
Footprints of Fitness Functions in Search-Based So�ware Testing
Carlos Oliveira

Faculty of Information Technology, Monash University,

Melbourne, Australia

carlos.guimaraes@monash.edu

Aldeida Aleti

Faculty of Information Technology, Monash University,

Melbourne, Australia

aldeida.aleti@monash.edu

Yuan-Fang Li

Faculty of Information Technology, Monash University,

Melbourne, Australia

yuanfang.li@monash.edu

Mohamed Abdelrazek

School of Information Technology, Deakin University,

Melbourne, Australia

mohamed.abdelrazek@deakin.edu.au

ABSTRACT
Testing is technically and economically crucial for ensuring soft-

ware quality. One of the most challenging testing tasks is to create

test suites that will reveal potential defects in software. However,

as the size and complexity of software systems increase, the task

becomes more labour-intensive and manual test data generation be-

comes infeasible. To address this issue, researchers have proposed

di�erent approaches to automate the process of generating test data

using search techniques; an area that is known as Search-Based

Software Testing (SBST).

SBST methods require a �tness function to guide the search to

promising areas of the solution space. Over the years, a plethora of

�tness functions have been proposed. Some methods use control

information, others focus on goals. Deciding on what �tness func-

tion to use is not easy, as it depends on the software system under

test. This work investigates the impact of software features on the

e�ectiveness of di�erent �tness functions. We propose the Mapping

the E�ectiveness of Test Automation (META) Framework which

analyses the footprint of di�erent �tness functions and creates a

decision tree that enables the selection of the appropriate function

based on software features.

CCS CONCEPTS
•Computing methodologies→ Search methodologies;

KEYWORDS
Search Based Software Engineering, Genetic Algorithms

ACM Reference format:
Carlos Oliveira, Aldeida Aleti, Yuan-Fang Li, and Mohamed Abdelrazek.

2019. Footprints of Fitness Functions in Search-Based Software Testing. In

Proceedings of Genetic and Evolutionary Computation Conference, Prague,
Czech Republic, July 13–17, 2019 (GECCO ’19), 9 pages.

DOI: 10.1145/3321707.3321880

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’19, Prague, Czech Republic
© 2019 ACM. 978-1-4503-6111-8/19/07. . . $15.00

DOI: 10.1145/3321707.3321880

1 INTRODUCTION
Testing is a widely used software validation technique. Among

tasks in this process, the most expensive one is the generation of

test data that will ful�ll a testing criterion [16], accounting for

approximately 40% of the total software development budget [49].

Automated test data generation can signi�cantly reduce the cost

of testing, thus decrease the overall cost of the entire software

development process.

A variety of automated test data generation techniques have

been developed in the past few decades. Random test data genera-

tors [8, 39, 42] are some of the earliest techniques, which automati-

cally create random inputs until an acceptable one is found. Since

test data is devised at random with no knowledge of the software

structure or information on the test requirements being incorpo-

rated into the generation process, random test data generators may

often fail [31]. The focus of this work is on search-based software

testing (SBST) technique, which use a �tness function to guide

the search for high quality test cases. SBST methods have been

successfully applied to many testing problems, including functional

testing [20, 23], non-functional testing [34], temporal testing [46],

and mutation testing [19].

SBST has drawn signi�cant interest from both the research com-

munity and industrial organisations, such as Microsoft, Nokia, Er-

icsson, Motorola, and IBM [30]. This interest was motivated by the

advantages o�ered by search methods. Firstly, these are generic

methods which are ready for adaptation to any testing problem for

which a test criterion can be measured. Secondly, search algorithms

are robust, capable of coping with noise, partial data and inaccurate

�tness [18]. Finally, the search space of test data generation can be

very large, hence exact algorithms are impractical.

The application of SBST requires the design of an appropriate

�tness function, which measures the quality of generated solutions

and guides the search process to promising areas of the search

space. To this end, researchers have proposed di�erent de�nitions

of �tness functions, which use di�erent measures, such as structural

coverage [36], approach level [31], distance calculation [12, 37], or

the combination of more than one measure [41, 45]. Due to the

limited time practitioners have in producing test suites for software

systems, it becomes important that the chosen �tness function is

as e�ective as possible, and helps �nd the best solution that can

possibly be found in the given amount of time. The question then

arises: ‘What makes a �tness function e�ective?’. In this paper we

address two key research challenges (RC):

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Carlos Oliveira, Aldeida Aleti, Yuan-Fang Li, and Mohamed Abdelrazek

RC1 Determining the most signi�cant software features that have

an impact on the e�ectiveness of �tness functions.

RC2 Determining whether software features can be used for se-

lecting the most suitable �tness function.

To this end, we introduce the Mapping the E�ectiveness of Test

Automation (META) Framework. The META framework visualizes

the performance of �tness functions when applied to software sys-

tems with di�erent features. We employ both real and arti�cial

datasets. The arti�cial dataset is created using a genetic program-

ming approach which evolves classes with di�erent features that

make them di�cult to cover when using some of the �tness func-

tions. This helps highlight the strengths and weaknesses of di�erent

approaches. The META framework creates a footprint of the dif-

ferent �tness functions which is used to explain when and why a

�tness function is more e�ective. Finally, a decision tree is created

that can be used by practitioners to select a suitable �tness function

based on features of the software system at hand.

2 SEARCH BASED SOFTWARE TESTING
The problem of generating test suites can be de�ned as a Search

Based Software Testing (SBST) problem by: stating the �tness func-

tion, such as branch and method coverage; deciding on the solution

representation, e.g., binary or string representation; and designing

the search operators, such as mutation and crossover [1]. A candi-

date solution is a test case consisting of a sequence of input values,

passed to the program upon execution to observe its behavior. A

set of test cases will form a search space. A test adequacy crite-

rion for structure testing is a testing aim that can be numerically

measured and assessed, e.g. covered branches or statements. The

test criterion is coded as a �tness function, which is used to eval-

uate the performance of candidate test inputs. In order to assess

the �tness of candidate solutions, the program is executed for the

inputs generated. The �tness function plays a vital role in the per-

formance of search techniques, as it shapes the �tness landscape.

A well-de�ned �tness function increases the likelihood of �nding

high quality solutions and reaching high overall coverage, which

results in fewer system resources [7, 43].

2.1 Goal-oriented Approaches
Korel [21] developed the goal-oriented approach to alleviate the

problem of a path’s infeasibility. The idea is to concentrate purely

on branches that in�uence the execution of the goal node, ignor-

ing branches with no in�uence. The search process determines

whether the program’s execution should continue through the cur-

rent branch, or via an alternative branch. Search algorithms are

used to automatically �nd new inputs that will change �ow ex-

ecution. As this approach is based solely on the �ow graph of

the program, this makes some nodes di�cult to reach for some

programs [11], because the execution of a certain goal node could

require prior execution of other nodes in the program.

2.2 Chaining Approaches
Chaining approaches [11, 22] extends the goal-oriented approach [21]

by using program dependency concepts, combined with a program

�ow graph. The aim is to �nd solutions to branch predicates by

identifying a chain of nodes that a�ect the execution of the target

node. The main contribution of the chaining approach is the use

of data dependencies, which improves the e�ciency of the search

process [15]. Although the chaining approach can be e�ective for

a larger class of programs, the use of the ‘�nd-any-path’ concept

could present some drawbacks. Firstly, it is hard to predict the

coverage to be provided because di�erent paths exercise di�erent

branches, resulting in di�erent levels of coverage [10]. Secondly,

the search time will signi�cantly increase if there is a high number

of paths which need to be considered when processing a chain.

2.3 Coverage-oriented Approaches
Various forms of coverage measures are used in coverage-oriented

approaches: (i) statement coverage – estimates the percentage of

program statements covered during testing, (ii) branch coverage

– measures the extent to which branch statements in the code are

covered during the test, and (iii) path coverage – measures the

number of feasible paths through the graph produced during the

test. Watkins [44] concentrates on full path coverage. Test data

that follow previously uncovered paths are assigned higher �tness

values than those that pass via paths which have already been

covered. The penalisation of executed paths, however, does not

exploit the information in the branch predicates [41].

2.4 Distance-oriented Approaches
Branch distance-oriented approaches exploit information from

branch predicates, which evaluate how far a predicate is from ob-

taining its opposite value [25]. The work of Xanthakis et al. [48]

was the �rst to apply GAs in the generation of structural test data.

This method follows similar lines to earlier work by Miller and

Spooner [25] and it therefore su�ers from related problems, such

as the limited ability to detect path infeasibility. A tester chooses

a path, from which the branch predicates are extracted. A GA is

employed to �nd test data which satisfy all branch predicates in

the path. The �tness function sums up all branch distances.

Tracey et al. [40] employ simulated annealing to generate struc-

tural test data. The �tness function is the branch distance, which

indicates how close the current execution is to adopting the desired

branch according to the decision made. If the search stagnates, the

approach attempts to generate test data for the next target node.

Unlike Korel’s approach [20], the newly generated test data do not

need to conform to an already successful sub-path. However, this

leads to the search losing information about its progress [24], since

a solution that deviates from the desired path at an early stage of

the search is assigned similar �tness values to those which deviate

at a later stage.

The main criticism of branch distance-oriented techniques is

that control information about the target node is not included in

the �tness function. This may cause the search to get stuck in local

optima, thereby making it di�cult to obtain full coverage [24, 45].

The control-oriented approaches discussed in the next section will

address this problem.

2.5 Control-Oriented Approaches
Control-oriented approaches use a control dependency graph to

determine predicate paths for the intended node. Pargas et al. [31]

apply a GA for statement and branch coverage, guided by the

Footprints of Fitness Functions in Search-Based So�ware Testing GECCO ’19, July 13–17, 2019, Prague, Czech Republic

control dependencies in the program. For a goal node, a sequence

of control-dependent nodes is speci�ed, which should be exercised

for the execution of the goal node. The �tness function is equivalent

to the number of successful control-dependent node executions.

It is worth noting that using only control structures in �tness

functions will form plateaux on the �tness landscape [24]. As

there is no distance information that can be exploited, this will

result in insu�cient guidance towards unexplored structures. If

the solutions fail to ful�l any of the branch predicates, no branch

distance information will be given on how to ascend the �tness

landscape during the search process.

3 FITNESS LANDSCAPES
The di�erent approaches to de�ning a �tness function presented

in the previous sections use di�erent information from the soft-

ware under test. Their e�ectiveness, as a results, would depend on

whether that information is critical in the software under test. Nat-

urally, a goal oriented approach, which focuses on branches would

be more e�ective in generating test cases for software systems with

higher number of branches. The way the �tness function is de�ned

is crucial to how e�ective it is in guiding the search method to

high-quality test cases. This is due to the fact that it will shape the

�tness landscape of the problem being solved.

The concept of �tness landscape refers to the topological de-

scription of the search space of a problem [1, 4]. Formally, a �tness

landscape is represented by a triplet {S,N , F } where S is the set

of potential solutions for the given problem, also known as the

search space, N is neighbourhood relation, de�ned as a subset of

S × S . Two solutions are neighbours (i.e. 〈s, s ′〉∈N) if it is possible

to reach one solution by applying a search operator to the other.

�nally F : S→< is the �tness function.

Di�erent �tness functions give rise to di�erent landscapes, which

has an impact on problem di�culty [17, 26, 27]. Finding the best

suited �tness function for a problem can also be seen as the problem

of �nding a function able to create a landscape with the most helpful

gradients to exploit and guide the search algorithms [2, 3, 5, 6].

We expect that in the search-based software testing problem, the

de�nition of the �tness function impacts the shape of the �tness

landscape, and as a result, the e�ectiveness of the search procedure.

4 META FRAMEWORK
The proposed Mapping the E�ectiveness of Test Automation (META)
Framework is presented in Figure 1. META Framework is composed

of three main components:

i) The CUT Space, which includes the classes under test (CUTs)

and the structural-based complexity features extracted

from the CUTs.

ii) The Performance Space which contains the selected �t-

ness functions and the metrics used to assess their per-

formance (generation time, branch coverage, mutation cov-

erage, etc.);

iii) The Fitness Function E�ectiveness space which identi�es

CUT features that have an impact on the e�ectiveness of

�tness functions, and maps the strengths and weaknesses

of the �tness functions as footprints in a 2-D space.

The META framework is inspired from the Algorithm Selection

Problem [29, 38] and the No Free Lunch theorem, which informs us

that there does not exist a single algorithm that can be expected

to outperform all other algorithms on all problem instances [47].

Hence, if method A is superior over method B in solving a particular

set of problems, then one may claim that there exists other untested

problems where method B outperforms method A. Empirical studies

in the area of SBST should focus on identifying conditions under

which an algorithm is expected to succeed or fail instead of claiming

superiority of a method over another.

We have extended and adapted these ideas to assess the strengths

and weaknesses of �tness functions used in SBST, and built the

META tool, which can be used to predict which �tness function

from a portfolio of di�erent functions is likely to perform best based

on measurable features of a collection of CUTs.

4.1 CUT Space
The CUT space contains the set of classes under test and the features

used to characterise these classes.

4.1.1 Classes Under Test (CUTs). One important step of our

framework is the dataset that is used to train the META model.

We examined the diversity of common datasets used in SBST (e.g.,

SF110 [13]). We observed that these benchmark instances are not

diverse enough, as the three �tness functions had similar perfor-

mance, suggesting one of the following: (i) the �tness functions

are all essentially the same, (ii) the instances are not revealing

the unique strengths and weaknesses of each �tness function as

much as is desired, or (iii) the features are not discriminant enough.

Therefore, we propose a method to generate new CUTs, in order to

enrich the repository’s diversity.

While there is no doubt that these problem repositories have had

a tremendous impact on SBST studies, and have improved research

practice by ensuring comparability of performance evaluations,

there is also concern that these repositories may not be a represen-

tative sample of the larger population of software testing problems.

It is important to challenge whether existing datasets are enabling

us to evaluate �tness function performance in an unbiased manner,

and therefore we seek new tools and methodologies that enable

us to generate new problem instances that drive improved under-

standing of the strengths and weaknesses of di�erent approaches.

The development of such methodologies to support objective as-

sessment of di�erent �tness functions is at the core of the META

framework. This is achieved by generating arti�cial CUTs.

The generated CUTs must be diverse and large enough to uni-

formly cover a wide degree of problem di�culty, that is for all

�tness functions there must exist both easy and hard instances, and

the transition from easy to hard should be densely covered [28].

The most obvious way to arti�cially generate CUTs is to select

and sample an arbitrary probability distribution. However, this

approach lacks control, as there is no guarantee that the resulting

dataset will have speci�c features. Hence, we employ a di�erent

method, initially introduced for machine learning problems [28],

where datasets are evolved using a genetic algorithm to lie at target

locations in the instance space.

In this work, we use a Genetic Programming (GP) algorithm

to evolve branch predicates that are easy and hard for di�erent

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Carlos Oliveira, Aldeida Aleti, Yuan-Fang Li, and Mohamed Abdelrazek

CUTs CUT Features

C
U

T
Sp

ac
e

Fitness
Functions

FF Performance
Measures

FF
 S

pa
ce

FF
FootprintsStart Selected features

are sufficient?
Feature selection

No Yes

Measure selection Feature
Learning

FF Decision Tree
Construction

FF
Footprints

Visualisation

Effective
ATSGT

Selection

Fitness Function (FF) Effectiveness Space
Feature

Extraction

Performance
Estimation

Test case generation

Figure 1: The main components of the Mapping the E�ectiveness of Test Automation (META) Framework

�tness functions. The GP uses a variable length (n) solution rep-

resentation [(vt0, ct0, cv0), (vt1, ct1, cv1), ..., (vtn , ctn , cvn)], where

each gene (vti , cti , cvi) has three components: variable type vt ,
comparator type ct , and variable value vv .

The GP algorithm was set to only generate classes that are similar

to real world CUTs (unrealistic CUTs were discarded). The CUTs

have one method and one nested set of conditional statements up to

4 levels and 14 branches. The possible values are: 1. variable types

include double, long, integer and boolean; 2. comparator types

include =,,, >, <, ≤, ≥; 3. variable value ranges include Boolean

(0, 1), Double [−1.7 ∗ 10308,+1.7 ∗ 10308], Integer [−231,+231], and

Long [−263,+2
63].

The GP uses mutation and crossover operators to evolve classes

of various characteristics and levels of di�culty for our �tness func-

tions. The mutation operator modi�es the the variable type, the

comparator type or the comparator value. For example, given a par-

ent solution s = [(vt0, ct0,vv0), (vt1, ct1,vv1), ..., (vtn , ctn ,vvn)],
the mutation operator generates a new candidate solution s ′ =
[(vt0, ct0,vv0), (vt ′

1
, ct1,vv1), ..., (vtn , ctn ,vvn)] by mutating the vari-

able type vt1 into vt ′
1
.

The crossover consists in exchanging predicates of two parent so-

lutions to generate two new solution. For example, given two parent

solutions s1 = [(vt1
0
, ct1

0
,vv1

0
), (vt1

1
, ct1

1
,vv1

1
), ..., (vt1n , ct1n ,vv1n)] and

s2 = [(vt2
0
, ct2

0
,vv2

0
), (vt2

1
, ct2

1
,vv2

1
), ..., (vt2n , ct2n ,vv2n)], the crossover

operator generates the following two new candidate solutions

s ′1 = [(vt2
0
, ct2

0
,vv2

0
), (vt1

1
, ct1

1
,vv1

1
), ..., (vt1n , ct1n ,vv1n)] and s ′2 =

[(vt1
0
, ct1

0
,vv1

0
), (vt2

1
, ct2

1
,vv2

1
), ..., (vt2n , ct2n ,vv2n)].

The main steps of the method are presented in Algorithm 1.

4.1.2 CUT Features. Useful features of CUTs are measurable

properties that (i) can be computed in polynomial time and (ii) are

expected to expose what makes a SBST hard for a given objective

function. At the same time, features must correlate to algorithm

performance, measure diverse aspects of the CUTs, and be uncor-

related with one another. The feature set should be small in size,

yet it should comprehensively measure aspects of the CUTs that

either challenge objective functions or make their task easy. For

each CUT, we measure features of the predicates, such as number

of variables in a predicate, number of inequalities, and type of vari-

ables. The full list of features used in this work includes the number

of: 1. comparators in a class: equalities, inequalities and ranges

(higher and less than); 2. equalities; 3. inequalities; 4. ranges (e.g.,

1 < x < 3); 5. variables; 6. boolean variables; 7. integer variables;

8. long variables; 9. double variables; 10. equalities with boolean

Algorithm 1 Generating CUTs with Genetic Programming.

1: procedure EvolveHardCUTs(dataSet, OF1, OF2)

2: Input: n,mr , cr . n is population size, mr is mutation rate, cr is

crossover rate, FF1 and FF2 are the �tness functions.

3: P← RandomSolutions(n) . P is the population

4: for i ← 1 to n do
5: Q← ∅ . Q is the Auxiliary Population

6: while !TerminationCodition do
7: for i ← 1 to n do
8: p1, p2 ← RouletteWheelSelection(P)

9: o1, o2 ← UniformCrossover(p1, p2, cr)

10: o′
1
←Mutation(o1,mr)

11: o′
2
←Mutation(o2,mr)

12: f (o′
1
) ← EvaluateFitness(o′

1
,FF1, FF2)

13: f (o′
2
) ← EvaluateFitness(o′

2
,FF1, FF2)

14: Insert(o′
1
, o′

2
, Q)

15: R← P ∪ Q
16: RankSolutions(R)

17: P← SelectBestSolutions(R)

18: Return(P)

19: procedure EvaluateFitness(c , FF1, FF2)

20: bc1 ← execute(c , FF1)

21: bc2 ← execute(c , FF2) . bc1, bc2 are the branch coverage

performance

22: Return(bc1/bc2)

variables; 11. inequalities with boolean variables; 12. equalities

with integer variables; 13. inequalities with integer variables; 14.
ranges with integer variables; 15. equalities with long variables;

16. inequalities with long variables; 17. ranges with long variables;

18. equalities with double variables; 19. inequalities with double

variables; 20. ranges with double variables.

We postulate that it is characteristics of branches in a CUT that

make it harder or easier for a search-based software testing method

to cover. The META framework will identify the speci�c character-

istics that have an impact.

4.2 Fitness Function Space
In this space, we de�ne the �tness functions that we evaluate, and

the performance measures used to assess the e�ectiveness of the

di�erent �tness functions.

4.2.1 Coverage-oriented. The coverage oriented function we

employ in our investigation was originally proposed for branch

coverage [36]. This function is primarily concerned with ensuring

Footprints of Fitness Functions in Search-Based So�ware Testing GECCO ’19, July 13–17, 2019, Prague, Czech Republic

that the highest possible level of coverage is achieved. Given a test

suite T and a set of branches B of the program being tested, the

coverage level f1(b,T) for each branch b ∈ B on test suite T is:

f1(b,T) =


0 if both branches are covered,

0.5 if the predicate is executed once,

1 otherwise.

(1)

The overall �tness function of a test suite is:

CLF = |M | − |MT | +
∑
b ∈B

f1(b,T), (2)

where M is the set of methods in the object and MT is the set of

methods executed during the test. The di�erence |M | − |MT | is used

to reward coverage of methods in the test objects which have no

branch statements.

4.2.2 Distance-oriented. This �tness function [12] uses the branch

distance measurement which re�ects how close a branch’s pred-

icate is to being reached. Given a set of branches B, the minimal

branch distance for each branch b ∈ B in test suite T is de�ned as:

f2(b,T) =


0 if the branch is covered,

d(b,T) if the predicate is executed at least twice,

1 otherwise,

(3)

where d(b,T) is 0 if at least one of the branch’s values (true or false)

has been covered, and > 0 otherwise. The �tness function is then

calculated as:

BDF = |M | − |MT | +
∑
b ∈B

f2(b,T), (4)

whereM is the set of methods andMT is the set of methods executed

by test suite T.

4.2.3 Control-oriented. The control oriented function [31] uses

a control dependency graph to compute an individual’s �tness value.

The �tness value is equivalent to the number of successful control

dependent node executions towards the intended branch.

Let dn be the number of control dependent nodes for the cur-

rent target branch, and en be the number of successfully executed

control-dependent nodes; the �tness function f3(b,T) for each

branch b ∈ B in test suite T is de�ned as f3(b,T) = norm(dn − en),
where norm is a normalisation function in the range [0, 1]. The

�tness of a test suite T is calculated as:

CFF = |M | − |MT | +
∑
b ∈B

f3(b,T), (5)

where M is the set of methods inT and MT is the set of methods

executed during the test.

4.3 Fitness Function E�ectiveness Space
4.3.1 Feature Learning. The feature learning step of the META

framework identi�es the most signi�cant features of CUTs that im-

pact the e�ectiveness of the �tness functions. The input to this step

are the collection of CUT features and the performance of the �t-

ness functions, measured as the percentage of the branches covered.

The output is the set of features that best describe why a certain

�tness function is e�ective. We use a genetic algorithm to search

for groups of features containing between 3 and 10 features that

best explain the weaknesses and strengths of the �tness functions.

The main steps of the approach are presented in Algorithm 2.

Algorithm 2 Feature Selection with a Genetic Algorithm

1: procedure FeatureLearning(features, OFP)

2: Input: n,mr , cr . n is population size, mr is mutation rate, cr is

crossover rate, OFP is OF performance.

3: P← RandomSolutions(n) . P is the population

4: for i ← 1 to n do
5: Q← ∅ . Q is the Auxiliary Population

6: while !TerminationCodition do
7: for i ← 1 to n do
8: p1, p2 ← RouletteWheelSelection(P,F)

9: o1, o2 ← UniformCrossover(p1, p2, cr)

10: o′
1
←Mutation(o1,mr)

11: o′
2
←Mutation(o2,mr)

12: f (o′
1
) ← EvaluateFitness(o′

1
,OFP)

13: f (o′
2
) ← EvaluateFitness(o′

2
,OFP)

14: Insert(o′
1
, o′

2
, Q)

15: R← P ∪ Q
16: RankSolutions(R)

17: P← SelectBestSolutions(R)

18: Return(P)

19: procedure EvaluateFitness(s , OFP)

20: Input: s . set of features to be evaluated

21: 2D_coordinates← PCA(s , OFP)

22: f (s) ← SVM(2D_coordinates, OFP)

23: Return(f (s)) . Return the �tness of the set of features

An individual solution contains the set of features that are used

to characterise the CUTs. The crossover operator (line 9) takes two

sets of features and combines them at di�erent random positions.

Next mutation operator is applied to both solutions (lines 10 and 11

by replacing a random feature from the set of features with a new

feature. The �tness function described by the second procedure in

Algorithm 2 is based on the accuracy of a Support Vector Machine

(SVM) applied on the reduced 2D CUT sub-space. Principal Compo-

nent Analysis (PCA) is used in order to reduce the CUT sub-space

from n to 2 dimensions.

4.3.2 Footprints Visualisation. Once the most signi�cant fea-

tures are identi�ed, they are used to visualise the footprints of the

�tness functions, as shown in Figure 2, with each CUT represented

as a point in the space.

PC2

PC1

Most effective OF

OF1 OF2

PC2

PC1

Feature 1

High Low

Figure 2: Strengths and weaknesses of �tness functions.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Carlos Oliveira, Aldeida Aleti, Yuan-Fang Li, and Mohamed Abdelrazek

We apply PCA as a dimensionality reduction technique on the

optimal subset of features. The aim is to plot the performance

of the �tness functions (OF1 and OF2) across the CUT space in

2D, which is likely to reveal where the methods are performing

well, and where they are sub-optimal. In this example, SVM would

produce a highly accurate prediction score and consequently, the

set of features used to create this space, would receive a high �tness

score. A high �tness means that the selected features were able to

identify accurately the characteristics associated to good and bad

performance.

The plot on the left visualises the e�ectiveness of two objective

functions over all CUTs. The circles are the CUTs where OF1 is the

most e�ective, whereas the squares represent the CUTs where the

second technique is the most e�ective.

Next, we plot the same CUTs in a 2-dimensional map based on

how they score in terms of the most signi�cant features identi�ed in

the feature learning step (plotted on the right in Figure 2). As shown

by the legend, the circles indicate that the respective CUTs score

highly according to Feature 1 (the most signi�cant feature), while

the CUTs with low Feature 1 are represented as squares. Looking at

both plots, this example shows that OF1 is e�ective when Feature

1 is high, whereas OF2 works best when Feature 1 is low.

4.3.3 Decision Tree Construction. Using the most signi�cant

CUT features, a decision tree is constructed, which can be used

to select the most e�ective objective function for new software

systems based on their features. We use the clustering algorithm

DBSCAN [9] to identify the areas in the CUT space where the

di�erent objective functions are e�ective. In the next step, the

C4.5 [32] algorithm is used to generate the decision tree with the

features identi�ed in the feature learning phase.

5 EXPERIMENTAL SETUP
Experiments were performed on a 10 computers running a Linux

operating system, with two cores of 2.5 GHz and eight gigabytes

of memory. The objective functions were implemented in Evo-

Suite [12] and used to guide the search in the test suite generation.

Each trial was repeated 10 times to take the random nature of

the search technique into consideration. The time-out was two

minutes per class, stated as the best trade-o� between time and

branch coverage [14]. Three �tness functions that are part of the

experiments are CLF (described in Section 4.2.1), BDF (Section 4.2.2),

and CFF (Section 4.2.3).

Branch coverage is used as a performance measure. An objective

function is superior if its branch coverage is at least 1% higher

than the other techniques. There were no cases where objective

functions performed equally.

5.1 SBST Tool
This study employs EvoSuite [12] as a search-based testing tool

for Java projects. EvoSuite evolves candidate test suites aimed

at covering all test goals, while at the same time minimising the

total size of the suite (i.e. reducing the number of test cases and

their length). As such, when there is a tie between test suites with

respect to their �tness values, EvoSuite chooses the test suite which

is composed of a cumulatively lower number of statements.

5.2 Optimisation Method
The objective functions were used to guide a state of the art opti-

misation method, the Whole Suite with Archive (WSA) [35]. WSA

starts by generating a set of solutions, which are uniformly, ran-

domly initialized. Formally, let t denote a test case, which consists

of a sequence of statements t = 〈s1, s2, ..., sl 〉 of length l . A state-

ment si can be a constructor, a �eld, a primitive, a method, or an

assignment. A solution is de�ned as a test suite T, which is a col-

lection T = {t1, t2, ..., tn } of test cases. An optimal solution T ∗ is

a test suite that covers all possible branches and lines of code, i.e.,

100% coverage.

Since the number of test cases in a test suite and the number

of statements in a test case may vary, the solution representation

is of a variable size. The solutions are evolved in iterations until

a stopping criterion is achieved, which usually is a prede�ned

number of function evaluations. The Genetic Algorithm used by

EvoSuite has four genetic operators that are applied to solutions

at every iteration: crossover, mutation, selection, and replacement.

Crossover creates two new solutions by combining test cases from

two test suites in the population. The mutation operator is applied

after the crossover operator, at a test suite level and at a test case

level. Test suites are mutated by changing each of the test cases

with a probability 1/n, where n is the number of test cases in the

test suite. In addition, new test cases are added to the test suite

at random. Mutation of test cases is performed by either adding,

changing, or removing statements from a test case with a probability

1/l , where l is the number of statements in a test case.

A rank-based selection procedure is employed to select the parent

solutions that will undergo recombination and mutation procedures.

Solutions are ranked based on the �tness function. When there

is a tie between solutions, shorter test suites are assigned better

ranks. As a result, solutions with better branch coverage and shorter

length have a higher chance of projecting their ‘genes’ to the next

generation. Similar to the original studies with EvoSuite, an elitist

strategy is used as a replacement procedure [12], which selects the

best solutions to create the next generation.

6 RESULTS
The GP algorithm evolved 202 classes. CFF did not outperform the

other objective functions in any of these classes. It is possible that

CFF is superior in CUTs with unrealistic features, such as nested

if conditions with a tree size larger than 10. However, our CUT

generator was set up in a way that unrealistic CUTs were discarded.

An example of a CUT is shown in Listing 1.

Listing 1: An example of an evolved CUT
public c l a s s Evolved_CUT_1 {

public void method1 (Double number00 ,

Long number10 , I n t e g e r number20 ,

I n t e g e r number30 , Long number40 ,

Boolean number50 , Boolean number60) {

i f (number00 <= 2 . 6 2 3 4 4 2 7 9 1 4 6 9 6 5 2 5 E307D) {

System . out . p r i n t l n (" b1 ") ;

i f (number10 < −4282759360621669546 L) {

System . out . p r i n t l n (" c1 ") ;

i f (number30 == 1 6 4 0 3 1 4 7 6 1) {

Footprints of Fitness Functions in Search-Based So�ware Testing GECCO ’19, July 13–17, 2019, Prague, Czech Republic

System . out . p r i n t l n (" d1 ") ; }

e l se { System . out . p r i n t l n (" d2 ") ; }

} e l se { System . out . p r i n t l n (" c2 ") ;

i f (number40 > 5 5 0 5 1 4 0 0 8 2 6 4 2 0 3 2 6 2 L) {

System . out . p r i n t l n (" d3 ") ;

} e l se { System . out . p r i n t l n (" d4 ") ; }

} } e l se { System . out . p r i n t l n (" b2 ") ;

i f (number20 > 1 9 3 7 5 8 4) {

System . out . p r i n t l n (" c3 ") ;

i f (number50 == f a l s e) {

System . out . p r i n t l n (" d5 ") ;

} e l se { System . out . p r i n t l n (" d6 ") ; }

} e l se { System . out . p r i n t l n (" c4 ") ;

i f (number60 == true) {

System . out . p r i n t l n (" d7 ") ;

} e l se { System . out . p r i n t l n (" d8 ") ; }

} } } }

The coverage achieved by BDF and CLF for this example are

shown in Figures 3 and 4. The nodes represent parts of the code

where the execution branches out (if-else statement). The labels

next to the arrows are the number of times that a branch has been

executed by test cases (out of 30 test cases) generated using the two

objective functions. In this example, BDF outperforms CLF, as it

has generated a higher number of test cases that can cover most of

the branches.

a1

b1 b2

c1 c2 c3 c4

d1 d2 d3 d4 d5 d6 d7 d8

30 26

29 30

29 29

26 26

29 27 25 25 26 26

Figure 3: Coverage achieved by BDF.

a1

b1 b2

c1 c2 c3 c4

d1 d2 d3 d4 d5 d6 d7 d8

30 2

5 30

5 5

2 2

18 30 2 2 2 2

Figure 4: Coverage achieved by CLF.

Applying the feature learning method, the SVM identi�ed the

footprints where BDF and CLF perform well with 76% accuracy.

The META framework identi�ed the following optimal features

which best capture the di�culty in generating test cases:

i Integer Variables with ≤ and ≥ comparator

ii Equalities with Double Variables

iii Double Variables with ≤ and ≥ comparator

iv Equalities with Long Variables

v Inequalities with Long Variables

vi Long Variables with ≤ and ≥ comparator.

Using these six features the META framework created the CUT

Space and identi�ed the footprints of the two objective functions.

Using the footprint visualisation method a 2d e�ectiveness map

is created, as shown in Figure 5a. Each point is a CUT, which is

colored red if CLF is the most e�ective objective function, and blue if

BDF is the winner. The �rst two components used to visualise
the CUT space explain 47.5% of the variation in the data. The

values of these two components are as follows:

[
p1
p2

]
=

[
−.28 .21 −.75 −.25 .50 .76

−.77 .55 .11 .59 .01 −.13

] 

i

ii

iii

iv

v

vi


(6)

These are the footprints of the two objective functions. The best

separation is provided by the second principal component (PC2)

axis. Therefore, the features that contribute the most to the PC2 are

the most important ones. This gives the answer to the �rst research

challenge:

RC1: The most signi�cant features that have an impact on the

e�ectiveness of BDF and CLF are integer variables with ≤
and ≥ comparator, equalities with long variables, and

equalities with double variables.

Figures 5b, 5c and 5d show the same principal components, how-

ever, the CUTs are now colored according to the most signi�cant

features. Figure 5b shows how the CUTs score according to the

Integer Variables with <= and >= comparator. When we consider

both Figures 5a and 5b side by side, it becomes clear that BDF is

e�ective in generating test suite for classes that have a high number

of Integer Variables with <= and >= comparator, whereas CLF is

more e�ective in CUTs that score low according to this feature. In

a similar way, Figures 5c and 5d show that BDF is more e�ective

when both the number of equalities with long type and the number

of equalities with double type are low, while CLF is more e�ective

when the CUTs score low in these two features.

We did not �nd a superior average performance of CLF over BDF

inside the CLF footprint area. In the cases that BDF is superior to

CLF, the performance di�erence is usually higher than 30%. CLF

is better in most of cases inside the CLF footprint area, however

the performance di�erence reaches a maximum of 11%. In the

majority of cases the di�erence ranges between 2 and 5%. On the

other hand, BDF presents a signi�cant superior performance inside

BDF footprint area. In the best case, the average branch coverage

reaches a di�erence of 55%. This means that BDF is on average

better than CLF, but there are CUTs where CLF outperforms BDF.

Next, a decision tree is constructed which can be used for objec-

tive function selection when solving new SBST problems. The goal

is to achieve optimal classi�cation of the Objective Functions with

minimal number of decisions. The rules de�ning the decision tree

for Objective Function selection are shown in Figure 6.

The decision tree can be used to select the appropriate objective

function when a new software project requires the generation of

test cases. The results were validated for consistency and accuracy

using 10-fold cross validation technique. Results from the classi�er

are presented in Table 1.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Carlos Oliveira, Aldeida Aleti, Yuan-Fang Li, and Mohamed Abdelrazek

-4 -3 -2 -1 0 1 2 3

Principal Component 1

-4

-3

-2

-1

0

1

2
P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t
2

BDF

CLF

(a) E�ectiveness Map

-4 -3 -2 -1 0 1 2 3

Principal Component 1

-4

-3

-2

-1

0

1

2

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t
2

0

0.2

0.4

0.6

0.8

1

(b) Integer Variables with ≤ & ≥ comparator.

-4 -3 -2 -1 0 1 2 3

Principal Component 1

-4

-3

-2

-1

0

1

2

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t
2

0

0.2

0.4

0.6

0.8

1

(c) Number of Equalities with Long type.

-4 -3 -2 -1 0 1 2 3

Principal Component 1

-4

-3

-2

-1

0

1

2

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t
2

0

0.2

0.4

0.6

0.8

1

(d) Number of equalities with Double type.

Figure 5: Visualisation of the footprints of �tness functions. The principal components are de�ned in Eq. 6.

> 0.5 <= 0.5

CLF
= 0 > 0

CLF
> 0 = 0

BDF
= 0

CLF
> 0Equalities with Double variables

Equalities with Long variables

Integer variables using <= and >=

BDF

.

Figure 6: Objective Function decision tree.

Table 1: 10-fold cross validation of the decision tree.

Fitness function Precision Recall F-Score
CLF 76% 71% 74%

BDF 74% 77% 75%

Average 75% 74% 74%

Precision denotes the proportion of predicted positive cases that

are correctly real positives [33]. Recall is the proportion of real

positive cases that are correctly predicted positive [33]. As there is

always a quality compromise between Precision and Recall, being

desirable but di�erent features, the F-Measure is used as a harmonic

mean to counter this problem. It references the true positives to the

arithmetic mean of predicted positives and real positives, being a

constructed rate normalized to an idealized value [33]. In summary,

the decision tree selects the most e�ective �tness function with

high accuracy, hence the answer to the second research question is:

RC2: The integer variables with <= and >= comparator,
equalities with long variables, and equalities with double

variables can accurately predict the most suitable �tness

function, hence features can be used for �tness function selection.

Analyzing Figure 6, we observe that BDF has issues when dealing

with equalities using Long and Double variables. CLF is superior

in most of the cases where the branch predicate present equalities

with Double or Long. While BDF has superior performance when

the number of Integer variables using <= or >= is higher than 0.5.

7 CONCLUSION
We investigated the e�ectiveness of �tness functions widely used

in Search-Based Software Testing. Fitness functions are crucial in

guiding the search algorithm and �nding high quality test cases.

We developed the META framework which identi�es features of

classes under test (CUTs) that impact the e�ectiveness of di�erent

�tness functions. The framework creates a decision tree based on

the most signi�cant features, which can be used for �tness function

selection. Beyond the challenge of accurately predicting which

�tness function is likely to perform best for a given CUT, based

on the relationship between CUT features and �tness function

performance, the META framework also explains why.

REFERENCES
[1] Aldeida Aleti and Lars Grunske. 2015. Test data generation with a Kalman

�lter-based adaptive genetic algorithm. Journal of Systems and Software 103

(2015), 343 – 352. DOI:http://dx.doi.org/10.1016/j.jss.2014.11.035 Special Issue.

[2] Aldeida Aleti and Irene Moser. 2011. Predictive Parameter Control. In Proceedings
of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM,

http://dx.doi.org/10.1016/j.jss.2014.11.035

Footprints of Fitness Functions in Search-Based So�ware Testing GECCO ’19, July 13–17, 2019, Prague, Czech Republic

561–568. DOI:http://dx.doi.org/10.1145/2001576.2001653

[3] Aldeida Aleti and Irene Moser. 2013. Entropy-based Adaptive Range Parameter

Control for Evolutionary Algorithms. In Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation. ACM, 1501–1508. DOI:http://dx.doi.

org/10.1145/2463372.2463560

[4] Aldeida Aleti, Irene Moser, and Lars Grunske. 2016. Analysing the �tness land-

scape of search-based software testing problems. Automated Software Engineering
(2016), 1–19.

[5] Aldeida Aleti, Irene Moser, Indika Meedeniya, and Lars Grunske. 2014. Choosing

the appropriate forecasting model for predictive parameter control. Evolutionary
computation 22, 2 (2014), 319–349.

[6] Aldeida Aleti, Irene Moser, and Sanaz Mostaghim. 2012. Adaptive range parame-

ter control. In 2012 IEEE Congress on Evolutionary Computation. IEEE, 1–8.

[7] André Baresel, Harmen Sthamer, and Michael Schmidt. 2002. Fitness Function

Design To Improve Evolutionary Structural Testing.. In Genetic and Evolutionary
Computation Conference, Vol. 2. 1329–1336.

[8] David L. Bird and Carlos Urias Munoz. 1983. Automatic generation of random

self-checking test cases. IBM systems journal 22, 3 (1983), 229–245.

[9] B Borah and DK Bhattacharyya. 2004. An improved sampling-based DBSCAN

for large spatial databases. In Intelligent Sensing and Information Processing, 2004.
Proceedings of International Conference on. IEEE, 92–96.

[10] Jon Edvardsson. 1999. A survey on automatic test data generation. In Proceedings
of the 2nd Conference on Computer Science and Engineering. 21–28.

[11] Roger Ferguson and Bogdan Korel. 1995. Software test data generation using

the chaining approach. In International Test Conference. IEEE, 703–709.

[12] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. Software
Engineering, IEEE Transactions on 39, 2 (2013), 276–291.

[13] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated

unit test generation using EvoSuite. ACM Transactions on Software Engineering
and Methodology 24, 2 (2014), 8.

[14] Gordon Fraser and Andrea Arcuri. 2014. A Large-Scale Evaluation of Automated

Unit Test Generation Using EvoSuite. ACM Transactions on Software Engineering
and Methodology 24, 2, Article 8 (2014), 8:1–8:42 pages. DOI:http://dx.doi.org/10.

1145/2685612

[15] Matthew J Gallagher and V Lakshmi Narasimhan. 1997. Adtest: A test data gen-

eration suite for ada software systems. Software Engineering, IEEE Transactions
on 23, 8 (1997), 473–484.

[16] Kamran Ghani and John A Clark. 2009. Automatic test data generation for

multiple condition and MCDC coverage. In Software Engineering Advances, In-
ternational Conference on. IEEE, 152–157.

[17] Marius Gheorghita, Irene Moser, and Aldeida Aleti. 2013. Characterising �t-

ness landscapes using predictive local search. In Proceedings of the 15th annual
conference companion on genetic and evolutionary computation. ACM, 67–68.

[18] Mark Harman and Phil McMinn. 2010. A theoretical and empirical study of

search-based testing: Local, global, and hybrid search. Software Engineering,
IEEE Transactions on 36, 2 (2010), 226–247.

[19] Yue Jia and Mark Harman. 2008. Constructing subtle faults using higher order

mutation testing. In Source Code Analysis andManipulation, InternationalWorking
Conference on. IEEE, 249–258.

[20] Bogdan Korel. 1990. Automated software test data generation. Software Engi-
neering, IEEE Transactions on 16, 8 (1990), 870–879.

[21] Bogdan Korel. 1992. Dynamic method for software test data generation. Software
Testing, Veri�cation and Reliability 2, 4 (1992), 203–213.

[22] Bogdan Korel. 1996. Automated test data generation for programs with proce-

dures. In ACM SIGSOFT Software Engineering Notes, Vol. 21. ACM, 209–215.

[23] Nashat Mansour and Miran Salame. 2004. Data generation for path testing.

Software Quality Journal 12, 2 (2004), 121–136.

[24] Phil McMinn. 2004. Search-based software test data generation: A survey.

Software Testing Veri�cation and Reliability 14, 2 (2004), 105–156.

[25] Webb Miller and David L. Spooner. 1976. Automatic generation of �oating-point

test data. IEEE Transactions on Software Engineering 2, 3 (1976), 223.

[26] I Moser, M Gheorghita, and A Aleti. 2016. Identifying Features of Fitness Land-

scapes and Relating Them to Problem Di�culty. Evolutionary computation
(2016).

[27] Irene Moser, Marius Gheorghita, and Aldeida Aleti. 2016. Investigating the

correlation between indicators of predictive diagnostic optimisation and search

result quality. Information Sciences 372 (2016), 162–180.

[28] Mario A. Muñoz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles.

2018. Instance spaces for machine learning classi�cation. Machine Learning 107,

1 (2018), 109–147. DOI:http://dx.doi.org/10.1007/s10994-017-5629-5

[29] Carlos Oliveira, Aldeida Aleti, Lars Grunske, and Kate Smith-Miles. 2018. Map-

ping the E�ectiveness of Automated Test Suite Generation Techniques. IEEE
Transactions on Reliability 99 (2018), 1–15.

[30] Alessandro Orso and Gregg Rothermel. 2014. Software testing: a research

travelogue (2000–2014). In Future of Software Engineering. ACM, 117–132.

[31] Roy P Pargas, Mary Jean Harrold, and Robert R Peck. 1999. Test-data generation

using genetic algorithms. Software Testing Veri�cation and Reliability 9, 4 (1999),

263–282.

[32] Kemal Polat and Salih Güneş. 2009. A novel hybrid intelligent method based

on C4. 5 decision tree classi�er and one-against-all approach for multi-class

classi�cation problems. Expert Systems with Applications 36, 2 (2009), 1587–1592.

[33] D. M. W. Powers. 2011. Evaluation: From precision, recall and f-measure to

roc., informedness, markedness & correlation. Journal of Machine Learning
Technologies 2, 1 (2011), 37–63.

[34] Peter Puschner and Roman Nossal. 1998. Testing the results of static worst-case

execution-time analysis. In Real-Time Systems Symposium. IEEE, 134–143.

[35] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. 2017. A

detailed investigation of the e�ectiveness of whole test suite generation. Empiri-
cal Software Engineering 22, 2 (2017), 852–893. DOI:http://dx.doi.org/10.1007/

s10664-015-9424-2

[36] Marc Roper. 1997. Computer aided software testing using genetic algorithms.

(1997).

[37] Sina Shamshiri, José Miguel Rojas, Gordon Fraser, and Phil McMinn. 2015. Ran-

dom or Genetic Algorithm Search for Object-Oriented Test Suite Generation?.

In Genetic and Evolutionary Computation Conference. ACM, 1367–1374.

[38] Kate A. Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd Lewis.

2014. Towards objective measures of algorithm performance across instance

space. 45 (2014), 12–24.

[39] Pascale Thevenod-Fosse and Helene Waeselynck. 1993. STATEMATE applied to

statistical software testing. In ACM SIGSOFT Software Engineering Notes, Vol. 18.

ACM, 99–109.

[40] Nigel Tracey, John Clark, Keith Mander, and John McDermid. 1998. An automated

framework for structural test-data generation. InAutomated Software Engineering.

IEEE, 285–288.

[41] Nigel James Tracey. 2000. A search-based automated test-data generation frame-
work for safety-critical software. Ph.D. Dissertation. Citeseer.

[42] Je�rey Voas, Larry Morell, and Keith Miller. 1991. Predicting where faults can

hide from testing. Software 8, 2 (1991), 41–48.

[43] Alison Watkins and Ellen M Hufnagel. 2006. Evolutionary test data generation:

a comparison of �tness functions. Software: Practice and Experience 36, 1 (2006),

95–116.

[44] Alison Lachut Watkins. 1995. The automatic generation of test data using genetic

algorithms. In Software Quality Conference, Vol. 2. 300–309.

[45] Joachim Wegener, André Baresel, and Harmen Sthamer. 2001. Evolutionary

test environment for automatic structural testing. Information and Software
Technology 43, 14 (2001), 841–854.

[46] Joachim Wegener, Harmen Sthamer, Bryan F Jones, and David E Eyres. 1997.

Testing real-time systems using genetic algorithms. Software Quality Journal 6,

2 (1997), 127–135.

[47] David H Wolpert and William G Macready. 1997. No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation 1, 1 (1997), 67–82.

[48] S Xanthakis, C Ellis, C Skourlas, A Le Gall, S Katsikas, and K Karapoulios. 1992.

Application of genetic algorithms to software testing. In International Conference
on Software Engineering and its Applications. 625–636.

[49] Man Xiao, Mohamed El-Attar, Marek Reformat, and James Miller. 2007. Empirical

evaluation of optimization algorithms when used in goal-oriented automated

test data generation techniques. Empirical Software Engineering 12, 2 (2007),

183–239.

http://dx.doi.org/10.1145/2001576.2001653
http://dx.doi.org/10.1145/2463372.2463560
http://dx.doi.org/10.1145/2463372.2463560
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.1007/s10994-017-5629-5
http://dx.doi.org/10.1007/s10664-015-9424-2
http://dx.doi.org/10.1007/s10664-015-9424-2

	Abstract
	1 Introduction
	2 Search Based Software Testing
	2.1 Goal-oriented Approaches
	2.2 Chaining Approaches
	2.3 Coverage-oriented Approaches
	2.4 Distance-oriented Approaches
	2.5 Control-Oriented Approaches

	3 Fitness Landscapes
	4 META Framework
	4.1 CUT Space
	4.2 Fitness Function Space
	4.3 Fitness Function Effectiveness Space

	5 Experimental Setup
	5.1 SBST Tool
	5.2 Optimisation Method

	6 Results
	7 Conclusion
	References

