
Understanding and Improving Ontology Reasoning
Efficiency through Learning and Ranking

Yong-Bin Kanga, Shonali Krishnaswamya, Wudhichart Sawangpholb, Lianli Gaoc,
Yuan-Fang Lid,∗

a Department of Computer Science and Software Engineering, Swinburne University of Technology, Australia
b Faculty of Information and Communication Technology, Mahidol University, Thailand

c School of Computer Science and Engineering,
The University of Electronic Science and Technology of China

d Faculty of Information Technology, Monash University, Australia

Abstract

Ontologies are the fundamental building blocks of the Semantic Web and Linked

Data. Reasoning is critical to ensure the logical consistency of ontologies, and to

compute inferred knowledge from an ontology. It has been shown both theoretically and

empirically that, despite decades of intensive work on optimising ontology reasoning

algorithms, performing core reasoning tasks on large and expressive ontologies is

time-consuming and resource-intensive. In this paper, we present the meta-reasoning

framework R2O2* to tackle the important problems of understanding the source of

TBox reasoning hardness and predicting and optimising TBox reasoning efficiency

by exploiting machine learning techniques. R2O2* combines state-of-the-art OWL 2

DL reasoners as well as an efficient OWL 2 EL reasoner as components, and predicts

the most efficient one by using an ensemble of robust learning algorithms including

XGBoost and Random Forests. A comprehensive evaluation on a large and carefully

curated ontology corpus shows that R2O2* outperforms all six component reasoners as

well as AutoFolio, a robust and strong algorithm selection system.

Keywords: OWL, Reasoning, Performance prediction, Ontology, Metrics, Learning,

Meta-reasoning, Semantic Web

∗Author for correspondence
Email addresses: ykang@swin.edu.au (Yong-Bin Kang), skrishnaswamy@swin.edu.au

(Shonali Krishnaswamy), wudhichart.saw@mahidol.edu (Wudhichart Sawangphol),
lianli.gao@uestc.edu.cn (Lianli Gao), yuanfang.li@monash.edu (Yuan-Fang Li)

Preprint submitted to Elsevier July 10, 2019

1. Introduction1

Ontologies are essential building blocks of the Semantic Web. Expressive ontol-2

ogy languages OWL DL and OWL 2 DL are widely used to represent many complex3

phenomena in a number of application domains, including bioinformatics [1], software4

engineering [2] and data management [3–6]. In these domains, maintaining the logical5

correctness of ontologies (i.e. consistency checking) and deducing implicit facts from6

ontologies (i.e. classification) are both important tasks that may need to be performed7

repeatedly. However, ontologies as expressed in common ontology languages such as8

OWL [7] and OWL 2 [8] can be large, complex, or both. The high worst-case com-9

plexity of these ontology languages incurs high computational costs on the above core10

reasoning problems. Checking the logical consistency of an ontology in SHOIN(D),11

the description logic (DL) underlying OWL DL, has NExpTime-complete worst-case12

complexity [7]. The complexity of the same problem for SROIQ(D), the DL underlying13

OWL 2 DL, is even higher (2NexpTime-complete) [8].14

The past decade has seen the development of highly optimised inference algo-15

rithms for description logics, with (hyper) tableau algorithms [9] being a leading ex-16

emplar. A number of high-performance DL reasoners have been developed, including17

FaCT++ [10], HermiT [11], Konclude [12], Pellet [13] and TrOWL [14]. Despite the18

tremendous progress in both theoretical research and practical implementation, the high19

theoretical worst-case complexity results for OWL DL and OWL 2 DL still imply that20

core reasoning services may be computationally very expensive. It has been shown21

empirically that reasoning on large and complex ontologies in OWL 2 DL and OWL22

2 EL (a less expressive profile that enjoys a PTime-complete complexity) can be very23

time-consuming for state-of-the-art reasoners [15, 16]. Such high difficulty of reasoning24

and the fundamental role inference plays in ontology-based applications make it highly25

desirable to be able to accurately predict inference performance for ontologies and26

reasoners.27

It is well-known that worst-case complexity does not necessarily provide useful28

insights into hardness of individual instances [17, 18]. In this context, it is noteworthy29

2

that reasoner benchmarking has been conducted previously [15, 19–22]. Except the two30

ORE competitions, these works only compared inference performance on a small set31

of ontologies. Moreover, they did not attempt to correlate characteristics of ontologies32

with their inference performance. Hence, they do not provide insight into what makes33

inference difficult on a given ontology.34

The robustness of ontology reasoners was recently investigated [23], with a particular35

focus on reasoning efficiency. It was observed that given a corpus of ontologies and a36

number of state-of-the-art reasoners, it is highly likely that one of the reasoners performs37

sufficiently well on any given ontology in the corpus. However, this virtual best reasoner38

is only found a posteriori, and the paper did not discuss how the best reasoner may be39

selected automatically. It only stated that this task is not straightforward.40

In our previous work we studied the characterisation of ontology’s design complexity41

using metrics [24], the prediction of ontology classification efficiency [25, 26], and42

proposed a meta-reasoner R2O2 [27]. A meta-reasoner is one that combines other43

(component) reasoners. Given an ontology, a meta-reasoner predicts the most efficient44

component reasoner and selects it to carry out reasoning on that ontology. In this45

paper, we improve upon our existing work and present a learning- and ranking-based46

framework for the understanding of sources of ontology reasoning hardness, prediction47

of ontology reasoning time, and ultimately improving reasoning performance, under48

a unifying meta-reasoning framework. The main contributions of this paper can be49

summarised as follows:50

• Accurate prediction models: A regression based prediction model is learned for51

each of a number of state-of-the-art OWL 2 DL reasoners. Evaluated with 10-52

fold cross validation, all the models are highly accurate, with R2 (coefficient of53

determination) values in [0.71, 0.95].54

• A meta-reasoning framework: A novel meta-reasoning framework, R2O2*, is de-55

veloped. Building on our previous work, R2O2* ranks and selects OWL reasoners56

with the aim of determining the most efficient reasoner for an unknown ontology.57

Compared with R2O2 [27], R2O2* utilises a robust, state-of-the-art prediction model58

XGBoost [28] based on gradient boosting [29] and an emsemble learning method59

stacking that combines multiple learning algorithms to obtain better predictive per-60

3

formance. R2O2* integrates state-of-the-art, sound and complete reasoners that are61

both efficient and robust. Moreover, R2O2* also incorporates ELK [30], an efficient62

reasoner for OWL 2 EL ontologies, to further improve reasoning efficiency for a63

wider variety of ontologies.64

• Comprehensive evaluation: A comprehensive evaluation on reasoning time has65

been conducted on a modern, large, and carefully-curated ontology corpus from the66

ORE 2015 reasoner competition [22]. Our evaluation shows that R2O2* outperforms67

all of the six OWL 2 DL component reasoners in the evaluation. The complete68

meta-reasoner variant, R2O2*(all), also outperforms our previous meta-reasoners PR69

and R2O2 [27]. More importantly, R2O2* outperforms AutoFolio [31], a state-of-70

the-art portfolio-based algorithm selection model that has demonstrated excellent71

performance in a number of domains.72

• Ontology metrics: Furthermore, we give full definitions of a large suite of 91 on-73

tology metrics that have been mentioned but not formally defined in our previous74

work [24, 26]. The formal definitions provide a valuable insight into ontology en-75

gineering and maintenance. We also identify the most important metrics that affect76

ontology reasoning efficiency, which further informs ontology engineering practices.77

The R2O2* meta-reasoner, including components that calculate metrics and train78

prediction models and rankers, has been made freely available for wider dissemination.179

The rest of the paper is organised as follows. A brief overview of background80

knowledge of ontologies and reasoning is given in Section 2, followed by a discussion81

of closely-related work in Section 3. The suite of all metrics that characterise the design82

complexity of OWL ontologies are formally defined in Section 4. The four variants83

of the meta-reasoner R2O2* are described in detail in Section 5. Section 6 presents84

the evaluation framework for building prediction models and the meta-reasoner. Our85

detailed evaluation results and analysis are presented in Section 7. Lastly, we conclude86

the paper and discuss future work in Section 8.87

1https://github.com/liyuanfang/r2o2-star

4

https://github.com/liyuanfang/r2o2-star

2. Ontologies and Reasoning88

Ontologies organise domain knowledge in a structured and logical way. Semantic89

Web ontologies have been widely used in many different areas as a medium for knowl-90

edge representation and data integration. Common ontology languages such as OWL91

1 [7] and OWL 2 [8] have formal semantics defined by Description Logics (DL) [32], a92

family of logics created specifically for the purpose of knowledge representation. In93

simple terms, knowledge in DL is characterised by abstract concepts, which represent94

sets of entities; properties or roles, which are binary relations between entities; and indi-95

viduals, which represent entities themselves. Hence, a concept semantically represents96

a set of individuals.97

The logical nature gives rise to reasoning support for ontologies. These, among98

others, include concept satisfiability checking, concept subsumption checking, and99

classification. Concept satisfiability checking ensures that a concept can contain at least100

one individual. Concept subsumption checks whether two concepts have a sub-class101

relationship. Classification computes the subsumption relationship between all pairs of102

(named) concepts in an ontology.103

For example, the following axioms in the DL syntax describe some knowledge about104

pizzas. Axioms (1) and (2) state that AmericanHot is a Pizza, and that it has some105

MozzarellaTopping. Axiom (3) states that MozzarellaTopping is a CheeseTopping.106

Axiom (4) states that CheeseyPizza is exactly those Pizza that has some CheeseTopping.107

Through classification, the concept AmericanHot is found to bea subclass of CheeseyPizza,108

as it is a Pizza, and that it also has some MozzarellaTopping, which is a type of109

CheeseyTopping.110

AmericanHot v Pizza (1)

AmericanHot v ∃hasTopping.MozzarellaTopping (2)

MozzarellaTopping v CheeseTopping (3)

CheeseyPizza ≡ Pizza u ∃hasTopping.CheeseTopping (4)

A number of different DLs have been proposed over the years. These DLs include111

5

different combinations of language constructs, hence they have different expressive112

power. As a result, they also have different worst-case complexity results for core113

reasoning tasks. A detailed introduction to the syntax, semantics and complexity of114

these ontology languages can be found in the literature [7, 8].115

Optimisation of ontology reasoning algorithms has been aggressively pursued over116

the past decades, and a number of highly optimised reasoners have been produced.117

These include sound and complete reasoners such as FaCT++ [33], HermiT [34], Kon-118

clude [12], and Pellet [13]; as well as the sound but incomplete reasoner TrOWL [14].119

Despite tremendous progress in optimisation, there has been ample empirical evidence120

of the actual hardness of real-world ontologies [15, 25, 35]. Therefore, efficient reason-121

ing over large and expressive ontologies remains a computationally challenging task.122

On the other hand, efficient reasoners dedicated to less expressive profiles have also123

been developed. ELK [30] is such a concurrent reasoner for ontologies in the OWL 2124

EL profile.125

3. Related Work126

Our related work is divided into the three categories according to the focuses in this127

paper: ontology metrics, prediction models for OWL reasoners, and algorithm selection128

and meta-reasoners.129

Ontology Metrics. There has been research on the development of a series of metrics for130

analysing ontology complexity [36]. The pioneering work for identifying the proposed131

metrics in this paper is found in [24] that introduced a suite of 8 metrics with the132

aim of characterising different aspects of ontology design complexity. Further, we133

identified an additional 19 metrics that can measure different aspects of the size and134

structural characteristics of an ontology [25] . These 27 metrics were used for predicting135

discretised reasoning performance of reasoners. These 27 metrics were combined with136

another set of metrics that capture ontology complexity in [26]. In total, 91 metrics137

were collected and used to build models for predicting absolute reasoning performance138

of reasoners. In this work, we use these 91 metrics to build prediction models and the139

6

meta-reasoner R2O2*. We also give the full definitions of all the 91 metrics, which have140

not been previously defined formally.141

Prediction of Reasoning Performance. Ontology reasoning tasks are hard decision142

problems that may go beyond NP-hard. For very expressive DLs, ontology reasoning has143

a very high worst-case complexity of 2NExpTime-complete [8]. For ontolgy reasoning144

optimisation, the research community have been interested in benchmarking of reasoner145

performance. In [15, 16], a number of modern reasoners were compared, and it was146

observed that the reasoners exhibit significantly different performance characteristics,147

thereby choosing an efficient reasoner for an ontology is a non-trivial task.148

In a previous work [25], we developed classifiers to predict ontology classification149

performance categories for FaCT++, HermiT, Pellet and TrOWL, using ontology metrics150

as predictors [25]. The raw reasoning time is discretised into 5 increasingly large151

categories. High prediction accuracy of over 80% is achieved for all the 4 reasoners.152

Although highly accurate, the limitation of this work is that only the hardness category153

is predicted, not the actual reasoning time. To overcome this problem, we further154

investigated regression-based prediction models [26] to predict actual (or absolute)155

reasoning time of reasoners. In this approach, regression analysis was applied to156

estimate a numeric response variable (i.e. predicted reasoning time) from some predictor157

variables (i.e. 91 ontology metrics). These regression models were built on a small158

number of ontologies (i.e. 451) for 6 reasoners (FaCT++, HermiT, JFact, MORe, Pellet,159

TrOWL). These were implemented in R2. In this work, we improve upon these models160

by using a modern, carefully curated dataset of 1,920 ontologies from the ORE 2015161

reasoner competition [22], an additional robust learning algrorithm XGBoost [28], and162

an updated list of reasoners that includes Konclude [12] and ELK [30] (for OWL 2163

EL ontologies only) and excludes TrOWL [14] as it is an approximate thus incomplete164

reasoner.165

Sazonau et al. [37] proposed a local approach to predicting OWL reasoner effi-166

ciency. Small subsets of a given ontology are repeatedly created, on which reasoning167

2https://www.r-project.org/

7

https://www.r-project.org/

is performed. Reasoning time data is then used to extrapolate a reasoner’s discretised168

reasoning time on the whole ontology. Principal component analysis (PCA) was also169

employed to reduce the number of features (metrics). Evaluation conducted on 357170

ontologies and 3 reasoners shows that the local prediction method performs as well as171

the global approach [25]. Moreover, they observed that the prediction model based on172

one feature (number of axioms) has comparable performance as that using a set of 57173

features.174

In a similar spirit, we investigated the prediction of reasoning time of ABox-intensive175

OWL 2 EL ontologies [38] and energy consumption of reasoning tasks on the Android176

platform [39].177

Algorithm selection and meta-reasoner. Algorithm selection [40] is the problem of178

selecting a well-performing algorithm for a given problem instance. It has been success-179

fully applied to machine learning, combinatorial optimisation and constraint satisfaction180

problems [41, 42]. SATzilla [43], for instance, a portfolio-based SAT solver, has demon-181

strated higher efficiency over single solvers. Compared to SAT, ontology languages are182

more expressive with the inclusion of many more language constructs. As a result, it is183

more challenging to accurately characterising ontology complexity.184

AutoFolio [31] is a state-of-the-art, general-purpose algorithm selection system that185

performs automatic algorithm selection as well as hyper-parameter tuning. In this paper186

we use AutoFolio as a strong baseline to evaluate R2O2* in Section 7.2.3.187

Chainsaw [44] first proposed the notion of a metareasoner for OWL ontologies.188

Given a query (i.e. reasoning task) on an ontology, Chainsaw constructs the smallest189

possible subset of the ontology while guaranteeing completeness of answering the query.190

This is achieved through the extraction of locality-based modules [45] using atomic191

decomposition [46]. The size of the extracted module is dependent on the reasoning192

task. For certain tasks such as consistency checking, the entire ontology needs to193

be extracted, hence not resulting in gains in efficiency. Also, given the potentially194

substantial overhead of computing modules, Chainsaw may not be competitive for195

simpler ontologies. As a prototype reasoner, Chainsaw uses FaCT++ version 1.5.3 as the196

delegate (i.e. component) reasoner. In the ORE 2015 ontology reasoner competition [47],197

8

Chainsaw , Chainsaw did not perform competitively against state-of-the-art reasoners:198

it was ranked 10/10 for the task of OWL DL classification and 11/13 for OWL EL199

classification.200

WSReasoner [48] is a hybrid reasoner designed for large and complex ontologies201

in the description logic ALCHOI. Given an ontology O, WSReasoner builds two202

approximate ontologies: a weakened version Owk and a strengthened version Ostr, both203

of which are in the less expressive (thus less complex) logic ALCH . WSReasoner204

employs two component reasoners: a consequence-based reasoner that classifies both205

Owk and Ostr. As reasoning over Ostr may not be sound, WSReasoner also employs a206

tableau-based reasoner to verify these results obtained on Ostr. In its evaluation on a207

number of well-known hard ontologies including DOLCE, FMA and variants of Galen,208

WSReasoner outperforms tableau-based reasoners FaCT++, HermiT, Pellet and the209

approiimate, consequence-based reasoner TrOWL.210

In our preliminary work [27], we proposed a meta-reasoner, R2O2, that makes use of211

regression-based prediction models of six OWL 2 DL reasoners (i.e. FaCT++, HermiT,212

JFact, Konclude, MORe, TrOWL). R2O2 takes two steps in the training phase. First,213

given training ontologies characterised by a set of metrics [26] and their reasoning214

time by the reasoners, R2O2 constructs a regression-based prediction model for each215

of the six reasoners. Second, given another set of training ontologies, a ranking matrix216

is generated using the prediction models. In the ranking matrix, each row represents217

the values of the ontology metrics and a ranking of the reasoners according to their218

predicted reasoning time. Several rankers were trained on this ranking matrix to learn219

how ontology metrics can be mapped to a relative ordering by the predicted performance220

of the reasoners. In the actual reasoning (testing) phase, given an unknown ontology,221

R2O2 makes performance predictions for the reasoners. It then ranks the reasoners222

according to their predicted reasoning time. The rankings recommended by the trained223

rankers are averaged to determine a unique rank of each reasoner. The highest ranked224

reasoner is chosen to perform the reasoning task for the unknown ontology. The225

evaluation on R2O2 [27] shows that R2O2 outperforms all of the six state-of-the-art226

OWL 2 DL reasoners, including Konclude [12], the most efficient OWL 2 DL reasoner.227

As a baseline model to evaluate R2O2 [27], we also constructed a portfolio-based228

9

OWL reasoner PR, which always selects the most efficient reasoner for any given229

ontology according to predicted reasoning time of all component reasoners.230

R2O2 is different from PR in the following way. Instead of choosing the best231

reasoner according to predicted reasoning time of reasoners, as in PR, R2O2 selects a232

best possible reasoner from an aggregation of the rankings of component reasoners.233

Recently a multi-criteria meta-reasoner Multi-RakSOR [49, 50] has been proposed234

for reasoning about OWL 2 DL and EL ontologies. Multi-RakSOR incorporates two235

objectives in selecting the best reasoner: reasoning efficiency and robustness. Efficiency236

is measured by execution time. The robustness of a reasoner is measured by four ordered237

termination states: (1) success (BS); (2) unexpected (BU), where the reasoning result is238

not expected; (3) timeout (BT), where the reasoner times out on an ontology; and (4)239

halt (BH), where the reasoner crashes. The ordering on these states is then defined to be240

BS ≺ BU ≺ BT ≺ BH .241

Multi-RakSOR encompasses two main components: (1) a multi-label classifier that242

predicts the termination state of a reasoner, and (2) a multi-target regression model that243

predicts the ranking of the reasoners (with tie breaking) that respects the above ordering.244

A comprehensive evaluation of Multi-RakSOR is performed on the ORE 2015245

reasoner competition ontology dataset3, which we also use for evaluating R2O2*, and a246

set of 10 OWL 2 DL/EL reasoners. The paper also describes an “upgraded” version of247

Multi-RakSOR, dubbed Meta-RakSOR, that is able to handle both OWL 2 DL (more248

expressive) and OWL 2 EL (less expressive) ontologies. Meta-RakSOR is evaluated on249

the task of ontology classification on two datasets: one for OWL 2 DL and for OWL250

2 EL. The main evaluation results show that for both datasets, Meta-RakSOR has the251

highest number of ontologies successfully reasoned over. In terms of efficiency, for252

OWL 2 DL, Meta-RakSOR demonstrates competitive performance (but not better) than253

the best single reasoner Konclude. For OWL 2 EL, it is shown that Meta-RakSOR ranks254

6th of the eleven reasoners evaluated, in terms of average reasoning time.255

The meta-reasoners/hybrid reasoners described so far are all focussed on TBox256

reasoning (consistency checking or classification). PAGOdA [51] is a hybrid system257

3https://zenodo.org/record/50737

10

https://zenodo.org/record/50737

designed for the task of query answering over ABox data. Employing an approach258

similar to WSReasoner [48], PAGOdA uses an efficient reasoner, in this case a Datalog259

reasoner, to compute a lower bound answer (sound but possibly incomplete) and an260

upper bound answer (complete but possibly unsound). When the two answers do not261

completely coincide, PAGOdA extracts relevant subsets from the TBox and the ABox262

are extracted, which are used to verify the answers by a fully-fledged OWL 2 DL263

reasoner.264

4. Ontology Metrics265

Metrics have been proposed to quantitatively measure the quality, complexity, testa-266

bility, and maintainability of ontologies. Inspired by software metrics [52], we proposed267

a set of 91 metrics [24–26] for characterising the design complexity of ontologies. How-268

ever, the definition of many of these metrics were not formally given. In this section,269

we give a detailed account of this suite of 91 metrics that comprehensively characterise270

ontologies in terms of their size and syntactic and structural complexity. These metrics271

serve as distinctive features for learning ontology reasoning prediction models and272

building the proposed meta-reasoning framework R2O2*.273

These metrics are organised by what they characterise: (1) the ontology itself, (2)274

classes, (3) anonymous class expressions, and (4) properties. These metrics are proposed275

with efficient computation as a key consideration. In the calculation of metrics, we276

adopt a graph-based view of ontologies [24] to capture the complexity of ontologies and277

generate a set of metrics.278

The subsequent subsections present details of the metrics. Note that a metric name279

without the percent sign (%) is a count, and one with it is a ratio. A count metric280

shows how a component of an ontology has impact on the reasoning performance281

by its occurrences. A ratio metric is used to explain the relationship between such a282

component with respect to the overall structure of the ontology. Intuitively, a count/ratio283

metric represents the absolute/relative value of a metric of an ontology, respectively. We284

note that all metrics are computed on the asserted ontology hierarchy. In other words,285

no reasoning is performed prior to computing these ontologies.286

11

4.1. Ontology-level Metrics (ONT)287

The 6 ONT metrics were previously defined [24]. Here, we define an additional 18288

ONT metrics that have not been described previously. They measure the overall size289

and complexity of an ontology.290

IND counts the number of (named or anonymous) individuals in an ontology. The291

remaining 17 metrics are collected by observing the structure (i.e. language constructs)292

of a given ontology.293

GCI/HGCI: These metrics measure the number of general concept inclusion (GCI)294

axioms and hidden GCI (HGCI) axioms, respectively. GCI counts the number of sub-295

sumption axioms whose subclass is a complex concept (anonymous class expression).296

HGCI counts the number of (named) concepts that appear as a subclass in some sub-297

sumption axioms as well as in some equivalent classes axioms. In general, the presence298

of GCI axioms may increase reasoning complexity as they may introduce nondetermin-299

ism [53]. A GCI axiom is hidden when a named class is the LHS of a subclass axiom as300

well as an equivalent class axiom.301

Either an equivalent class axiom or a subclass axiom where the left-hand side of the302

subclass axiom is a named class.303

ESUB%/DSUB%/CSUB%: These metrics measure ratios of subclass axioms that304

contain (possibly nested) specific types of class expressions, including those that are305

nested, and all subclass axioms. For these metrics, the subclasses and super classes are306

flattened, and an axiom is considered to contain a specific type of expressions iff one of307

the flattened expressions is of that type.308

Respectively, ESUB%, DSUB% and CSUB% calculate the ratio of subclass axioms309

that contain existential restrictions (∃R.), disjunctions (t), and conjunctions310

(u). Additionally CSUB% requires that at least one of the conjuncts in the311

subclass is an anonymous class expression. Existential restrictions (ESUB%) and312

disjunctions (DSUB%) could generate AND-branching and OR-branching, respectively,313

during the reasoning process. AND- and OR-branching are major sources of complexity314

for tableau-based algorithms [54], hence their presence may negatively correlate with315

performance. For the CSUB% metric, anonymous conjuncts in the subclass can generate316

12

more axioms during the normalization process, hence it may increase workload for a317

reasoner.318

ELCLS%/ELAX%: These two metrics measure the ratios of (nested) class ex-319

pressions (ELCLS%) and axioms (ELAX%), respectively, in the OWL 2 EL profile,320

a sublanguage of OWL that is based on EL [55], a description logic with efficient321

PTime-complete algorithms. Our intuition is that as reasoning in the EL profile is in322

general easier, a reasoner such as MORe [56] that is able to delegate EL reasoning to an323

efficient EL reasoner could be more efficient with ontologies with a large percentage of324

EL expressions and axioms.325

HLC/HLC%: These metrics are the count (HLC) and ratio (HLC%) of hard326

language constructs, which include disjunctions, transitive properties, inverse properties327

and property chains, in superclass expressions. These language constructs can potentially328

negatively influence the performance of ontology reasoners.329

SUBCECHN/SUPCECHN: These metrics are the count of top-level class expres-330

sions containing chained (a sequence of) existential restrictions (i.e., ∃R.C in the DL331

syntax) as a subclass (SUBCECHN) or a superclass (SUPCECHN). These metrics332

measure the impact of ∃R.C expressions on the performance of reasoning as they can333

potentially slow down the reasoning process by increasing the search space.334

For example, suppose an ontology contains two subsumption axioms: (1) ∃R.(A u335

∃R.(B u ∃P.C)) v E, and (2) ∃R.(D u ∃R.(F u ∃P.G)) v H, where R, P represent336

properties and A, . . . ,H represent classes. For this ontology, SUBCECHN = 2 because337

axiom (1)’s subclass is a chained class expression containing existential restriction338

∃R.(Au∃R.(Bu∃P.C)) and axiom (2)’s subclass is also a chained existential restriction339

∃R.(D u ∃R.(F u ∃P.G)). On the other hand, there is no chained class expressions340

containing existential restrictions as the superclass hence SUPCECHN = 0.341

DSUBCECHN/DSUPCECHN: These count metrics calculate, in a depth-first man-342

ner, the maximum depth of nested class expressions containing existential restrictions343

as a subclass (DSUBCECHN) or a superclass (DSUPCECHN), with the intuition that344

deeper subclass chains may increase reasoning time. For example, suppose an ontology345

contains ∃R.(A u ∃R.(B u ∃P.C)) v E,D u ∃R.(F u ∃P.G) v H, where R, P represent346

properties and A, B,C,D, E, F,G,H represent classes. DSUBCECHN is 3 because the347

13

depth of nested class expressions containing existential restrictions in the first axiom348

∃R.(Au ∃R.(Bu ∃P.C)) v E is 3 and that of the second axiom Du ∃R.(F u ∃P.G) v H349

is 2. In addition, there is no nested class expression containing existential restrictions in350

the superclass, hence DSUPCECHN is 0.351

SUBCCHN/SUPCCHN: These metrics represent the number of class expressions352

containing chained conjunction expression as a subclass/superclass. For tableau-based353

algorithms, conjunctions of complex concepts in a subclass may not be easily normalised354

for some reasoners. Hence a subclass expression containing many complex class355

expressions may slow down the reasoning process.356

DSUBCCHN/DSUPDCHN: These metrics represent maximum depth of nesting357

of class expressions containing disjunction expressions as a subclass/superclass. The358

idea of these metrics is similar to the metrics DSUBCECHN/DSUPCECHN.359

In total there are 24 ONT metrics, which are summarised in Table A.12 in the360

appendix.361

4.2. Class-level Metrics (CLS)362

The CLS metrics capture characteristics of classes, which are first-class citizens in363

OWL ontologies. Five functions, NOC (number of children), NOP (number of parents),364

DIT (depth of inheritance tree), CID (class in-degree), and COD (class out-degree),365

were defined previously [24]. Each of these functions returns, for a (named or possibly366

nested anonymous) class expression in an ontology, a count value respectively. For a367

given class C, NOC(C) and NOP(C) return the number of direct subclasses and super368

classes of C in the ontology, respectively. DIT(C) returns the longest path from C to >,369

the root class, in a depth-first manner. CID(C) and COD(C) calculate, respectively, the370

number of incoming and outgoing edges of C.371

For each of these five functions, we identify three metrics: the total, the average,372

and the maximum values across all classes for a given ontology. For example for NOC,373

the total NOC (tNOC) is calculated by summing the NOC value for all classes in374

an ontology, and the average NOC (aNOC) is tNOC divided by the total number of375

class expressions. Similarly, the maximum NOC (mNOC) is the maximum number of376

children among all classes.377

14

Thus, in total, 15 CLS metrics are identified, which are shown in Table A.13 in the378

appendix.379

4.3. Anonymous Class Expression Metrics (ACE)380

The ACE metrics are an important ingredient in building expressive classes. Dif-381

ferent types of anonymous class expressions can have different impact on reasoning382

performance. The 9 ACE count metrics have been previously defined [25], one for383

each different type of (possibly nested) anonymous class expressions (enumerations,384

negations, conjunctions, disjunctions, universal restrictions, existential restrictions, and385

min/max/exact cardinality restrictions). We further define two additional ACE count386

metrics that represent the number of value restrictions (VALUE, for ∃R.{a}, where a387

is an individual) and self references (SELF, for ∃R.self). We also propose their corre-388

sponding ratio metrics that measure the percentage of each count ACE metric over all389

(possibly nested) anonymous class expressions.390

Hence in total there are 22 ACE metrics, shown in Table A.14 in the appendix.391

4.4. Property Metrics (PRO)392

Additional pairs of count and ratio metrics are defined: ASYM/ASYM% (asymmet-393

ric properties), REFLE/REFLE% (reflective properties), IRREF/IRREF% (irreflective394

properties), and CHN/CHN% (property chains).395

Similarly, the 6 of the 8 existing count PRO metrics [25] are augmented with396

their corresponding ratio metrics. For example, the DTP metric counts the number of397

datatype properties. The metric DTP% records the ratio between the number of datatype398

properties and the total number of properties. These 6 are: OBP (object properties),399

DTP (datatype properties), FUN (functional properties), SYM (symmetric properties),400

TRN (transitive properties), and IFUN (inverse functional properties). Furthermore,401

four count metrics are defined to record the number of some property axioms, including402

SUBP (subproperties), DISP (disjoint properties), DOMN (domain), and RANG (range).403

Finally, four additional metrics are defined to measure the usage of properties in an404

ontology.405

15

• ELPROP%: This metric measures the ratio, of all property axioms, the number of406

property axioms allowed in the OWL 2 EL profile, which include subproperty axioms,407

equivalent property axioms, transitive axioms, reflexive axioms, domain/range axioms,408

and functional data property axioms. Intuitively, the higher the ELPROP% of an409

ontology is, the more efficient its reasoning may be.410

• IHR, IIR, ITR: These metrics measure the count of class axioms (e.g., subclass411

axioms and class/property assertions) that make use of some property in some property412

hierarchy (IHR), inverse properties (IIR), and transitive properties (ITR). The intuition413

is that the more these types of properties are used in class axioms, the more difficult414

reasoning may be for this ontology.415

There are in total 30 PRO properties as summarised in Table A.15.416

5. Meta-Reasoning Models417

In this section, as our major contributions of this paper, we propose our meta-418

reasoning framework R2O2* and its four different meta-reasoning models (simply419

meta-reasoners). Each meta-reasoner recommends the most efficient reasoner for420

unknown ontologies using different machine learning techniques. We first introduce421

basic notations we use in the paper. Then, we present the details of the four meta-422

reasoners with their learning objectives in the training phase and their utilisation in the423

recommendation (or testing) phase.424

5.1. Notation Definition425

The following basic notations are used in the paper.426

• Let R = {r1, ..., rn} be a set of n reasoners, also called component reasoners in the427

paper.428

• Let R̂ = {r̂1, ..., r̂n} be a set of n prediction models such that r̂i predicts the reasoning429

time of ri.430

• Let OM = {om1, ..., omq} be a set of q ontology metrics.431

• Let O = {o1, ..., oh} be a set of h ontologies that can be reasoned about by at least one432

reasoner in R without timing out or errors. Each ontology in O is represented using433

its values of ontology metrics OM in this paper.434

16

• Given a reasoner r and an ontology o, let θ(r, o) represent the actual reasoning time435

of r for o for the task of ontology classification. Similarly, let θ(r̂, o) represent the436

reasoning time predicted by r̂ for o for the same task.437

• Two partitioned subsets Otr and Ote are drawn from O for training and testing the438

proposed meta-reasoners, respectively.439

5.2. Details of the Meta-Reasoners440

In the following, we present the details of each of our four meta-reasoners. For441

each reasoner, we describe its learning objective and how to build it in detail. All these442

meta-reasoners are built on the training dataset Otr ⊂ O.443

The first meta-reasoner, R2O2*(pt), directly trains prediction models R̂ of R on the444

training data Otr, and uses the predicted reasoning time that has been estimated by R̂445

to find the most efficient reasoners for unknown ontologies. The underlying idea is to446

choose a reasoner r, whose predicted reasoning time estimated by r̂ is the most efficient447

among R̂, as the most efficient reasoner for an unknown ontology. The second meta-448

reasoner, R2O2*(rk), trains a ranking algorithm to learn the rankings of the reasoners449

in R according to the actual reasoning time of the training data Otr, and uses it to450

predict the best ranked reasoners for unknown ontologies. The third meta-reasoner,451

R2O2*(mc), trains a classifier that learns the most efficient reasoner on Otr, and uses452

it to directly predict the most efficient reasoners for unknown ontologies. The forth453

meta-reasoner, R2O2*(all), is an ensemble classifier that uses the predictions of the above454

three meta-reasoners.455

5.2.1. Meta-reasoner based on the direct use of predicted reasoning time: R2O2*(pt)456

The meta-reasoner R2O2*(pt) aims to recommend the most efficient reasoners for457

unknown ontologies based on the direct use of the predicted reasoning time of all458

reasoners in R. Therefore, for all reasoners in R, building their corresponding prediction459

models R̂ is essential prior to making use of R2O2*(pt) for determining such most efficient460

reasoners. R2O2*(pt) is similar to the non-ranking portfolio reasoner PR described in our461

preliminary work [27] in that it leverages predicted reasoning time of R̂. The difference462

is that R2O2*(pt) uses an ensemble regression model instead of using a random forest463

17

regression algorithm as PR [27]. Also, R2O2*(pt) incorporates the average rankings of464

the reasoners on the training data when there are more than two reasoners that were465

chosen as the most efficient (i.e. their predicted reasoning time is the same), while PR466

chooses one in random. The details of resolving a tie-breaking method R2O2*(pt) is467

explained below.468

Consequently, the effectiveness of R2O2*(pt) relies mainly on the accuracy of the469

prediction models in R̂. In order to build such prediction models, we use stacking [57],470

an ensemble learning technique to combine multiple classification (or regression) models471

in which (1) base learners (or regression models) (or level-0 models) are trained on the472

training data Otr, and (2) the outputs of the base learners are combined using a meta-473

learner (or meta-regression models) (level-1 model), in our context. More specifically,474

for each reasoner, each learner is trained to learn a mapping function from the values475

of ontology metrics on the training data Otr to their actual reasoning time. Then, a476

meta-learner is trained to learn a mapping function from the predicted outputs of Otr,477

which have been estimated by the base learners, to actual reasoning time.478

Here, our aim is to use the decisions of the individual base learners that employ479

different learning criteria, and to combine their decisions to outperform each individual480

base learner using a meta-learner.481

More formally, to build each prediction model r̂k ∈ R̂ for reasoner rk ∈ R, we

represent each ontology oi ∈ Otr as follows:

oi = omi,1, . . . , omi,q︸ ︷︷ ︸
ontology metrics

, θ(rk, oi)︸ ︷︷ ︸
actual reasoning time

(5)

where omi, j is the value of the j-th ontology metric om j of ontology oi, and θ(rk, oi)482

denotes the actual reasoning time of rk on ontology oi.483

Using the above representation scheme, for each reasoner, we train k base learners484

(level-0 models) on Otr. Then, we generate level-1 data obtained from the predictions485

of the k base learner over the instances in Otr. The level-1 data have k attributes whose486

values are the predictions (i.e. predicted time) of the k base learners for every instance487

in Otr. Thus, each training example for a meta-learner (level-1 model) will be composed488

of k attributes (e.g. k predictions from the k base learners) and the target which is the489

18

actual reasoning time for every instance in Otr. Once the level-1 data have been built490

from all instances in Otr, any learning regression models can be used to generate the491

meta-learner. In this paper we choose k = 2.492

In this paper, we use two robust base learners: (1) the random forest regression493

algorithm and (2) the XGBoost (eXtreme Gradient Boosting) algorithm [28]:494

• Random forest regression algorithm: As a base learner, we build a regression495

model using random forest regression algorithm, an efficient and robust learning496

model, which has produced good predictive performance in our previous work [26].497

In our context, the random forest model combines a number of decision trees, each of498

which is trained using a subset of training ontologies, to build a prediction model for499

a given reasoner.500

• XGBoost: As another base learner, we use the state-of-the-art learning algorithm,501

XGBoost [28], which has recently shown dominant performance on a number of502

Kaggle competitions for structured or tabular data. It is an implementation of gradient503

boosted decision trees designed for achieving better computational efficiency and504

prediction performance.505

We again consider random forest and XGBoost as candidates of a meta-learner506

(level-1 model) due to their strong predictive performance. These level-1 candidates507

are denoted by meta-RF and meta-XGBoost in this paper. As can be seen in Sec-508

tion 7.1.1, we eventually choose meta-XGBoost as our meta-learner given its best509

overall performance.510

Once we train the meta-regression model on Otr, given an unknown ontology in511

the testing data Ote, the meta-reasoner R2O2*(pt) will recommend a reasoner whose512

predicted reasoning time is the fastest among all of the predictions of the prediction513

models in R̂ as the most efficient reasoner.514

If more than two reasoners are chosen as the most efficient, a tie-breaking method is515

also applied to select one of them. This method takes into consideration the precision516

at 1 (P@1) of the reasoners in R that are measured on the training data Otr. In this517

context, for each reasoner in R, its P@1 is measured by the proportion that the reasoner518

is the most efficient across all instances in Otr. Our tie-breaking method chooses the519

reasoner with the highest P@1. This tie-breaking method is applied to all the other520

19

meta-reasoners in our R2O2*.521

5.2.2. Meta-reasoner based on ranking algorithm: R2O2*(rk)522

R2O2*(rk) is a meta-reasoner that learns the rankings of the reasoners in R. During523

the training phase, it trains a ranking algorithm (simply ranker) that learns the rankings524

of the reasoners on Otr in terms of their reasoning time. Once the ranker is trained,525

given an unknown ontology in Ote, R2O2*(rk) ranks and recommends the most efficient526

reasoner for that ontology.527

R2O2*(rk) follows a similar spirit of R2O2 [27] in that R2O2*(rk) uses a ranking528

matrix and uses a ranker. The difference is that R2O2*(rk) uses a single ranker, rather529

than aggregating multiple rankers as R2O2, to recommend the most efficient reasoner530

for an unknown ontology. Given a pool of rankers using different criteria for learning,531

we have chosen the one with the best ranking performance through our experiments532

which will be further discussed in Section 7.1.1.533

Given the training data Otr, we generate a ranking matrix, where each row represents

the values of ontology metrics and the rankings of reasoners R according to their actual

reasoning time. Then, a ranker is trained on this matrix to learn how the characteristics

of the ontologies in Otr can be optimally mapped to the relative ordering of the reasoning

performance of the reasoners in R. Initially, we build an |Otr | × (q + n) data matrix Md

(recall that q = |OM|, n = |R| = |R̂|), where row i represents an ontology oi ∈ Otr and

the actual reasoning time of the reasoners in R for oi:

oi = omi,1, . . . , omi,q︸ ︷︷ ︸
ontology metrics

, θ(r1, oi), . . . , θ(rn, oi)︸ ︷︷ ︸
actual reasoning time

, (6)

where omi, j is the value of the j-th ontology metric om j of oi, and θ(rs, oi) denotes rs’s

actual reasoning time for oi. From Md, we build the corresponding |Otr |× (q+n) ranking

matrix Mr, where row i is represented as:

oi = omi,1, . . . , omi,q︸ ︷︷ ︸
ontology metrics

, π(r1, oi), . . . , π(rn, oi)︸ ︷︷ ︸
ranking of reasoners

, (7)

where π(rs, oi) denotes the rank of rs[1..n] ∈ R for oi determined by θ(rs, oi). On Mr, the534

more efficient a reasoner is, the higher ranked it is (the smaller the rank number). To535

20

illustrate this, suppose there are 3 reasoners {r1, r2, r3}, and their actual reasoning time536

for an ontology oi is 100s, 90s, and 10s, respectively, i.e., (θ(r1, oi), θ(r2, oi), θ(r3, oi))537

= (100s, 90s, 10s). Thus, the ranking is (π(r1, oi), π(r2, oi), π(r3, oi)) = (3, 2, 1). If the538

reasoning time is (10s,10s,100s) instead, the ranking will be (1, 1, 3).539

In summary, the goal is to learn rankings of all reasoners in R on the ranking matrix540

Mr, and to predict a ranking of the reasoners for an unseen ontology. The top-ranked541

reasoner will be chosen by the meta-reasoner R2O2*(rk) to be the most efficient reasoner542

to reason over the ontology. Comparing to R2O2*(pt), the main feature of R2O2*(rk)543

stems from that it is built on the ranking matrix that uses rankings of the reasoners in R,544

rather than the direct use of the predicted reasoning time estimated from R̂.545

5.2.3. Meta-reasoner based on multi-class classification: R2O2*(mc)546

R2O2*(mc) formulates the learning problem into a multi-class classification problem,547

where its goal is to classify an ontology with one of the reasoners that is able to reason548

about the ontology the most efficiently. During the training phase, R2O2*(mc) learns the549

most efficient reasoner for each ontology on the training data Otr. The most efficient550

reasoner is determined by means of the actual reasoning time of the reasoners in R,551

meaning that the fastest reasoner is chosen as the most efficient reasoner.552

More formally, to build R2O2*(mc), we represent each ontology oi ∈ Otr as follows:

oi = omi,1, . . . , omi,q︸ ︷︷ ︸
ontology metrics

, γi︸︷︷︸
the most efficient reasoner

(8)

where omi, j is the value of the j-th ontology metric om j of oi, and γi denotes the actually553

most efficient reasoner for oi. If there is an ontology oi ∈ Otr that has k-reasoners554

(where k > 1) that show the equivalently most efficient reasoning time, we generate555

k instances with k most efficient reasoners for oi. For example, given on ontology oi,556

suppose that there are two most efficient reasoners: Konclude and Pellet. We then557

generate two instances for oi as follows: (1): “omi,1, . . . , omi,q,Konclude", and (2)558

“omi,1, . . . , omi,q,Pellet".559

Using the above representation scheme, we train a classifier on the training data Otr.560

In our experiments, we have considered two classifiers: (1) random forest algorithm561

and (2) XGBoost, because of their robust classification performance as in the case of the562

21

meta-reasoner R2O2*(pt). Based on our cross-validation on Otr, we eventually choose563

XGBoost which will be further discussed in Section 7.1.1.564

In comparison with the meta-reasoner R2O2*(pt), R2O2*(mc) does not directly use565

the predicted reasoning time of the reasoners in R, that is, it does not rely on R̂. Rather566

it learns which reasoners have been the most efficient reasoners for ontologies in567

the training data Otr. The learning goal of R2O2*(mc) is similar to the meta-reasoner568

R2O2*(rk) in that its learning is based on the ranks of the reasoners in R on the training569

data Otr. However, R2O2*(mc) differs in that it learns the most efficient reasoner only,570

not the rankings of all reasoners in R as R2O2*(rk).571

5.2.4. Ensemble meta-reasoner: R2O2*(all)572

R2O2*(all) is a stacking classifier that learns from the predictions of the above three573

meta-reasoners: (1) R2O2*(pt) that directly uses the predicted reasoning time of reasoners574

for the training set Otr, (2) R2O2*(rk) that learns the rankings of reasoners by means575

of their actual reasoning time for Otr, and (3) R2O2*(mc) that learns the most efficient576

reasoners for ontologies in Otr. In other words, in R2O2*(all), those three meta-reasoners577

can be seen as base classifiers (i.e. level-0 models), and R2O2*(all) learns a meta-classifier578

(i.e. level-1 model) from the predictions of the base classifiers.579

Thus, R2O2*(all) trains a meta-classifier on the training data Otr, where each ontology

oi ∈ Otr is represented as follows:

oi = R2O2*(pt)(oi),R2O2*(rk)(oi),R2O2*(mc)(oi)︸ ︷︷ ︸
predicted reasoners of the meta-reasoners

, γi︸︷︷︸
the most efficient reasoner

(9)

where R2O2*(pt) (oi), R2O2*(rk) (oi) and R2O2*(mc) (oi) are the predicted most efficient580

reasoners of R2O2*(pt), R2O2*(rk), R2O2*(mc), respectively, for oi. As in Equation 8, γi581

denotes the actually most efficient reasoner for oi.582

As candidates for a meta-classifier, we also consider the same learning algorithms583

used to built the meta-reasoner R2O2*(pt) because of the same reason: their proven,584

robust predictive performance: (1) random forest algorithm and (2) XGBoost. The one585

with the better performance from these two candidates is chosen, where the performance586

is measured via cross-validation on the training data Otr. Eventually, XGBoost is chosen587

as our meta-classifier which will be presented in Section 7.1.1.588

22

Thus, R2O2*(all) trains the meta-classifier that learns relationships between the589

predicted reasoners of the previous three meta-reasoners and the actually most efficient590

reasoners on the training data Otr, and then make predictions about the most efficient591

reasoners for unknown reasoners for the testing ontologies Ote.592

5.2.5. Meta-reasoners with ELK593

In the previous sections, we have presented the four different meta-reasoners in594

R2O2*. Note that all of these meta-reasoners utilise a number of high-performance DL595

reasoners. Here, an interesting question is whether incorporating an EL reasoner into596

the meta-reasoners, such as ELK [30], can further improve reasoning efficiency for the597

less complex OWL 2 EL ontologies.598

To address this question, we augment our meta-reasoners to incorporate an EL599

reasoner, ELK, that is designed to support the less expressive OWL 2 EL profile. ELK600

does not support reasoning over non-EL ontologies. Thus, the meta-reasoners only601

incorporate ELK when predicting the most efficient reasoners for unknown OWL 2 EL602

ontologies.603

First, we train a prediction model for ELK on the training data Otr following the604

steps presented in Section 5.2.1. Then, given an ontology o ∈ Ote whose reasoning time605

is unknown, each meta-reasoner (representatively denoted by R2O2*) is extended by606

taking the following further steps to find the most efficient reasoner to reason about o:607

1. Check whether o is an EL ontology or not.608

2. If o is an EL ontology, compare the predicted reasoning time and the most

efficient reasoner determined by R2O2*. Then, we choose the fastest one as the

most efficient reasoner. Formally,

γ̂(o) = argmin
r̂i∈R2O2*,r̂elk

θ(r̂i, o) (10)

where γ̂(o) is the most efficient reasoner for o determined eventually; θ(r̂i, o) is609

the predicted reasoning time of the reasoner ri for o; and r̂elk is the prediction610

model of ELK.611

23

3. If o is not an EL ontology, follow the recommendation of R2O2* not considering612

relk.613

Thus, in our extension for EL ontologies, for each meta-reasoner, the main idea614

is to simply incorporate predicted reasoning time of ELK and the most efficient rea-615

soner determined by the meta-reasoner, to compare their reasoning time, and finally to616

recommend the one with the most efficient predicted reasoning time.617

Here we summarise the main differences between our meta-reasoning framework618

R2O2* and our preliminary meta-reasoner R2O2 and the portofolio-based meta-reasoner619

PR, which were described in detail in Section 3.620

1. As a framework (but not individual meta-reasoners), R2O2* adapts and incorpo-621

rates both R2O2 (as R2O2*(rk)) and PR (as R2O2*(pt)).622

2. R2O2* incorporates more advanced prediction models (Random Forests and623

XGBoost) through ensembling.624

3. R2O2* generates a ranking matrix using the actual reasoning time of the compo-625

nent reasoners. On the other hand, R2O2 built a ranking matrix using the predicted626

reasoning time of the reasoners, where such time was estimated by prediction627

models.628

4. R2O2* incorporates a single best ranker instead of using an aggregation of multiple629

rankers as R2O2. The single best ranker is determined empirically through cross-630

validation on the training data.631

5. R2O2* invokes the efficient reasoner ELK [30] directly for OWL 2 EL ontologies.632

6. R2O2* is built using a different mix of component reasoners that includes Pellet633

(which R2O2 does not include) but excludes TrOWL, as TrOWL is an approximate,634

therefore incomplete reasoner.635

7. Finally, R2O2* is built and evaluated using a more modern set of ontologies and636

more recent versions of reasoners.637

24

In the following sections, we discuss our evaluation framework and results that638

compare the performance of all the proposed meta-reasoners (with and without ELK)639

using the ORE 2015 competition corpus [22].640

6. Evaluation Framework641

In this section, we describe the evaluation framework used for evaluating the pro-642

posed prediction models and meta-reasoners, including details of the reasoners, ontolo-643

gies and the evaluation environment. The notations used in this section follow those644

defined in Section 5.1.645

Reasoners: Six state-of-the art OWL 2 DL reasoners that participated in ORE the646

2015 reasoner competition [22] are used as component reasoners (simply reasoners) 4:647

FaCT++ [10], HermiT [34], JFact,5 Konclude [12], MORe [56] (with HermiT as the648

underlying OWL 2 DL reasoner), and Pellet [13]. Besides these six OWL DL reasoners,649

we also incorporate ELK [30], the efficient reasoner for the less expressive OWL EL650

profile. The versions of the reasoners are the same as those in ORE 2015. As described651

in Section 5, we build a prediction model for each reasoner, which is one of the key652

components in the meta-reasoner framework R2O2*.653

Target Reasoning Task: For the ontology reasoning task, we choose ontology clas-654

sification. The actual reasoning time (wall-time) of each ontology in the dataset was655

measured on a high-performance server running CentOS Linux 7.4 (Core) and Java 1.8656

on single-core Intel Gold 6140 each at 2.3 GHz, with a maximum of 10 GB memory657

allocated to the reasoner. A timeout of 30 minutes of wall-time is imposed on each658

(reasoner, ontology) pair.659

To ensure consistency of the evaluation across reasoners, the ORE 2015 competition660

framework6 is used to invoke all reasoners and record their reasoning time. For each661

ontology, the competition framework converts it into the OWL functional syntax (FSS),662

4Chainsaw [44] and Racer [58] (two OWL 2 DL reasoners that participated in ORE 2015) are excluded

due to reasoning errors in an excessive number of ontologies.
5http://jfact.sourceforge.net
6https://github.com/andreas-steigmiller/ore-competition-framework

25

http://jfact.sourceforge.net
https://github.com/andreas-steigmiller/ore-competition-framework

invokes reasoners for classification using a Bash shell script, and records reasoning time663

using the GNU time command. We follow the framework and include ontology loading664

time as part of classification time.665

Ontologies: We collected all 1,920 ontologies from the ORE 2015 reasoner compe-666

tition [22] 7. Prior to building our proposed meta-reasoners, we performed the three667

preprocessing steps on the 1,920 ontologies, following the steps in [26, 27]. The aim668

of these steps is to remove duplicate ontologies that may exist in the given ontology669

collection, normalise their metric values to avoid the high skewness of values of ontol-670

ogy metrics OM, and remove ontology metrics that may influence learning a prediction671

model with lower prediction accuracy:672

1. Cleansing: Since the given ontology collection has been obtained from multiple673

repositories, it may contain duplicates. All but one ontology is removed from674

each set of ontologies with duplicate metric values. After removing duplicates,675

1,760 ontologies remained.676

2. Normalisation: In the given 1,760 ontology collection, values of some of the677

metrics span a large range and are very skewed as discussed in [26]. We apply a678

commonly-used log-transformation on the metric values of the ontologies that are679

greater than 10. The log-transformation is also performed on reasoning time.680

3. Metric removal: It is a widely used practice to remove features that have near-zero681

variance values and features that are highly correlated (with respect to the dataset).682

In this paper we follow this practice. Following our previous work [26, 27], we683

consider two metrics with correlation coefficients above 0.9 to be highly correlated.684

To observe a better generalised distribution of these metrics, we measure their685

correlation on a larger ontology collection, the one used in the ORE 2014 reasoner686

competition [21]. It contains 16,555 ontologies, which are split into four groups687

by percentiles of file size. Ontologies are randomly sampled from within these688

groups. This is to ensure that files of different sizes are sufficiently represented.689

7http://owl.cs.manchester.ac.uk/publications/supporting-material/

ore-2015-report/

26

http://owl.cs.manchester.ac.uk/publications/supporting-material/ore-2015-report/
http://owl.cs.manchester.ac.uk/publications/supporting-material/ore-2015-report/

Given correlation calculated from this ontology collection, we remove all but690

29 metrics: 12 ONT metrics (SOV, ENR, EOG, CYC, RCH, IND, ESUB%,691

ELCLS%, ELAX%, HLC, HLC%, SUPCECHN); 7 CLS metrics (tNOC, aNOC,692

aCID, mCID, tCOD, aCOD, aNOP); 4 ACE metrics (CONJ%, UF%, EF, EF%);693

and 6 PRO metrics (OBP%, DTP%, FUN%, CHN%, ELPROP%, IHR).694

Finally, as our ontology collection (O), we used 1,760 ontologies, where each695

ontology is represented by the 29 metrics and the metric values are log-scaled.696

Table 1 shows, for each reasoner, the total number of ontologies it successfully697

handled, that result in an error, and that time out, and brief statistics of reasoning time698

(in seconds, and excluding those ontologies that time out). It can be observed that699

the reasoning time spans a large range for all the reasoners, and that Konclude is the700

most efficient as well as most robust reasoner (the least number of error and timeout701

ontologies). In total, 1,269 ontologies (excluding timeout ontologies) were reasoned702

about successfully (no error, no timeout) by all the six reasoners, and 1,390 ontologies703

did not result in a runtime error (timeout ontologies are included in this case). Note that704

timeout ontologies are used to evaluate our meta-reasoners in one set of experiments.705

Figure 1 in Section 7 depicts the performance characteristics of the component reasoners706

in more details in violin plots. Of the 1,760 ontologies, 761 are in the OWL 2 EL profile.707

Hence, we performed classification on these ontologies using ELK.708

Evaluation method: We evaluate our meta-reasoners with the state-of-the-art algorithm709

selection framework AutoFolio [31] that is configured to minimise runtime. As discussed710

earlier in Section 5, meta-reasoners PR and R2O2 described in our previous work [27]711

are similar to R2O2*(pt) and R2O2*(rk), respectively. Hence this comparison also assesses712

the performance of R2O2*(all) against our previous models. We also attempted to713

evaluate our meta-reasoners against a recently proposed multi-criteria meta-reasoner714

Meta-RakSOR [49, 50], which has dual optimisation objectives of reasoning correctness715

as well as efficiency. However, we are unable to evaluate Meta-RakSOR due to two716

reasons. Firstly, for the OWL 2 DL classification task, Meta-RakSOR incorporates717

eight component reasoners but our meta-reasoners only incorporates six. Among the718

two reasoners that are not considered by our meta-reasoners, TrOWL [14], which is719

27

Table 1: A summary of statistics of the deduplicated ORE 2015 competition dataset containing a total of

1,760 unique ontologies. Note the reasoning time is measured in seconds and without considering timeout

ontologies.

Reasoner
No. of Ontologies Reasoning time (s)

Successful Error Timout Min Max Median Mean

FaCT++ 1,461 109 190 0.53 1,638.6 1.4 72.4

HermiT 1,658 51 51 0.70 1,622.4 3.6 35.8

JFact 1,292 161 307 1.03 1,788.6 3.4 72.8

Konclude 1,737 8 15 0.03 1,087.2 0.3 3.7

MORe 1,706 18 36 2.00 1,684.5 4.5 87.1

Pellet 1,477 114 169 1.01 1,773.9 3.5 39.5

an approximate hence incomplete reasoner, and RACER [59], which did not execute720

properly on our evaluation hardware. Secondly, even though Meta-RakSOR has released721

source for running the meta-reasoner8, it however does not include the source code722

of Meta-RakSOR itself. Therefore we are unable to modify it and compare with it.723

However, as can be seen from Table 1 of Meta-RakSOR [50], Meta-RakSOR does724

not outperform Konclude on average reasoning time, it is thus not unreasonable to725

hypothesise that our meta-reasoners would outperform Meta-RakSOR, as our meta-726

reasoners outperform Konclude.727

In our evaluation we retain timeout ontologies to realistically assess performance728

of all reasoners. We assess the impact of those ontologies that result in a runtime729

error in two different experiments. In the first experiment (hereinafter referred as730

ErrorsRemoved), the error ontologies for each reasoner are removed. In the second731

experiment (hereinafter referred as ErrorsReplaced), the error ontologies for each732

reasoner are treated as they timeout. Note that in ErrorsRemoved, it may be the case733

that a reasoner that strictly conforms to OWL semantics may throw many runtime errors734

8https://github.com/Alaya2016/Multi-RakSORDemo

28

https://github.com/Alaya2016/Multi-RakSORDemo

on a corpus of ontologies as it may reject non-conformant constructs (e.g. imaginary735

numbers). As such, such a reasoner may turn out to be efficient in the experiment736

ErrorsRemoved than in ErrorsReplaced.737

In each experiment, standard 10-fold cross validation is performed to adequately738

assess the performance of the meta-reasoners. That is, we take the following steps: (1)739

shuffle the ontologies O randomly; (2) split O into 10 subsets; (3) for each subset, take740

the subset (i.e 10%) as test set (Ote), and take the remaining subsets (i.e. 90%) as a741

training set (i.e. Otr); (4) fit a model on the training set and evaluate it on the test set;742

and (5) average the evaluation scores of the model across 10-times.743

As evaluation metrics, average runtime (i.e. reasoning time) is used as the main744

evaluation metric for the meta-reasoner. To evaluate our runtime prediction (regression)745

models, we used the standard ‘coefficient of determination’ (R2) as used in [26]. R2
746

denotes the proportion of the variation in the target variable (i.e. reasoning time) that747

can be explained by each prediction model r̂ ∈ R̂. The higher the R2 value is, the more748

accurate the model is. Moreover, we evaluate our meta-reasoners using the standard749

metric precision at 1 (P@1), as the meta-reasoners require the predicted best reasoner.750

The performance number reported in the rest of the section is the average on the test set751

over the 10 folds for each experiment.752

In the experiment ErrorsReplaced, in each fold of the cross-validation, 90% of753

1,760 ontologies (≈ 1, 584) are used for training, and the rest 10% (≈ 176) are used for754

testing. In the experiment ErrorsRemoved, the 1,389 ontologies are randomly divided755

into the training set (≈ 1, 250) and the test set (≈ 139) in each fold.756

7. Evaluation Results and Analysis757

In this section we present the evaluation results and their detailed analysis. The758

evaluation is conducted in two parts. In Section 7.1, we present the performance759

evaluation of the prediction models used in R2O2* on the training set Otr. In Section 7.2,760

we present the overall evaluation results, obtained on the test set Ote, comparing R2O2*761

with component reasoners and AutoFolio.762

29

7.1. Performance Evaluation of the Key Learning Components in R2O2*763

Here, we present the performance evaluation of the prediction models (regression764

models, classifiers and rankers) used in our meta-reasoning framework R2O2*, obtained765

through 10-fold cross-validation on the training set Otr.766

7.1.1. Performance of regression models in R2O2*(pt)767

Here, our goal is to assess the generalizability of the prediction models r̂i of rea-768

soner ri ∈ R. As described in Section 5.2.1, these prediction models are central to769

R2O2*(pt). Performance (i.e. generalizability) was measured in terms of the coefficient770

of determination (R2), as introduced in Section 6.771

As presented in Section 5.2.1, we use a stacking approach to build a prediction772

model with two base regression models (level-0 models): random forest regression773

algorithm and XGBoost [28]. As a meta-regression model (level-1 model), we also used774

these two algorithms.775

We employed the widely-used Weka framework 9 as our evaluation environment.776

For ease of experimentation we chose Weka’s version of the random forest algorithm.777

For XGboost, we used Weka-XGBoost 10 that can easily interface with Weka.778

For the random forest algorithm, we use the default configuration in Weka. For779

XGBoost, we set the following parameters keeping all the others fixed as default780

throughout this paper: num_round = 50 (the number of rounds for boosting), eta =781

0.1 (learning (or shrinkage) parameter that controls how much information from a new782

tree will be used in the Boosting), max_depth = 10 (controls the maximum depth of783

the trees: deeper trees have more terminal nodes and fit more data), sub_sample =784

0.5 (determines if we are estimating a Boosting or a Stochastic Boosting. A value 1785

represents the regular boosting, and a value between 0 and 1 is for the stochastic case.786

The stochastic Boosting uses only a fraction of the data to grow each tree. For example,787

if we use 0.5 each tree will sample 50% of the data to grow). Note that these parameter788

values were chosen empirically. XGBoost uses multiple parameters and determining789

9https://www.cs.waikato.ac.nz/ml/weka/.
10https://github.com/SigDelta/weka-xgboost.

30

https://www.cs.waikato.ac.nz/ml/weka/
https://github.com/SigDelta/weka-xgboost

optimal parameter values is beyond the scope of this paper.790

Tables 2 and 3 show the R2 values of the 7 prediction models obtained from cross-791

validation on the training data Otr in the two experiments: ErrorsRemoved and Er-792

rorsReplaced. Note that we have compared the prediction performance of 4 regression793

models as candidates as a prediction model for each reasoner: (1) random forest regres-794

sion algorithm (denoted by RF), (2) XGBoost, (3) a stacking meta-regression model795

using random forest regression algorithm (denoted by meta-RF), and (4) a stacking796

meta-regression model using XGBoost (denoted by meta-XGBoost). R2 denotes the pro-797

portion of the variation in the target variable (i.e. reasoning time) that can be explained798

by the model. For example, 0.853 in the model r̂FaCT++, implemented by meta-XGBoost,799

indicates that 85.3% of the variation in the reasoning time can be accounted for by800

meta-XGBoost. In Table 2, both RF and meta-XGBoost show the best prediction perfor-801

mance whereas in Table 3, meta-XGBoost has the highest R2 value. Thus, we choose802

meta-XGBoost to implement the meta-reasoner R2O2*(pt).803

Table 2: A summary of prediction model performance as measured by R2 on the dataset ErrorsRemoved.

Model RF XGBoost meta-RF meta-XGBoost

r̂FaCT++ 0.852 0.852 0.852 0.853

r̂HermiT 0.825 0.824 0.831 0.833

r̂JFact 0.904 0.903 0.906 0.907

r̂Konclude 0.910 0.905 0.909 0.909

r̂MORe 0.723 0.705 0.707 0.708

r̂Pellet 0.770 0.763 0.765 0.766

r̂Elk 0.948 0.947 0.949 0.950

Mean 0.847 0.843 0.846 0.847

The above observations provide insight into how well the 7 prediction models can fit804

the given data. The similar values of R2 with the ones in [26] (i.e. averaged R2 = 0.869)805

suggest a good generalizability of the models.806

31

Table 3: A summary of prediction model performance as measured by R2 on the dataset ErrorsReplaced.

Model RF XGBoost meta-RF meta-XGBoost

r̂FaCT++ 0.835 0.832 0.834 0.835

r̂HermiT 0.807 0.807 0.812 0.814

r̂JFact 0.843 0.833 0.839 0.840

r̂Konclude 0.909 0.909 0.912 0.913

r̂MORe 0.757 0.744 0.750 0.756

r̂Pellet 0.727 0.724 0.719 0.723

r̂Elk 0.939 0.936 0.939 0.940

Mean 0.831 0.826 0.829 0.832

7.1.2. Performance of rankers in R2O2*(rk)807

As explained in Section 5.2.2, our meta-reasoner, R2O2*(rk), incorporates a single808

ranker which differs from our previous approach in R2O2 [27] that uses an aggregation of809

multiple rankers. To implement R2O2*(rk), we initially considered the 5 rankers11 that are810

used in R2O2 [27] on the ranking matrix Mr: (1) KNNRanker that aggregates rankings811

using the nearest neighbors, (2) PCTRanker that is based on predictive clustering tree for812

ranking, (3) RPCRanker that is based on a multiple binary pairwise classifier to construct813

a ranking model, (4) RegRanker where the ranking problem is cast to a multi-target814

regression problem, where the rank position values of each reasoner are the targets in815

the multi-target regression setting, and (5) ARFRanker that is based on using random816

forests for ensembling multiple binary approximated ranking trees. Then, we choose817

the one showing the best performance in 10-fold cross-validation on the training data818

Otr. For each ranker, its performance was measured by precision at 1 (denoted by P@1)819

that measures the proportion of the reasoners that are correctly recommended by the820

ranker as most efficient reasoner.821

Table 4 shows the performance of the 5 rankers in terms of P@1 on both datasets,822

11These rankers are available in http://www.quansun.com, Readers interested in the details of the

rankers are referred to [60].

32

http://www.quansun.com

ErrorsRemoved and ErrorsReplaced. For each ranker, P@1 was measured using823

10-fold cross-validation from the ranking matrix generated from the training data Otr.824

The ranking matrix formation was presented in Equation 7 in Section 5.2.2. As seen in825

the table, all 5 rankers showed high performance, achieving more than 90% of the P@1826

values. ARFRanker shows the best performance (denoted in bold): 0.978 and 0.955 on827

ErrorsRemoved and ErrorsReplaced, respectively. Consequently, to implement our828

meta-reasoner R2O2*(rk), we use ARFRanker.829

Table 4: A summary of performance assessment of the 5 rankers in terms of P@1.

Ranker ErrorsRemoved ErrorsReplaced

KNNRanker 0.973 0.952

PCTRanker 0.974 0.944

RPCRanker 0.970 0.947

RegRanker 0.967 0.947

ARFRanker 0.978 0.955

7.1.3. Performance of the classifiers in R2O2*(mc)830

As presented in Section 5.2.3, the meta-reasoner: R2O2*(mc) learns the most efficient831

reasoner on the training data, and predicts the most likely efficient reasoner for an832

unknown ontology. Using the ontology representation scheme in Equation 5, we833

considered two classifiers: random forest algorithm and XGBoost.834

Table 5 shows the prediction performance in terms of classification accuracy on835

both datasets, ErrorsRemoved and ErrorsReplaced. As can be seen, the prediction836

performance is very similar between RF and XGBoost where the best one on each837

dataset is denoted in bold. In our evaluation, we use XGBoost as it shows the better838

performance than RF overall.839

In the following subsection, we present and analyse the evaluation results of our840

proposed four meta-reasoners on the testing data Ote.841

33

Table 5: A summary of performance of the two prediction models for meta-reasoner R2O2*(mc) in terms of

accuracy.

Model ErrorsRemoved ErrorsReplaced

RF 0.984 0.944

XGBoost 0.984 0.945

7.2. Performance Evaluation of R2O2* on Reasoning Efficiency842

In this subsection we discuss the evaluation results comparing our meta-reasoners843

with the various component reasoners as well as AutoFolio [31], a state-of-the-art844

algorithm selection framework as a strong and robust baseline, following the evaluation845

framework presented in Section 6.846

0.1

1.0

10.0

100.0100.0

1000.0
1800.0

FaCT++ HermiT JFact Konclude MORe Pellet AutoFolio R2O2∗(all) VBR

Reasoner

R
ea

so
ni

ng
 ti

m
e

in
 lo

g
sc

al
e

(s
)

Figure 1: A summary of reasoning time characteristics, in seconds and log-scale, of various reasoners in

violin plots.

To summarise the performance characteristics of the various component and meta-847

reasoners, Figure 1 shows a violin plot of the reasoning time of the reasoners on log848

scale, for the experiment ErrorsReplaced. A violin plot is a combination of a boxplot849

and a mirrored kernel density plot. As a result, a violin plot visualises the underlying850

34

distribution that boxplot does not show. Each shape in Figure 1 contains the following851

components.852

• The (mirrored) violin itself shows the distribution of reasoning time.853

• The cross (×) in the middle shows the mean reasoning time of the reasoner.854

• The plus symbol (+) in the middle shows the median reasoning time of the reasoner.855

• The three horizontal lines within each shape shows the 25%, 50%, and 75% of data,856

respectively.857

• The grey dots represent the actual reasoning time of all ontologies.858

As can be seen from the figure, the dominance of Konclude over the other five859

component reasoners is evident. R2O2*(all) shares similar performance characteristics860

with AutoFolio and VBR, but with a lower mean reasoning time than AutoFolio. The861

term VBR stands for the virtual best reasoner, which exhibits the optimal efficiency.862

Even VBR times out on a number of ontologies (grey dots on 1800.0 at the top of the863

plot), showing the challenging nature of ontology reasoning. The remainder of the864

section will present more details and discussions on these performance comparisons.865

7.2.1. Meta-reasoner time overhead866

The four different variants of R2O2* all require some additional tasks at both867

training time and test time. At training time, overall across the 10-fold cross validation,868

R2O2*(pt) needs to learn regression models (Section 5.2.1); R2O2*(rk) needs to learn869

rankers (Section 5.2.2), R2O2*(mc) needs to learn a multi-class classifier (Section 5.2.3);870

and R2O2*(all) ensembles all the above (Section 5.2.4), hence needing to learn all those871

models. At testing time, each of the meta-reasoners will need to apply these models.872

We have calculated the time overhead of learning and applying these models. At873

training time, building a regression model for a reasoner takes 1–2.5 sec (stacking874

model that combines RF and XGBoost), building a ranker takes 0.3–0.6 sec, building a875

multi-class classifier takes 0.3–0.5 sec, and building a final stacking model (R2O2*(all))876

takes an additional 0.1 sec. At testing time, making prediction for a given ontology by877

R2O2*(all) takes a negligible < 0.5 millisecond.878

We note that the time overhead at training time does not affect R2O2*’s performance879

as an OWL reasoner. It is only the overhead at testing time that does, as for a new880

35

ontology, predictions need to be made for the various models. In all the experiments881

below in the rest of this section, R2O2*’s reported reasoning time already includes the882

testing-time time overhead.883

7.2.2. Comparison with our meta-reasoners and component reasoners884

We now evaluate our meta-reasoners against the six component reasoners, Autofolio885

and VBR in detail. The evaluation is conducted for the two experiments described886

in the previous section, ErrorsRemoved, in which error ontologies are removed, and887

ErrorsReplaced, in which error ontologies are treated as they time out. Furthermore,888

for each experiment, we experiment with the inclusion/exclusion of ELK in our meta-889

reasoners, as described in Section 5. By incorporating ELK, our meta-reasoners can890

handle the simpler OWL 2 EL ontologies more efficiently, which will improve the891

overall performance.892

The reasoners are evaluated on two metrics: (1) average precision at 1 (P@1), which893

measures whether a reasoner is the most efficient on a given test collection Ote across 10-894

fold cross validation, and (2) average runtime (Avg. runtime), which measures the mean895

reasoning time on a given test collection Otr in seconds across 10-fold cross-validation.896

The results presented in the rest of this subsection are the average of those obtained897

on the test set in each of the 10 folds. Note that in each fold, the test collection Ote is898

differently chosen from the total ontology collection O. A more detailed description899

about our evaluation framework is found in Section 6.900

Table 6 and Table 7 show evaluation results for the two experiments, ErrorsRe-901

moved and ErrorsReplaced, respectively. We note that in the case where ELK is902

included in our meta-reasoners, the P@1 and Avg. runtime values for ELK are not903

recorded over the entire test set, but only the subset of OWL 2 EL ontologies. Hence a904

comparison between ELK and the other reasoners is not meaningful. Note that as we905

discussed in Section 5.2, R2O2*(pt) follows a similar spirit of the non-ranking portfolio906

reasoner PR [27], and R2O2*(rk) follows a similar spirit of R2O2 [27]. A number of907

important observations can be made from these tables.908

• In the experiment ErrorsRemoved, in all but one case, the best variant of our meta-909

reasoners outperforms all component reasoners in terms of P@1. Konclude has910

36

Table 6: Performance evaluation in the experiment ErrorsRemoved, in which error ontologies are removed.

Our meta-reasoners are compared with component reasoners and the virtual best reasoner (VBR). In each

column, the best results are bolded and the second best results are underlined.

Reasoner Without ELK With ELK

P@1 Avg. runtime P@1 Avg. runtime

FaCT++ 0.36% 201.62 0.36% 201.62

Hermit 0.14% 54.17 0.14% 54.17

JFact 0.07% 308.47 0.07% 308.47

Konclude 98.78% 8.58 97.26% 8.58

MORe 0.79% 89.93 0.58% 89.93

Pellet 0.22% 164.30 0.22% 164.30

ELK - - 1.73% 0.69

R2O2*(pt) 98.56% 8.60 98.20% 8.53

R2O2*(rk) 98.78% 8.58 98.42% 8.51

R2O2*(mc) 98.78% 7.48 98.49% 7.40

R2O2*(all) 98.78% 7.48 98.49% 7.40

VBR 100% 4.50 100% 4.43

the same performance (98.78%) as our meta-reasoners (R2O2*(rk), R2O2*(mc), and911

R2O2*(all)) when ELK is not considered.912

• In both experiments ErrorsRemoved and ErrorsReplaced, in all cases, the best913

variant of our meta-reasoners outperforms all component reasoners in terms of average914

runtime, including the highly efficient, parallelising reasoner Konclude.915

• Out of all the variants of our meta-reasoners, R2O2*(all) exhibits overall best efficiency.916

Of all the four experimental setups, R2O2*(all) exhibits the best performance of three,917

and second best in the other one. R2O2*(all) achieves a speedup of at least 1.10x918

(over Konclude in experiment ErrorsReplaced) and at most 41.69x (over JFact919

in experiment ErrorsRemoved). Its best efficiency is the result of the stacking920

technique employed in R2O2*(all).921

37

Table 7: Performance evaluation of the experiment ErrorsReplaced, in which error ontologies are replaced

by timeouts (30 minutes). Our meta-reasoners is compared with component reasoners and the virtual best

reasoner (VBR). In each column, the best results are bolded and the second best results are underlined.

Reasoner Without ELK With ELK

P@1 Avg. runtime P@1 Avg. runtime

FaCT++ 1.31% 365.92 1.25% 365.92

Hermit 0.68% 138.06 0.68% 138.06

JFact 0.57% 532.11 0.57% 532.11

Konclude 97.22% 27.15 94.55% 27.15

MORe 2.16% 139.68 1.48% 139.68

Pellet 0.91% 322.59 0.85% 322.58

ELK - - 3.47% 0.97

R2O2*(pt) 97.10% 24.50 96.82% 23.89

R2O2*(rk) 97.73% 25.72 97.05% 24.45

R2O2*(mc) 97.39% 26.93 96.82% 25.66

R2O2*(all) 97.56% 24.67 97.16% 23.39

VBR 100% 16.65 100% 16.22

• The inclusion of ELK in our meta-reasoners indeed improves reasoning efficiency.922

Even though ELK is only able to handle the less expressive OWL 2 EL profile, our923

meta-reasoners are able to take advantage of its efficiency in handling such ontologies.924

Table 1 in Section 7 shows the vast efficiency dominance of Konclude over the other925

component reasoners. To better understand the reasoners’ performance, we divide the926

ORE 2015 dataset into four bins of discretised reasoning time. The discretisation is927

performed on the best reasoning time (in seconds) of the virtual best reasoner (VBR),928

into four bins: ‘A’ (0, 1), ‘B’ [1, 10), ‘C’ [10, 100), and ‘D’ [100, 1,800], which represent929

ontologies with increasing difficulty.930

Tables 8 and 9 below summarise, in each bin and the entire ontology collection O,931

the percentage of each component reasoner being the most efficient. The component932

38

Table 8: Comparison of percentage of each component reasoner being the most efficient in each bin and overall

in experiment ErrorsRemoved (Rea: Reasoner, E: ELK, F: FaCT++, H: HermiT, J: JFact, K: Konclude, M:

MORe, P: Pellet).

Rank Overall A B C D

% Rea % Rea % Rea % Rea % Rea

1 96.92 K 100 K 88.62 K 80.56 K 27.27 F,K

2 1.72 E 0 E,F,H,J,M,P 8.94 E 11.11 M 18.18 M

3 0.57 M – – 0.81 M,P 5.56 E 9.09 H,J,P

4 0.36 F – – 0.41 F,H 2.78 F 0 E

5 0.22 P – – 0 J 0 H,J,P – –

6 0.14 H – – – – – – –

7 0.07 J – – – – – –

Table 9: Comparison of percentage of each component reasoner being the most efficient in each bin and overall

in experiment ErrorsReplaced (Rea: Reasoner, E: ELK, F: FaCT++, H: HermiT, J: JFact, K: Konclude, M:

MORe, P: Pellet).

Rank Overall A B C D

% Rea % Rea % Rea % Rea % Rea

1 91.93 K 100 K 84.41 K 67.31 K 20.83 M

2 3.37 E 0 E,F,H,J,M,P 11.18 E 22.12 E 18.06 F,K

3 1.44 M – – 2.35 F 7.69 M 15.28 H

4 1.22 F – – 0.88 M,P 1.92 P 13.89 J,P

5 0.83 P – – 0.29 H 0.96 F 0 E

6 0.66 H – – 0 J 0 H,J – –

7 0.55 J – – – – – –

reasoners are ordered by their percentages of being the most efficient, from highest to933

lowest. Note ELK only performs reasoning on the subset of OWL 2 EL ontologies.934

Note that the % values in the tables are averaged from the test sets of 10-fold cross935

validation in the above two experimental setups. Also note that the % values in Tables 8936

39

and 9 are different from the P@1 values in Table 6 and Table 7. The % values show937

the percentage being the most efficient across all the component reasoners. Thus, the938

sum of the % values in each of the columns - ’Overall’, ’A’, ’B’, ’C’ and ’D’ is 1. From939

these tables, we note a number of interesting observations:940

• Konclude’s dominance is again evident, as it is the most efficient reasoner for all941

bins except only in bin D, experiment ErrorsReplaced, where MORe is the most942

efficient.943

• Despite its dominance, Konclude does not dominate the most challenging category,944

bin D. In experiment ErrorsRemoved both FaCT++ and Konclude are the most945

efficient, and in experiment ErrorsReplaced MORe is the most efficient.946

• For the most difficult category, bin D, many component reasoners are the most efficient947

for a considerable percentage. In other words, the dominance of any component948

reasoner is much less pronounced. This shows the challenging nature of algorithm949

selection in the ontology reasoning context, where for the most challenging instances,950

a large number of choices are possible. This observation also indicates considerable951

room for further investigation.952

7.2.3. Comparison with AutoFolio953

In this section, we evaluate R2O2*(all) against AutoFolio for the ontology classifica-954

tion problem12. We have chosen R2O2*(all) for comparison with AutoFolio as it shows955

the best performance overall in our evaluation as discussed in the previous section.956

AutoFolio and R2O2*(all) use the same set of metrics, and are trained and tested on the957

same data splits and the same set of six reasoners. Hence, the comparison is fair. Note958

that AutoFolio makes use of functionally equivalent components hence it cannot take959

advantage of ELK. As described in Section 6, 10-fold cross validation is carried out for960

both experiments. In each fold, an AutoFolio model is trained on the training set, and961

then evaluated on the test set.962

Table 10 summarises the mean reasoning time for the two experiments. As can963

be observed in the table, R2O2*(all) outperforms AutoFolio in both experiments. The964

12AutoFolio is available at https://github.com/mlindauer/AutoFolio.

40

https://github.com/mlindauer/AutoFolio

best performance is achieved when ELK is incorporated in R2O2*(all), where R2O2*(all)965

outperforms AutoFolio by 15.95% and 16.08% respectively. However, even without966

ELK, R2O2*(all) also outperforms AutoFolio, by 14.71% and 10.05% respectively. These967

results demonstrate the effectiveness of R2O2*(all) as AutoFolio represents the state-of-968

the-art method in automated algorithm selection.969

Table 10: Summary of mean reasoning performance (in seconds) comparison between AutoFolio and

R2O2*(all) (R2O2*(all), both with and without ELK). In each row, best performance in the test set is highlighted

in bold, and second best performance in the test set is underlined.

Experiment AutoFolio R2O2*(all) (without ELK) R2O2*(all) (with ELK)

ErrorsRemoved 8.58 7.48 7.40

ErrorsReplaced 27.15 24.67 23.39

We further analysed the component reasoners selected by AutoFolio and R2O2*(all)970

in both experiments. In ErrorsRemoved, AutoFolio exclusively selects Konclude for971

all 1,389 instances. In ErrorsReplaced, AutoFolio selects MORe in 11 (0.625%) of972

the 1,760 instances, and Konclude 1,749 (99.375%) instances.973

On the other hand, R2O2*(all) is able to select a more diverse set of efficient reasoners.974

Table 11 shows, with ELK included, the number and percentage of times each compo-975

nent reasoner is selected by R2O2*(all) for each bin as well as the entire dataset. These976

results provide additional evidence that always selecting the most-efficient-on-average977

reasoner(s) is not the most optimal approach. For example, Table 1 shows that the978

mean reasoning time of MORe is more than 20x slower than Konclude. However, in979

experiments ErrorsReplaced, MORe is selected almost 30% among the most diffi-980

cult ontologies (bin D). Thus, this analysis further validates the effectiveness of the981

sophisticated meta-reasoning framework R2O2*(all).982

7.3. Key Metrics Identification983

Lastly, we investigate the identification of each of the 29 metrics’ influence on the984

performance of our meta-reasoners. This will provide insight into the contribution of985

individual metrics we have chosen (i.e. 29 metrics) on their performance. We measure986

41

Table 11: The number and percentage of each component reasoner being selected by R2O2*(all) in both

experiments, with ELK included. Percentages are calculated column-wise.

Overall (%) A (%) B (%) C (%) D (%)

ErrorsRemoved

Konclude 1,354 (97.48) 1,101 (100) 219 (88.66) 28 (82.35) 6 (85.71)

MORe 1 (0.07) 0 0 0 1 (14.29)

ELK 34 (2.45) 0 28 (11.34) 6 (17.65) 0

ErrorsReplaced

FaCT++ 6 (0.34) 0 6 (1.80) 0 0

Konclude 1,682 (95.57) 1,294 (100) 291 (87.12) 79 (75.24) 18 (66.67)

MORe 13 (0.74) 0 0 5 (4.76) 8 (29.63)

Pellet 2 (0.11) 0 0 1 (0.95) 1 (3.70)

ELK 57 (3.24) 0 37 (11.08) 20 (19.05) 0

the relative metric importance by using the feature importance values provided by the987

XGBoost classifier used in R2O2*(mc). Figure 2 shows the most important metrics for988

the prediction task of R2O2*(mc), which is to predict the most efficient reasoner, in both989

experiments. The weights are estimated by calculating the average of importance of the990

metrics through 10-fold cross validation and normalised into [0, 1]. The weight of each991

metric is measured based on the number of times it is used to split the data across all992

trees in XGBoost.993

As can be seen from the figure, different metrics are important for each experiment.994

However, there are some common important metrics. Two metrics, SOV and mCID,995

are common to both experiments’ top 5 metrics. Six metrics, IND, SOV, mCID, aCID,996

RHLC, and EOG, are common to both experiments’ top 10 metrics. For both exper-997

iments, OBP% is the least important among the 29 metrics. Curiously, DTP% is the998

most important for experiment ErrorsRemoved, while it is the second least important999

for ErrorsReplaced.1000

42

0 0.2 0.4 0.6 0.8 1

OBP%

CHN%

CONJ%

ELPROP%

ELCLS%

ESUB

SUPECHN

EF%

ELAX%

HLC

EF

aCOD

IHR

RCH

tNOC

aNO%

ENR

FUN%

aNOC

EOG

tCOD

CYC

RHLC

UF%

aCID

mCID

SOV

IND

DTP%

0 0.2 0.4 0.6 0.8 1

ErrorsRemoved

Value

M
et

ric
00.20.40.60.81

OBP%

DTP%

UF%

ESUB

tCOD

aCOD

aNO%

tNOC

EF%

CHN%

ELPROP%

EF

CONJ%

FUN%

ELAX%

aNOC

IHR

SUPECHN

CYC

ENR

HLC

aCID

ELCLS%

IND

RCH

RHLC

EOG

mCID

SOV

00.20.40.60.81

ErrorsReplaced

Value

M
etric

Figure 2: Importance of ontology metrics for R2O2*(mc) in both experiments. For each experiment the metrics

are ordered in descending order by their importance values.

8. Conclusion1001

Reasoning support for OWL ontologies is essential for ensuring the correctness of1002

ontologies, and for inferring implicit knowledge from them. For an expressive ontology1003

language such as SHOIN(D) and SROIQ(D), worst-case complexity is very high.1004

Moreover, ample empirical evaluation has also confirmed the hardness of actual, real-1005

world ontologies, even on state-of-the-art ontology reasoners such as Konclude and1006

HermiT.1007

This paper presented R2O2*, a novel, robust meta-reasoning framework that au-1008

tomatically ranks component reasoners by efficiency and selects the one that is most1009

likely the most efficient for any given ontology. The R2O2* framework comprises a1010

number of novel contributions: (1) we learn regression models that accurately predict1011

reasoning time for a number of state-of-the-art ontology reasoners; and (2) we propose1012

a learning- and ranking-based meta-reasoner that ensembles base prediction models1013

and thus combines component reasoners based on their predicted reasoning efficiency,1014

43

and (3) we formally define a large suite of syntactic and structural metrics that describe1015

ontologies.1016

We performed a comprehensive evaluation on six state-of-the-art OWL 2 DL rea-1017

soners and a large corpus of carefully curated ontologies. Our evaluation shows that1018

R2O2* significantly outperforms all six component reasoners as well as AutoFolio, a1019

strong, general-purpose, and state-of-the-art algorithm selection system. Compared to1020

component reasoners, R2O2* achieves a speedup of at least 1.10x (over Konclude) and1021

up to 41.69x (over JFact).1022

Extending our R2O2* meta-reasoning framework to a multi-criteria setting as done1023

in Multi-RakSOR [49, 50] is a natural next step. We plan to extend our methodology1024

to support ABox reasoning, and investigate support of other non-standard reasoning1025

problems. Continuing on our work on ABox-intensive EL ontologies [38] and reasoning1026

on the Android platform [39], we will further investigate sources of ABox reasoning1027

hardness by studying structural and syntactic properties of ABoxes. Performance pre-1028

diction and optimisation utilising machine learning techniques is particularly interesting1029

and relevant in the context of ontology-based data access (OBDA) [5], where a large1030

database is enhanced by an ontology, and (conjunctive) query answering on the database1031

requires ontology reasoning [61]. We will also investigate the generation of synthetic,1032

yet realistic benchmark ontologies (TBoxes) and instances (ABoxes) to assist in the eval-1033

uation and optimisation of reasoners. Finally, investigating the correlation of efficiency1034

between different reasoning tasks by a same reasoner is also an interesting problem1035

worthy of investigation.1036

References1037

[1] M. Ashburner, C. A. Ball, J. A. Blake, et al., Gene Ontology: Tool for the Unifica-1038

tion of Biology, Nat Genet 25 (1) (2000) 25–29. doi:10.1038/75556.1039

URL http://dx.doi.org/10.1038/755561040

[2] J. Z. Pan, S. Staab, U. Aßmann, J. Ebert, Y. Zhao (Eds.), Ontology-Driven Software1041

Development, Springer, 2013.1042

44

http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1038/75556
https://doi.org/10.1038/75556
http://dx.doi.org/10.1038/75556

[3] M. Lenzerini, Data integration: a theoretical perspective, in: Proceedings of1043

the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of1044

database systems, PODS ’02, ACM, New York, NY, USA, 2002, pp. 233–246.1045

doi:http://doi.acm.org/10.1145/543613.543644.1046

URL http://doi.acm.org/10.1145/543613.5436441047

[4] A. Calı, D. Calvanese, G. De Giacomo, M. Lenzerini, Data integration under1048

integrity constraints, Information Systems 29 (2) (2004) 147–163.1049

[5] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Zakharyaschev, The combined1050

approach to ontology-based data access, in: IJCAI, Vol. 11, 2011, pp. 2656–2661.1051

[6] Y.-F. Li, G. Kennedy, F. Ngoran, P. Wu, J. Hunter, An ontology-centric architecture1052

for extensible scientific data management systems, Future Gener. Comput. Syst.1053

29 (2) (2013) 641–653. doi:10.1016/j.future.2011.06.007.1054

URL http://dx.doi.org/10.1016/j.future.2011.06.0071055

[7] I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, From SHIQ and RDF to1056

OWL: The Making of a Web Ontology Language, Journal of Web Semantics 1 (1)1057

(2003) 7–26.1058

[8] B. Cuenca-Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler,1059

OWL 2: The next step for OWL, Journal of Web Semantics: Science, Services and1060

Agents on the World Wide Web 6 (2008) 309–322. doi:10.1016/j.websem.1061

2008.05.001.1062

URL http://portal.acm.org/citation.cfm?id=1464505.14646041063

[9] F. Baader, U. Sattler, An overview of tableau algorithms for description logics,1064

Studia Logica 69 (1) (2001) 5–40.1065

[10] D. Tsarkov, I. Horrocks, FaCT++ description logic reasoner: System description,1066

in: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), Springer,1067

2006, pp. 292–297.1068

45

http://doi.acm.org/10.1145/543613.543644
https://doi.org/http://doi.acm.org/10.1145/543613.543644
http://doi.acm.org/10.1145/543613.543644
http://dx.doi.org/10.1016/j.future.2011.06.007
http://dx.doi.org/10.1016/j.future.2011.06.007
http://dx.doi.org/10.1016/j.future.2011.06.007
https://doi.org/10.1016/j.future.2011.06.007
http://dx.doi.org/10.1016/j.future.2011.06.007
http://portal.acm.org/citation.cfm?id=1464505.1464604
https://doi.org/10.1016/j.websem.2008.05.001
https://doi.org/10.1016/j.websem.2008.05.001
https://doi.org/10.1016/j.websem.2008.05.001
http://portal.acm.org/citation.cfm?id=1464505.1464604

[11] R. Shearer, B. Motik, I. Horrocks, HermiT: A Highly-Efficient OWL Reasoner,1069

in: Proceedings of the 5th International Workshop on OWL: Experiences and1070

Directions (OWLED 2008), 2008.1071

[12] A. Steigmiller, T. Liebig, B. Glimm, Konclude: System description, J. Web Sem.1072

27 (2014) 78–85. doi:10.1016/j.websem.2014.06.003.1073

URL http://dx.doi.org/10.1016/j.websem.2014.06.0031074

[13] E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, Y. Katz, Pellet: A practical1075

OWL-DL reasoner, Web Semantics: Science, Services and Agents on the World1076

Wide Web 5 (2) (2007) 51–53. doi:10.1016/j.websem.2007.03.004.1077

URL http://dx.doi.org/10.1016/j.websem.2007.03.0041078

[14] J. Z. Pan, Y. Ren, Y. Zhao, Tractable approximate deduction for OWL, Artificial1079

Intelligence 235 (2016) 95–155.1080

[15] K. Dentler, R. Cornet, A. ten Teije, N. de Keizer, Comparison of reasoners for1081

large ontologies in the OWL 2 EL profile, Semantic Web Journal 2 (2) (2011)1082

71–87.1083

[16] Y.-B. Kang, Y.-F. Li, S. Krishnaswamy, A rigorous characterization of reasoning1084

performance – a tale of four reasoners, in: Proceedings of the 1st International1085

Workshop on OWL Reasoner Evaluation (ORE-2012), 2012.1086

[17] M. Y. Vardi, Boolean satisfiability: Theory and engineering, Commun. ACM 57 (3)1087

(2014) 5–5. doi:10.1145/2578043.1088

URL http://doi.acm.org/10.1145/25780431089

[18] K. Leyton-Brown, H. H. Hoos, F. Hutter, L. Xu, Understanding the empirical1090

hardness of NP-complete problems, Commun. ACM 57 (5) (2014) 98–107. doi:1091

10.1145/2594413.2594424.1092

URL http://doi.acm.org/10.1145/2594413.25944241093

[19] J. Z. Pan, Benchmarking DL reasoners using realistic ontologies, in: B. Cuenca-1094

Grau, I. Horrocks, B. Parsia, P. F. Patel-Schneider (Eds.), OWLED, Vol. 188 of1095

CEUR Workshop Proceedings, CEUR-WS.org, 2005.1096

46

http://dx.doi.org/10.1016/j.websem.2014.06.003
https://doi.org/10.1016/j.websem.2014.06.003
http://dx.doi.org/10.1016/j.websem.2014.06.003
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://doi.acm.org/10.1145/2578043
https://doi.org/10.1145/2578043
http://doi.acm.org/10.1145/2578043
http://doi.acm.org/10.1145/2594413.2594424
http://doi.acm.org/10.1145/2594413.2594424
http://doi.acm.org/10.1145/2594413.2594424
https://doi.org/10.1145/2594413.2594424
https://doi.org/10.1145/2594413.2594424
https://doi.org/10.1145/2594413.2594424
http://doi.acm.org/10.1145/2594413.2594424

[20] T. Gardiner, I. Horrocks, D. Tsarkov, Automated benchmarking of description1097

logic reasoners, in: Proceedings of the 2006 International Workshop on Description1098

Logics (DL2006), 2006.1099

[21] S. Bail, B. Glimm, E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia, A. Steigmiller,1100

Summary ORE 2014 competition, in: Proceedings of the 3rd International Work-1101

shop on OWL Reasoner Evaluation (ORE 2014), Vol. 1207, CEUR Workshop1102

Proceedings, 2014, pp. iv–vii.1103

[22] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, A. Steigmiller, The1104

OWL reasoner evaluation (ORE) 2015 competition report, Journal of Automated1105

Reasoning 59 (4) (2017) 455–482.1106

[23] R. S. Gonçalves, N. Matentzoglu, B. Parsia, U. Sattler, The empirical robustness1107

of description logic classification, in: T. Eiter, B. Glimm, Y. Kazakov, M. Krötzsch1108

(Eds.), Description Logics, Vol. 1014 of CEUR Workshop Proceedings, CEUR-1109

WS.org, 2013, pp. 197–208.1110

[24] H. Zhang, Y.-F. Li, H. B. K. Tan, Measuring design complexity of Semantic1111

Web ontologies, Journal of Systems and Software 83 (5) (2010) 803–814.1112

doi:DOI:10.1016/j.jss.2009.11.735.1113

URL http://www.sciencedirect.com/science/article/1114

B6V0N-4XV06RX-2/2/1024981a176a351b9dbb0cc4c487c17e1115

[25] Y.-B. Kang, Y.-F. Li, S. Krishnaswamy, Predicting reasoning performance using1116

ontology metrics, in: Cudré-Mauroux et al. [62], pp. 198–214.1117

[26] Y.-B. Kang, J. Z. Pan, S. Krishnaswamy, W. Sawangphol, Y.-F. Li, How long will1118

it take? Accurate prediction of ontology reasoning performance, in: C. E. Brodley,1119

P. Stone (Eds.), AAAI, AAAI Press, 2014, pp. 80–86.1120

[27] Y.-B. Kang, S. Krishnaswamy, Y.-F. Li, R2O2: an efficient ranking-based reasoner1121

for OWL ontologies, in: M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier,1122

M. d’Aquin, K. Srinivas, P. T. Groth, M. Dumontier, J. Heflin, K. Thirunarayan,1123

S. Staab (Eds.), The Semantic Web - ISWC 2015 - 14th International Semantic1124

47

http://www.sciencedirect.com/science/article/B6V0N-4XV06RX-2/2/1024981a176a351b9dbb0cc4c487c17e
http://www.sciencedirect.com/science/article/B6V0N-4XV06RX-2/2/1024981a176a351b9dbb0cc4c487c17e
http://www.sciencedirect.com/science/article/B6V0N-4XV06RX-2/2/1024981a176a351b9dbb0cc4c487c17e
https://doi.org/DOI: 10.1016/j.jss.2009.11.735
http://www.sciencedirect.com/science/article/B6V0N-4XV06RX-2/2/1024981a176a351b9dbb0cc4c487c17e
http://www.sciencedirect.com/science/article/B6V0N-4XV06RX-2/2/1024981a176a351b9dbb0cc4c487c17e
http://www.sciencedirect.com/science/article/B6V0N-4XV06RX-2/2/1024981a176a351b9dbb0cc4c487c17e
http://dx.doi.org/10.1007/978-3-319-25007-6_19
http://dx.doi.org/10.1007/978-3-319-25007-6_19
http://dx.doi.org/10.1007/978-3-319-25007-6_19

Web Conference, Part I, Vol. 9366 of Lecture Notes in Computer Science, Springer,1125

2015, pp. 322–338. doi:10.1007/978-3-319-25007-6_19.1126

URL http://dx.doi.org/10.1007/978-3-319-25007-6_191127

[28] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proceedings1128

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery1129

and Data Mining, KDD ’16, ACM, New York, NY, USA, 2016, pp. 785–794.1130

doi:10.1145/2939672.2939785.1131

URL http://doi.acm.org/10.1145/2939672.29397851132

[29] J. H. Friedman, Greedy function approximation: a gradient boosting machine,1133

Annals of statistics (2001) 1189–1232.1134

[30] Y. Kazakov, M. Krötzsch, F. Simancik, The incredible ELK - from polynomial1135

procedures to efficient reasoning with E L ontologies, J. Autom. Reasoning 53 (1)1136

(2014) 1–61. doi:10.1007/s10817-013-9296-3.1137

URL http://dx.doi.org/10.1007/s10817-013-9296-31138

[31] M. Lindauer, H. H. Hoos, F. Hutter, T. Schaub, AutoFolio: An automatically1139

configured algorithm selector, Journal of Artificial Intelligence Research 53 (2015)1140

745–778.1141

[32] F. Baader, W. Nutt, Basic description logics, in: F. Baader, D. Calvanese,1142

D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The description logic hand-1143

book: theory, implementation, and applications, Cambridge University Press, 2003,1144

pp. 43–95.1145

[33] I. Horrocks, The FaCT system, Tableaux’98, LNCS 1397 (1998) 307–312.1146

[34] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, HermiT: An OWL1147

2 reasoner, J. Autom. Reason. 53 (3) (2014) 245–269. doi:10.1007/1148

s10817-014-9305-1.1149

URL http://dx.doi.org/10.1007/s10817-014-9305-11150

[35] R. S. Gonçalves, B. Parsia, U. Sattler, Performance heterogeneity and approximate1151

reasoning in description logic ontologies, in: Cudré-Mauroux et al. [62], pp. 82–98.1152

48

https://doi.org/10.1007/978-3-319-25007-6_19
http://dx.doi.org/10.1007/978-3-319-25007-6_19
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://dx.doi.org/10.1007/s10817-013-9296-3
http://dx.doi.org/10.1007/s10817-013-9296-3
http://dx.doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/s10817-013-9296-3
http://dx.doi.org/10.1007/s10817-013-9296-3
http://dx.doi.org/10.1007/s10817-014-9305-1
http://dx.doi.org/10.1007/s10817-014-9305-1
http://dx.doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
http://dx.doi.org/10.1007/s10817-014-9305-1

[36] D. Zhang, C. Ye, Z. Yang, An evaluation method for ontology complexity analysis1153

in ontology evolution, in: Managing Knowledge in a World of Networks, Vol.1154

4248, 2006, pp. 214–221.1155

[37] V. Sazonau, U. Sattler, G. Brown, Predicting OWL reasoners: Locally or globally?,1156

in: M. Bienvenu, M. Ortiz, R. Rosati, M. Simkus (Eds.), Informal Proceedings1157

of the 27th International Workshop on Description Logics, Vienna, Austria, July1158

17-20, 2014., Vol. 1193 of CEUR Workshop Proceedings, CEUR-WS.org, 2014,1159

pp. 713–724.1160

URL http://ceur-ws.org/Vol-1193/paper_12.pdf1161

[38] J. Z. Pan, C. Bobed, I. Guclu, F. Bobillo, M. J. Kollingbaum, E. Mena, Y.-F.1162

Li, Predicting reasoner performance on ABox intensive OWL 2 EL ontologies,1163

International Journal on Semantic Web and Information Systems (IJSWIS) 14 (1).1164

[39] I. Guclu, Y.-F. Li, J. Z. Pan, M. J. Kollingbaum, Predicting energy consumption of1165

ontology reasoning over mobile devices, in: P. T. Groth, E. Simperl, A. J. G. Gray,1166

M. Sabou, M. Krötzsch, F. Lécué, F. Flöck, Y. Gil (Eds.), The Semantic Web -1167

ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, October1168

17-21, 2016, Proceedings, Part I, Vol. 9981 of Lecture Notes in Computer Science,1169

2016, pp. 289–304. doi:10.1007/978-3-319-46523-4_18.1170

URL http://dx.doi.org/10.1007/978-3-319-46523-4_181171

[40] J. R. Rice, The algorithm selection problem, in: Advances in computers, Vol. 15,1172

Elsevier, 1976, pp. 65–118.1173

[41] K. A. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm1174

selection, ACM Computing Surveys (CSUR) 41 (1) (2009) 6.1175

[42] F. Hutter, L. Xu, H. H. Hoos, K. Leyton-Brown, Algorithm runtime predic-1176

tion: Methods & evaluation, Artif. Intell. 206 (2014) 79–111. doi:10.1016/j.1177

artint.2013.10.003.1178

URL http://dx.doi.org/10.1016/j.artint.2013.10.0031179

49

http://ceur-ws.org/Vol-1193/paper_12.pdf
http://ceur-ws.org/Vol-1193/paper_12.pdf
http://dx.doi.org/10.1007/978-3-319-46523-4_18
http://dx.doi.org/10.1007/978-3-319-46523-4_18
http://dx.doi.org/10.1007/978-3-319-46523-4_18
https://doi.org/10.1007/978-3-319-46523-4_18
http://dx.doi.org/10.1007/978-3-319-46523-4_18
http://dx.doi.org/10.1016/j.artint.2013.10.003
http://dx.doi.org/10.1016/j.artint.2013.10.003
http://dx.doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.1016/j.artint.2013.10.003
http://dx.doi.org/10.1016/j.artint.2013.10.003

[43] L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown, SATzilla: Portfolio-based algo-1180

rithm selection for SAT, J. Artif. Int. Res. 32 (1) (2008) 565–606.1181

URL http://dl.acm.org/citation.cfm?id=1622673.16226871182

[44] D. Tsarkov, I. Palmisano, Chainsaw: a metareasoner for large ontologies, in: I. Hor-1183

rocks, M. Yatskevich, E. Jiménez-Ruiz (Eds.), Proceedings of the 1st International1184

Workshop on OWL Reasoner Evaluation (ORE-2012), Manchester, UK, July 1st,1185

2012, Vol. 858 of CEUR Workshop Proceedings, CEUR-WS.org, 2012.1186

URL http://ceur-ws.org/Vol-858/ore2012_paper2.pdf1187

[45] B. Cuenca-Grau, I. Horrocks, Y. Kazakov, U. Sattler, Modular reuse of ontologies:1188

Theory and practice, J. Artif. Intell. Res. (JAIR) 31 (2008) 273–318.1189

[46] C. Del Vescovo, B. Parsia, U. Sattler, T. Schneider, The modular struc-1190

ture of an ontology: Atomic decomposition, in: Proceedings of the Twenty-1191

Second International Joint Conference on Artificial Intelligence - Volume Vol-1192

ume Three, IJCAI’11, AAAI Press, 2011, pp. 2232–2237. doi:10.5591/1193

978-1-57735-516-8/IJCAI11-372.1194

URL http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-3721195

[47] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, A. Steigmiller, The OWL1196

reasoner evaluation (ORE) 2015 competition report, in: T. Liebig, A. Fokoue1197

(Eds.), Proceedings of the 11th International Workshop on Scalable Semantic1198

Web Knowledge Base Systems co-located with 14th International Semantic Web1199

Conference (ISWC 2015), Bethlehem, PA, USA, October 11, 2015., Vol. 1457 of1200

CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 2–15.1201

URL http://ceur-ws.org/Vol-1457/SSWS2015_paper1.pdf1202

[48] W. Song, B. Spencer, W. Du, WSReasoner: A prototype hybrid reasoner for1203

ALCHOI ontology classification using a weakening and strengthening approach,1204

in: OWL Reasoner Evaluation Workshop (ORE 2012), 2012, p. 1.1205

[49] N. Alaya, S. B. Yahia, M. Lamolle, Raksor: Ranking of ontology reasoners based1206

on predicted performances, in: 28th IEEE International Conference on Tools with1207

50

http://dl.acm.org/citation.cfm?id=1622673.1622687
http://dl.acm.org/citation.cfm?id=1622673.1622687
http://dl.acm.org/citation.cfm?id=1622673.1622687
http://dl.acm.org/citation.cfm?id=1622673.1622687
http://ceur-ws.org/Vol-858/ore2012_paper2.pdf
http://ceur-ws.org/Vol-858/ore2012_paper2.pdf
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
http://ceur-ws.org/Vol-1457/SSWS2015_paper1.pdf
http://ceur-ws.org/Vol-1457/SSWS2015_paper1.pdf
http://ceur-ws.org/Vol-1457/SSWS2015_paper1.pdf
http://ceur-ws.org/Vol-1457/SSWS2015_paper1.pdf
https://doi.org/10.1109/ICTAI.2016.0165
https://doi.org/10.1109/ICTAI.2016.0165
https://doi.org/10.1109/ICTAI.2016.0165

Artificial Intelligence, ICTAI 2016, San Jose, CA, USA, November 6-8, 2016,1208

IEEE Computer Society, 2016, pp. 1076–1083. doi:10.1109/ICTAI.2016.1209

0165.1210

URL https://doi.org/10.1109/ICTAI.2016.01651211

[50] N. Alaya, M. Lamolle, S. B. Yahia, Multi-label based learning for better multi-1212

criteria ranking of ontology reasoners, in: C. d’Amato, M. Fernández, V. A. M.1213

Tamma, F. Lécué, P. Cudré-Mauroux, J. F. Sequeda, C. Lange, J. Heflin (Eds.),1214

The Semantic Web - ISWC 2017 - 16th International Semantic Web Confer-1215

ence, Vienna, Austria, October 21-25, 2017, Proceedings, Part I, Vol. 10587 of1216

Lecture Notes in Computer Science, Springer, 2017, pp. 3–19. doi:10.1007/1217

978-3-319-68288-4_1.1218

URL https://doi.org/10.1007/978-3-319-68288-4_11219

[51] Y. Zhou, B. C. Grau, Y. Nenov, M. Kaminski, I. Horrocks, Pagoda: Pay-as-1220

you-go ontology query answering using a datalog reasoner, Journal of Artificial1221

Intelligence Research 54 (2015) 309–367.1222

[52] N. Fenton, J. Bieman, Software Metrics: A Rigorous and Practical Approach,1223

Third Edition, 3rd Edition, CRC Press, Inc., Boca Raton, FL, USA, 2014.1224

[53] B. Motik, R. Shearer, I. Horrocks, Optimized reasoning in description logics using1225

hypertableaux, in: International Conference on Automated Deduction, Springer,1226

2007, pp. 67–83.1227

[54] F. M. Donini, Complexity of reasoning, in: The Description Logic Handbook:1228

Theory, Implementation, and Applications, 2003, pp. 96–136.1229

[55] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: L. P. Kaelbling,1230

A. Saffiotti (Eds.), Proceedings of IJCAI 2005, Professional Book Center, 2005,1231

pp. 364–369.1232

URL http://dblp.uni-trier.de/db/conf/ijcai/ijcai2005.html#1233

BaaderBL051234

51

https://doi.org/10.1109/ICTAI.2016.0165
https://doi.org/10.1109/ICTAI.2016.0165
https://doi.org/10.1109/ICTAI.2016.0165
https://doi.org/10.1109/ICTAI.2016.0165
https://doi.org/10.1007/978-3-319-68288-4_1
https://doi.org/10.1007/978-3-319-68288-4_1
https://doi.org/10.1007/978-3-319-68288-4_1
https://doi.org/10.1007/978-3-319-68288-4_1
https://doi.org/10.1007/978-3-319-68288-4_1
https://doi.org/10.1007/978-3-319-68288-4_1
https://doi.org/10.1007/978-3-319-68288-4_1
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2005.html#BaaderBL05
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2005.html#BaaderBL05
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2005.html#BaaderBL05
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2005.html#BaaderBL05

[56] A. A. Romero, B. Cuenca-Grau, I. Horrocks, MORe: Modular combination of1235

OWL reasoners for ontology classification, in: Cudré-Mauroux et al. [62], pp.1236

1–16.1237

[57] M. P. Sesmero, A. I. Ledezma, A. Sanchis, Generating ensembles of heterogeneous1238

classifiers using stacked generalization, Wiley Int. Rev. Data Min. and Knowl.1239

Disc. 5 (1) (2015) 21–34. doi:10.1002/widm.1143.1240

URL http://dx.doi.org/10.1002/widm.11431241

[58] V. Haarslev, K. Hidde, R. Möller, M. Wessel, The RacerPro knowledge representa-1242

tion and reasoning system, Semantic Web 3 (3) (2012) 267–277.1243

[59] V. Haarslev, R. Möller, RACER system description, in: Proceedings of Automated1244

Reasoning : First International Joint Conference, no. 2083 in Lecture Notes in1245

Computer Science, Siena, Italy, 2001, pp. 701–706.1246

[60] Q. Sun, B. Pfahringer, Pairwise meta-rules for better meta-learning-based al-1247

gorithm ranking, Machine Learning 93 (1) (2013) 141–161. doi:10.1007/1248

s10994-013-5387-y.1249

[61] A. Cali, G. Gottlob, A. Pieris, Towards more expressive ontology languages: The1250

query answering problem, Artificial Intelligence 193 (2012) 87–128.1251

[62] P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X.1252

Parreira, J. Hendler, G. Schreiber, A. Bernstein, E. Blomqvist (Eds.), The Semantic1253

Web - ISWC 2012 - 11th International Semantic Web Conference, Boston, MA,1254

USA, November 11-15, 2012, Proceedings, Part I, Vol. 7649 of Lecture Notes in1255

Computer Science, Springer, 2012.1256

52

http://dx.doi.org/10.1002/widm.1143
http://dx.doi.org/10.1002/widm.1143
http://dx.doi.org/10.1002/widm.1143
https://doi.org/10.1002/widm.1143
http://dx.doi.org/10.1002/widm.1143
https://doi.org/10.1007/s10994-013-5387-y
https://doi.org/10.1007/s10994-013-5387-y
https://doi.org/10.1007/s10994-013-5387-y

Appendix A. Metric Definitions1257

Table A.12: Definitions of the 24 ontology-level (ONT) metrics. Note that “ ” represents “don’t cares”.

Metric Definition

SOV No. of named entities (classes, properties & individuals)

ENR Ratio between number of (named and anonymous) entities

and number of edges

TIP Difference between number of subclass axioms and number

of (named or anonymous) classes

EOG The entropy of the ontology graph, measuring the diversity of

the edge distribution

CYC The cyclomatic complexity of the ontology, measuring the

number of linearly independent paths

RCH The ratio of (possibly nested) anonymous class expressions

and all (named or anonymous) class expressions

IND No. of (named or anonymous) individuals

GCI No. of GCI axioms

HGCI No. of hidden GCI axioms

ESUB% Ratio of subclass axioms that contain (nested) existential

restrictions (∃R.)

DSUB% Ratio of subclass axioms that contain (nested) class unions

(t)

CSUB% Ratio of subclass axioms that contain (nested) class intersec-

tions (u) and the subclass is anonymous

ELCLS% Ratio of (nested) class expressions that are in OWL 2 EL

profile

ELAX% Ratio of subclass or equivalent class axioms that only contain

expressions in the OWL 2 EL profile

53

Table A.12: Definitions of the 24 ontology-level (ONT) metrics. Note that “ ” represents “don’t cares”.

Metric Definition

HLC Count hard language constructs containing in superclass ex-

pressions

HLC% Ratio of HLC and subclass axioms

SUBCECHN No. of top-level subclass expressions that contain chained

existential restrictions

SUPCECHN No. of top-level superclass expressions that contain chained

existential restrictions

DSUBCECHN Max depth of chained existential restrictions in a subclass

expression

DSUPCECHN Max depth of chained existential restrictions in a superclass

expression

SUBCCHN No. of top-level subclass expressions that contain chains of

conjunctions

SUPCCHN No. of top-level superclass expressions that contain chains of

conjunctions

DSUBCCHN Max depth of nested conjunctions in a subclass expression

DSUPCCHN Max depth of nested conjunctions in a superclass expression

1258

54

Table A.13: Definitions of the 15 class-level (CLS) metrics. Note that C represents a (named or possibly

nested) class expression in an antology, and NC denotes the total number of (named or possibly nested) class

expressions in a given ontology.

Metric Definition

tNOC
∑

C

NOC(C)

aNOC tNOC
NC

mNOC maxC NOC(C)

tNOP
∑

C

NOP(C)

aNOP tNOP
NC

mNOP maxC NOP(C)

tCID/tCOD
∑
C

incoming/outgoing edges of C

aCID/aCOD aCID =
tCID
NC

, aCOD =
tCOD

NC

mCID/mCOD mCID = maxCCID(C), mCOD = maxCCOD(C)

tDIT
∑
C

distance of C from owl:Thing in a depth-first manner

aDIT
tDIT
NC

mDIT maxC DIT (C)

55

Table A.14: Definition of the 22 (possibly nested) anonymous class expression (ACE) metrics. Note that each

row represents a count metric and a ratio metric (represented by [%]) for the same type of class expressions.

Metric Definition

ENUM[%] For enumerations/nominals ({a, b, c}, where a, b, c are in-

dividuals)

NEG[%] For class negations (¬C)

CONJ[%] For class intersections (conjunctions, C1 uC2)

DISJ[%] For class unions (disjunctions, C1 tC2)

UF[%] For universal restrictions (∀R.C)

EF[%] For existential restrictions (∃R.C)

VALUE[%] For value restrictions (∃R.{a}), where a is an individual

SELF[%] For self references

MNCAR[%] For min cardinality restrictions (≥ n R.C)

MXCAR[%] For max cardinality restrictions (≤ n R.C)

CAR[%] For (exact) cardinality restrictions (= n R.C)

56

Table A.15: Definitions of the 30 property-level (PRO) metrics.

Metric Definition

OBP[%] Count and ratio of object-properties

DTP[%] Count and ratio of datatype-properties

FUN[%] Count and ratio of functional properties

SYM[%] Count and ratio of symmetric properties

TRN[%] Count and ratio of transitive properties

IFUN[%] Count and ratio of inverse functional properties

ASYM[%] Count and ratio of asymmetric properties

REFLE[%] Count and ratio of reflexive properties

IRREF[%] Count and ratio of irreflexive properties

CHN[%] Count and ratio of property chain axioms

SUBP Count of subproperty axioms

EQVP Count of equivalent property axioms

DISP Count of disjoint property axioms

INV Count of inverse property axioms

DOMN Count of domain axioms

RANG Count of range axioms

ELPROP% Ratio of property axioms that are in the OWL 2 EL profile

IHR Count of class axioms that involve property hierarchies

IIR Count of class axioms that involve inverse properties

ITR Count of class axioms that involve transitive properties

57

	Introduction
	Ontologies and Reasoning
	Related Work
	Ontology Metrics
	Ontology-level Metrics (ONT)
	Class-level Metrics (CLS)
	Anonymous Class Expression Metrics (ACE)
	Property Metrics (PRO)

	Meta-Reasoning Models
	Notation Definition
	Details of the Meta-Reasoners
	Meta-reasoner based on the direct use of predicted reasoning time: mrrpt
	Meta-reasoner based on ranking algorithm: mrrrk
	Meta-reasoner based on multi-class classification: mrrmc
	Ensemble meta-reasoner: mrrall
	Meta-reasoners with ELK

	Evaluation Framework
	Evaluation Results and Analysis
	Performance Evaluation of the Key Learning Components in mrr
	Performance of regression models in mrrpt
	Performance of rankers in mrrrk
	Performance of the classifiers in mrrmc

	Performance Evaluation of mrr on Reasoning Efficiency
	Meta-reasoner time overhead
	Comparison with our meta-reasoners and component reasoners
	Comparison with AutoFolio

	Key Metrics Identification

	Conclusion
	Metric Definitions

