1011.0747)
  103. Lasky and Bolejko (2010) The effect of pressure gradients on luminosity distance-redshift relations. Class. Q. Grav. 27, 035011 (arXiv:1001.1159)
  104. Lasky (2009) Black holes and neutron stars in the generalized tensor-vector-scalar theory. Phys. Rev. D 80, 081501 (arXiv:0910.0240)
  105. Lasky and Fluke (2009) Shape, shear and flexion: an analytic flexion formalism for realistic mass profiles. Mon. Not. R. Astron. Soc. 396, 2257 (arXiv:0904.1440)
  106. Lasky, Sotani and Giannios (2008) Structure of neutron stars in tensor-vector-scalar theory. Phys. Rev. D 78, 104019 (arXiv:0811.2006)
  107. Bolejko and Lasky (2008) Pressure gradients, shell-crossing singularities and acoustic oscillations - application to inhomogeneous cosmological models. Mon. Not. R. Astron. Soc. 391, L59 (arXiv:0809.0334)
  108. Forbes, Lasky, Graham and Spitler (2008) Uniting old stellar systems: from globular clusters to giant ellipticals. Mon. Not. R. Astron. Soc. 389, 1924 (arXiv:0806.1090)
  109. Lasky and Lun (2007) Gravitational collapse of spherically symmetric plasmas in Einstein-Maxwell spacetimes. Phys. Rev. D 75, 104010 (arXiv:0704.3634)
  110. Lasky, Lun and Burston (2006) Initial value formalism for dust collapse. The ANZIAM Journal 49, 53 (arXiv:gr-qc/0606003)
  111. Lasky and Lun (2007) Spherically symmetric gravitational collapse of general fluids. Phys. Rev. D 75, 024031 (arXiv:gr-qc/0612007)
  112. Lasky and Lun (2006) Generalized Lemaitre-Tolman-Bondi solutions with pressure. Phys. Rev. D 74, 084013 (arXiv:gr-qc/0606055)