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Abstract. The unprecedented growth in mobile devices, combined with
advances in Semantic Web (SW) Technologies, has given birth to op-
portunities for more intelligent systems on-the-go. Limited resources of
mobile devices demand approaches that make mobile reasoning more
applicable. While Mobile-Cloud integration is a promising method for
harnessing the power of semantic technologies in the mobile infrastruc-
ture, it is an open question how to decide when to reason over ontologies
on mobile devices. In this paper, we introduce an energy consumption
prediction mechanism for ontology reasoning on mobile devices that al-
lows an analysis of the feasibility of performing an ontology reasoning
on a mobile device with respect to energy consumption. The developed
prediction model contributes to mobile–cloud integration and helps to
improve further developments in semantic reasoning in general.
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puting, Prediction, Random Forests

1 Introduction

Server and desktop machines have been the main environment for ontology rea-
soning in assisting knowledge management so far. With the rapid improvement
of hardware capabilities, as well as software developments in mobile devices
(e.g., smartphones, tablets, PDAs, smartwatches), semantic reasoners start to
become adopted [24] in mobile environments. Mobile applications (apps) that
use semantic technologies, such as for the integration with diverse data sources
and knowledge due to inferences made during semantic reasoning, are also being
developed. However, this potential has not been utilized fully yet.

According to Yus and Pappachan’s research [25] on semantic mobile apps,
23 out of 36 apps implement a client-server architecture, where the mobile app
is used as an interface for the results processed by a server and just 6 apps
utilize a semantic reasoner directly on the device to infer facts. According to
their observation, the use of Semantic Web technologies on mobile devices is
on the rise and there is a need for the development of more tools to facilitate
this growth [25]. Groth [6] asserts that, while there has been a large amount
of effort in Semantic Web Services, even going as far as developing a standard
for describing those services, we have not seen a corresponding take-up in using
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these languages to enable the execution of actions either on the Web or in the
real world.

Our goal is to make semantic technologies more feasible for a new era of
mobile and cloud computing by building an energy prediction mechanism that
will guide us “to what extent ontology reasoning can be made on mobile devices”.
Mobile-Cloud Integration can significantly enhance the capabilities and benefits
of semantic technologies. For a successful mobile-cloud integration, a mechanism
is needed that will (1) predict the cost of data processing (including loading,
parsing, reasoning, query answering) on a mobile device itself in terms of time
and energy consumption, (2) predict the cost of data processing on the cloud,
and (3) ultimately determine where data processing should be conducted in an
optimal way.

In this paper, we focus on the Prediction of Energy Consumption aspect of
ontology reasoning on the mobile front, using statistical methods and execution
data collected during experiments. We present an energy consumption prediction
mechanism that predicts how much energy a new ontology will consume and
whether this ontology may be processed within a predefined time, using previous
reasoning results and specific metrics for ontologies [12].

We focus on the energy consumption aspect of semantic data processing,
because, as [15, 19] pointed out, energy consumption is a principal design concern
for mobile platforms, rather than just a desirable attribute. Our investigation
(see Section 5.2) shows that it cannot be assumed that the energy consumption
of a reasoning process on a mobile device correlates with its time consumption.
The main contributions of this paper can be summarised as follows:

1. We show that metrics of ontologies are very effective for accurate prediction
(having R2 between 0.8985 and 0.9859, and a maximum RMSE of 10.86)
of energy consumption of ontology reasoning on the Android platform, as
validated by our comprehensive evaluation.

2. A comprehensive dataset ontologies in OWL 2 EL profile (a tractable profile
in OWL 2) is made available for assessing and improving the performance
of reasoning algorithms in terms of energy consumption.

2 Related Work and Background

Kleemann [14] discusses resource limitations in terms of computing power, mem-
ory and energy and presents a study for the development of a reasoner suitable
for resource constrained environments such as mobile devices. Cerri et al. [3]
propose the “knowledge in the cloud” approach, extending “data in the cloud”
with support for handling semantic information, such as organising and finding
it efficiently and providing reasoning and quality support. Despite presenting an
efficient approach for harnessing the power of the cloud, this study is limited
to cloud computing and doesn’t take into account the capabilities of mobile de-
vices. Rietveld and Schlobach [20] present a study about how the constraints
in computing environments influence SW applications. In their study, they take
battery power as one constraint, however, no deeper study is provided about the
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relationship between the energy need of the application and the structure of se-
mantic data. Corradi et al. [4] propose an architecture and describe a prototype
system for a mobile–cloud support of semantically enriched speech recognition in
social care. In their approach, they move resource-demanding tasks that consume
a high amount of energy on a mobile device to the cloud computing infrastruc-
ture. Hogan et al. [11] discuss scalability issues of reasoning and propose an
approach for making the processing of a billion triples of open-domain Linked
Data feasible. While they contribute to the feasibility of semantic data process-
ing with regard to complexity, energy consumption of these approaches haven’t
been investigated.

Metrics of ontologies have been used for assessing the quality [2], complex-
ity [26], cohesion [23], population task [16] and time consumption [13] of ontology
reasoning. Hasan and Gandon [8] implemented a machine learning approach for
predicting the performance of SPARQL queries using previous execution data.
These investigations targeted server machines and efficient results were obtained.
In our investigation, we are going to make use of metrics to deal with the energy
bottleneck of mobile devices.

2.1 Electric Power and Energy Consumed

.....(Electric) Power (P) is the rate of doing work, measured in watts. The electric
power in watts produced by an electric current I passing through an electric
potential (voltage) difference of V is,

P = V ∗ I, (watts = volts ∗ amperes). (1)

Energy (E) is equal to the power (P) times the time period (t) is,

EJ = PW ∗ ts, (joules = watts ∗ seconds). (2)

We measure Energy Consumed, in watt-seconds (Ws.), which is equal to joules.

2.2 Measuring Energy Consumption Programmatically

Various techniques [7, 22] have been used to measure and predict energy con-
sumption on mobile devices. For measuring energy consumed in reasoning, Pat-
ton and McGuinness propose a power benchmark [18] using a physical device
setup that consists of a power monitor and a notebook computer to collect data.
Because of the difficulty of implementing hardware-dependent (requiring any
extra equipment not natively available on the mobile device) techniques to a
solution that is desired to be applicable to all mobile devices, we searched for a
software-based technique that can be programmatically implemented.

We adopted the Power Consumption Benchmark Framework [21] proposed
by Valincius et al., which is hardware-independent and easily programmable1.

1 https://github.com/evalincius/PowerBenchMark

https://github.com/evalincius/HermitOWLAPI
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Energy is calculated using the properties in Android’s BatteryManager class,
BATTERY PROPERTY CURRENT NOW and EXTRA VOLTAGE, Current and Voltage are
retrieved (see equation (1)). Valincius et al. measured total energy consumption
with interval of 1 second (see equation (2)).

Observing and measuring overall energy consumption and battery drainage
of the mobile device in 1 sec intervals poses a problem – a measurement with
a resolution of 1 second shows the energy consumed by the mobile device dur-
ing this second, independent of whether during such a measuring interval the
processing of an ontology lasts 1 millisecond or 1000 milliseconds. In order to
get a more accurate measurement of how much energy the processing of a single
ontology consumes, we, therefore, increased the precision of measurements by
shortening the interval to 100 milliseconds. In order to do this, we recorded the
value of V ∗I

10 with intervals of 100msecs from the start of the data processing to
the end. The cumulation of these values constitutes the total energy consumed .
With that, we reach a precision of 100 msecs. With this method, an ontology
processed in 1 millisecond is measured to consume the energy calculated for 1 in-
terval of 100msecs. And, an ontology processed in 1000 milliseconds is measured
to consume the energy calculated for 10 intervals of 100msecs cumulatively.

2.3 Ontology Metrics

To be able to capture the complexity of ontologies thoroughly, we have adopted
the set of 91 metrics proposed by Kang et al. [12, 13]. These metrics include
the number of general class inclusions, number of individuals, and the count
of additional types of logical axioms (including reflexive properties, irreflexive
properties and domain/range axioms). There are 24 ontology-level metrics to
measure the overall size and complexity of an ontology, 15 class-level metrics to
measure characteristics of OWL classes in an ontology, 22 anonymous class ex-
pression metrics to capture different types of class axioms, 30 property definition
and axiom metrics to capture different types of property declarations and ax-
ioms. The complexity of all the metrics calculation algorithms is polynomial [13]
in the size of the graph representation of the ontology.

2.4 Statistical Methods for Energy Prediction

We use a series of statistical methods for our energy prediction. Regression Anal-
ysis [9] is a statistical tool for the investigation of relationships between variables
using some predictor variables and an output variable. We have built a regres-
sion model in which metrics are the predictor variables and the overall energy
consumption of processing an ontology is the output variable. The output vari-
able is denoted by Y , and the set of predictors by a vector X (X1, X2, ..., Xn,
where n is the number of predictor variables). A regression model is formalized
as Y ≈ f(X,β), where β is the unknown parameters, X is the independent vari-
ables and Y is the dependent variable. Classification identifies to which of a set
of categories a new observation belongs, on the basis of a training set of data
containing observations (or instances) whose category membership is known. In
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our classification model, metrics are the predictor variables and the output vari-
able states either “able to process the ontology in 100 seconds” or “not able to
process the ontology in 100 seconds”. Random Forest [1] is an ensemble learning
method for classification, regression and other tasks that operate by constructing
a multitude of decision trees at training time and outputting the class that is the
mode of the classes (classification) or mean prediction (regression) of the indi-
vidual trees. In this paper, we train Random Forest-based classification models
to predict whether an ontology can be processed within a predefined time and
Random Forests-based regression models to predict energy consumption for an
ontology using the power benchmark introduced above and syntactic metrics as
features.A Moving Average is a calculation to analyse data points by creating
series of averages of different subsets of the full data set in statistics. A moving
average is commonly used with time series data to smooth out short-term fluc-
tuations and highlight longer-term trends or cycles. We will use moving average
to see whether there is a trend in the energy consumption while the battery level
is decreasing from 100% to 1%. The Coefficient of Variation (CV), also known
as “relative variability”, is a standardized measure of dispersion of a probability
distribution or frequency distribution. It is often expressed as a percentage, and
is defined as the ratio of the standard deviation to the mean (or its absolute
value). In our work, we will use CV for examining the variability of the energy
measurement results from 100% to 1% battery level.

3 Our Approach

Making an energy prediction mechanism is a challenging task. Firstly, as detailed
in Section 5.2, there may not be always a linear relation between time and energy
consumption of ontology reasoning on every device. Hence, prediction models for
reasoning time, and those done in a desktop/server environment (such as [12,
13]), cannot be re-used as-is. Secondly, trying to model all the variables of real-
world environments for energy consumption prediction, especially for a mobile
device, is very difficult. Adapting to improvements in mobile environments is
another complication for developing predication models, as changes to operating
systems or in the utilisation of the CPU may render existing models obsolete.

In addressing these challenges, we developed prediction models by using a
programmable (and hardware-independent) energy measurement tool (“Power
Consumption Benchmark Framework” [21] proposed by Valincius et al.) and we
use metrics that provide us with a numerical representation of particular proper-
ties of an ontology and use this information as our data source, in order to deal
with the complexity of the semantic web and the uncertainty of internal and
external influences on measuring energy consumption during ontology reasoning
processes on mobile devices. We have chosen ontologies2 in EL profile which were
used at the ORE 2014 (The OWL Reasoner Evaluation Workshop 2014). We
used two substantially different devices for our experiments. The measurement
and prediction results will also provide an opportunity to identify unforeseeable

2 https://zenodo.org/record/10791
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effects due to changes in the environment. For example, we observed that energy
consumption may not always be correlated with reasoning time during our ex-
periments with Machine2. Our case scenario (work-flow of the mechanism) has
the following steps:

1. The mobile device asks the server whether it shall try to perform a reasoning
task locally by sending the IRI of the ontology.

2. The server takes measures of the ontology according to the ontology metrics
discussed in Section 2, and applies those measurement results to the clas-
sification model, which is trained to predict whether this ontology can be
processed on this mobile device with a chosen reasoner using the metrics of
the ontology, and will return either:

(a) Positive: “this ontology can be processed within the predefined time limit
(100 sec. in our experiment), and (using the regression model for pre-
dicting the energy consumption) it will consume this amount of energy”;
or

(b) Negative: “it cannot be processed in the predefined time”.

3. If the mobile device gets a positive result from the server, it will then analyse
the remaining energy available on the device and decide whether to proceed
locally or in the cloud. If the mobile device receives a negative result, it will
wait for the cloud to perform the reasoning task and return the result. For
experimental purposes, we will process all the ontologies on the device. If
the process exceeds the predefined time limit (100 sec in our experiments),
the process will be terminated.

4. The server will be informed whether the reasoning finishes with success
within the set time limit.

5. The data collected about energy and time consumption will be used to im-
prove our model to produce better prediction results.

Our approach regards mobile device as a “black-box” and accepts all its inter-
nal/external influences over data processing as the nature of it. We gather the
execution data produced by the device and make inferences using this data with
prediction data. We measure overall energy consumed (including loading/parsing
of ontology, classification of the ontology TBox and executing the SPARQL
query to retrieve the classification result) during the processing of ontologies in
EL profile on each mobile device-reasoner pair. We describe experiments with a
particular query answering task (explained in Section 5.1) by sending the same
SPARQL query to the two reasoners we investigate, in order to get results for
subsumption reasoning. Experiment results of these ontologies are used to make
a prediction model and predict energy consumption of a new ontology on the
same device-reasoner pair. This prediction mechanism is validated by the statis-
tical results obtained from experiments.

In our experiments, we have implemented a separate model for each device-
reasoner pair to see its validity in that scope. We are planning to work on one
model for classification and one model for regression of all device-reasoner pairs
as future work.



Predicting Energy Consumption of Ontology Reasoning over Mobile Devices 7

4 Experimental Setup

For calculating the error rate of our classification model, we divide wrong predic-
tions by total predictions. For deciding whether our regression model is accept-
able to describe the relation between the variables and the result obtained from
the model, we have referred to R2 and RMSE. The coefficient of determination
(R2) is a key output of regression analysis, which indicates the extent to which
the dependent variable is predictable. An R2 of 0.95 means that 95 percent of
the variance in dependent variable can be predictable from independent vari-
ables. The Root Mean Squared Error (RMSE) is simply the square root of the
mean/average of the square of all of the error. RMSE represents the sample
standard deviation of the differences between predicted and observed values.

4.1 Data Collection

.....Reasoners:We have used HermiT [5], a DL reasoner, and TrOWL, an EL
reasoner, (version 1.5, ported on Android) as testing reasoners. We implemented
an android-ported version3 of HermiT provided by Yus et al.[24], as the desktop
version could not be directly supported by Android Runtime (ART).

Ontologies: The ORE2014 Reasoner Competition Dataset is chosen as the
dataset for our experiments. The OWL 2 EL Profile [10] is chosen, because the
computational complexities of ontology consistency, class expression subsump-
tion, and instance checking are all PTIME-Complete [17] and both reasoners
support it natively. From 16,555 ontologies, 8,805 ontologies, which are in EL
profile, were filtered. The RDF/XML format was used in the experiments; how-
ever, the validity of our prediction mechanism does not depend on a particular
input format. As we have built an extendible prediction mechanism, in the future,
other formats can be introduced easily. Being aware of the RAM limitation (and
reasoning limitation as a consequence), we ordered ontologies according to their
file sizes and started with the ones with a smaller file size. Each device-reasoner
pair is analysed with the ontologies it could process within mobile-specific and
time limitations. There are 17 cases of exceptions throughout the experiment,
which contain 14 “InconsistentOntology” exceptions, 2 “ConcurrentModifica-
tion” exceptions and 1 error for receiving a voltage value of zero (0) from the
operating system. Details of the exceptions are available online4. The “0 Volt-
age” problem occurred just once during the processing of ca. 8000 ontologies.
Our point of view, therefore, is that such a low frequency of occurrence of these
errors do not invalidate our results. These exceptional 17 cases are excluded in
the model generation.

Mobile Devices: We used two mobile devices (Machine1 and Machine2) that
have substantially different hardware specifications5. Machine1 had the Android

3 https://github.com/evalincius/Hermit_1.3.8_android
4 https://github.com/IsaGuclu/PredictionOfEnergy/blob/master/Exceptions.

xlsx
5 Unofficial comparison: http://www.phonearena.com/phones/compare/Samsung-

Galaxy-S6,Sony-Xperia-Z3-Compact/phones/8997,8744
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5.1.1 as the OS and Machine2 had Android 6.0.1 as the OS. To avoid the side-
effects of other services and processes, we uninstalled apps that could be unin-
stalled, closed all services and GSM connection and opened the Wi-Fi connection
in all experiments to enable TBox retrieval from the internet if needed. For avoid-
ing side-effects of the sensors, we closed location services and kept the device in a
fixed place to avoid triggering sensors, e.g., accelerometer, gyro, proximity, com-
pass, barometer, etc. We closed all sort of energy saving utilities in the settings
of the machine to have near standard conditions in experiments. Ontologies are
run on the same machine sequentially.

Data Preprocessing: Before training every model, to avoid misleading conse-
quences, predictor metrics with zero standard deviation are discarded.

In the experiments with the TrOWL EL Reasoner, 61 of the metrics have
been chosen for training the classification model and 60 of the metrics for the
regression model. In the experiments with the HermiT Reasoner, 58 of the met-
rics have been chosen for training the classification model and 57 of the metrics
for the regression model.

Prediction Model Construction: For the 1st prediction (“Will this ontology
be reasoned in 100 seconds on this device-reasoner?”), a random forests based
classification model is implemented. For the 2nd prediction (“How much energy
will this ontology consume on this device-reasoner?”), a random forests based
regression model is implemented. Standard 10-fold cross-validation is performed
to ensure the generalizability of models.

5 Results and Evaluation

Before starting experiments, we had questions about how accurately we could
collect energy consumption data from a mobile device by taking the measures
explained above to eliminate the side-effects of mobile devices. The voltage pro-
vided by the battery continuously decreases during each reasoning activity. Heat-
ing may have adverse effect on computations as the CPU may slow itself when
it reaches some threshold. As the Wi-Fi connection is open throughout the rea-
soning process, there would be some effects of OS-based or manufacturer specific
apps on measurements. If measurement results change through the battery level
from 100% to 1%, this will make a generalizable approach impossible. This made
us investigate the standard error of the mean caused by these (and those that we
may not foresee) side-effects in our experiments.

Experiments were started with fully charged Machine1 and Machine2. We re-
peatedly reasoned over the same ontology6 using the TrOWL EL reasoner until
the battery was completely drained. In this experiment, we made the follow-
ing observations. In Machine1 (Fig.1), the average energy consumption for an
ontology reasoning task is 151.16 Ws., with a standard deviation of 5.91 Ws.
The average duration of the reasoning is 74.06 seconds and standard deviation

6 https://github.com/IsaGuclu/PredictionOfEnergy/blob/master/

From100To1PercentBatteryLevel/approximated_00518.owl_RDFXML.owl
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Fig. 1. Machine1 (Android 5.1.1) - Energy/Time consumption with battery level from
100% to 1%. This figure illustrates (1)the energy/time consumed in experiments, (2) the
average energy/time consumption of all experiments, (3)moving average of energy/time
consumption with interval of 10.

Fig. 2. Machine2 (Android 6.0.1) - Energy/Time consumption with battery level from
100% to 1%. This figure illustrates (1)the energy/time consumed in experiments, (2) the
average energy/time consumption of all experiments, (3)moving average of energy/time
consumption with interval of 10.

is 1.73 seconds. We found 3.91% as the CV (standard deviation of energy con-
sumed divided by the average of energy consumed) of energy measurement for
this machine-reasoner pair. To see whether this result is generalizable, we made
the same experiment with a substantially different machine (i.e., Machine2). In
Machine2 (Fig.2), the average energy consumption of the ontology is 93.76 Ws.,
with a standard deviation of 11.92 Ws. The average duration of the reasoning
is 43.64 seconds and the standard deviation is 4.34 seconds. We found 12.71%
as the CV of energy measurement for this machine-reasoner pair. This result
made us search for the reason of such a difference. One of the biggest differences
between the two machines is that Machine2 has a CPU which has one 2.1 GHz.
quad-core processor and one 1.5 GHz. quad-core processor, but Machine1 has
one 2.5 GHz. quad-core processor. To see what kind of a behaviour does the CPU
have during our experiments, we used Usemon(CPU Usage Monitor)7 and three
sample execution of Machine2 is illustrated with Fig.3. Fig.3 shows observations
made on Machine2, where different cores, which have different clock-pulses, are
used during execution. This feature of Machine2 adds one new dimension for

7 https://play.google.com/store/apps/details?id=com.iattilagy.usemon
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predicting. In the first execution, the faster core (2.1 Ghz) makes the process-
ing and results in a shorter time than the average. In the second execution, the
slower core (1.5 Ghz) processes the ontology and results in a longer time than
the average. In the third execution, faster core executes the reasoning at a slower
speed while the other core is used by other processes. This execution finishes in
a longer time than the first execution, but in a shorter time than the second
execution. This changeability of cores makes the processing longer or shorter.
The OS may decide to use the faster or slower core according to its own decision
parameters. And this decision will affect time/energy consumption. We accept
this internal effect as a nature of this “device” and continue.

Fig. 3. 3 sample CPU utilization graph of Machine2 during reasoning activities. This
figure illustrates 3 sample attitude of Machine2 during processing ontologies.

To see whether there is a trend in energy consumption of the battery in
relation with the remaining battery level, we implemented moving average over
the energy consumption with interval of 10 executions, which is illustrated in
Fig.1 and Fig.2. In Machine1, we see that there is a trend of consuming less
energy especially when the battery level is less than 50%. We accept that there
is slight trend (probability) when the battery level is low, and it may result
in lower energy consumption with this device-reasoner pair. We searched for
whether there is the same trend in Machine2 parallel to Machine1. Making the
same experiment using the Machine2, we could not find a concrete trend parallel
to Machine1. In our work, we assume that our power benchmark will measure
the energy, regardless of the battery level, within the error rate defined. Seeing
this difference in the results of two different machines, we conclude that it is very
difficult to make a generalizable model that can be applied to all devices. Thus,
regarding “each device” as a black-box in analysing would be more practical.

Machine2 has given us an opportunity to see whether there is a “linear re-
lation” between energy and time, as its energy and time consumption results
are varied in time and energy dimension. We ordered execution results of Ma-
chine2 according to time consumption and divided into 5 groups as illustrated
in Table 1.
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Table 1. Energy-Time Consumption Relation of Machine2. Distribution of energy
and time consumption of reasoning same ontology from 100% to 1% battery level is
illustrated. 1st column shows average (Avg.) time consumption of group. 3rd column
shows Avg. energy consumption.

Group Avg. sec. of the Group Avg. sec. of All Avg. Ws. Of Group Avg. Ws. Of All

1 36.397 43.644 94.951 93.785

2 42.124 43.644 90.737 93.785

3 45.446 43.644 94.043 93.785

4 47.035 43.644 93.754 93.785

5 47.273 43.644 95.258 93.785

According to Table 1, in the 1st group (66 executions with lowest time),
average time consumption of group is 16.60% less than average time consumption
of all executions. But, energy consumption is not less than general, 1.24% more
than general. In the 5th group (66 executions with highest time), average time
consumption of group is 8.32% more than average time. Whereas, average energy
consumption of 5th group is 1.57% more than the general. Observing the 1st and
5th group has a difference of 24.92% average time consumption, but 0.33% of
difference in average energy consumption, we conclude that we could not find
a linear relation between time and energy consumption in this device-reasoner
pair.

Hardware doesn’t influence the validity of the mechanism but shows varied
results which makes us observe the effects of this hardware. For example, we
reached the observation that energy consumption may not always be correlated
with time consumption (as in Machine2) with help of this model while question-
ing why there was a higher variance in predictions of Machine2.

5.1 Experiments

Experiment results and source codes are accessible8. A re-run requires the prepa-
ration of an application development environment, the recompilation of the code
and, finally, the generation of predictions in R. The reasoners TrOWL and Her-
miT are not part of our contribution, we therefore provide the scripts for run-
ning the experiments only. While working with TrOWL on Machine1, we ob-
served that ontologies with the file size (in OWL Functional syntax) between
3000KB and 3999KB, 29 of 223 (13%) could be processed within 100 secs. Be-
tween 4000KB and 4999KB, it was about 2.99% (5 of 167). Seeing this result,
we limited our work for TrOWL within the dataset with the file size between
10KB and 4999KB (8281 ontologies). While working with HermiT on Machine1,
we observed that ontologies with the file size between 500KB and 599KB, about
12.01% (15 of 124) could be processed within 100 secs. Seeing this result, we
limited our work for HermiT within the dataset with the file size between 10KB

8 https://github.com/IsaGuclu/PredictionOfEnergy



12 Predicting Energy Consumption of Ontology Reasoning over Mobile Devices

and 599KB (6487 ontologies). We regard mobile devices as a black-box and do
not search for the reasons of the peaks in energy consumption as in Fig.1 and
Fig.2, whether it is because of OS services or manufacturer specific apps or any-
thing we may not foresee, as this is the nature of mobile devices to run with
this kind of internal (or external) influences. We preferred this overall approach
as we are focusing on the energy consumption of the reasoning activity from a
holistic perspective. We will not compare lower levels of reasoners but energy
consumption in total. Reasoning experiment of one ontology is in this order:

1. The Counter starts calculating time and the energy. The Counter gets the
average voltage and current from the OS, measuring the energy consumed
in intervals of 100 milliseconds.

2. The reasoner is called to load the ontology and the following query is sent:

prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>

select * where {?X rdfs:subClassOf ?Y}

We describe experiments with a particular query answering task by sending
the same SPARQL query to the two reasoners we investigate, in order to get
results for subsumption reasoning.

3. When the request from the reasoner is provided with success and the query
result is parsed, the Counter is stopped.

Table 2. Classification Model Assessment.

Machine1 Machine2

Successful Prediction Wrong Prediction Successful Prediction Wrong Prediction

Positive Negative Positive Negative Positive Negative Positive Negative

HermiT 90.38% 8.87% 0.48% 0.28% 92.55% 6.59% 0.52% 0.34%

TrOWL 91.76% 7.72% 0.36% 0.16% 95.40% 3.08% 0.72% 0.79%

5.2 Results

After training the classification model with the data provided by the previous
executions, we predicted whether a new ontology can be processed within the
predefined time (100 seconds) or not, applying 10-fold cross validation. The
results are illustrated in Table 2. This table illustrates successful and wrong pre-
dictions of the mechanism. “Positive” denotes reasoning CAN be made on mobile
device. “Negative” denotes reasoning CANNOT be made on mobile device. For
example, in a “Successful-Positive Prediction”, it is predicted that reasoning can
be accomplished on mobile device and it is observed so. In a “Wrong-Negative
Prediction”, it is predicted that reasoning cannot be accomplished on mobile
device, but just opposite is observed, it could be processed on mobile device.
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As shown in Table 2, with TrOWL, the error rate of the 1st prediction in Ma-
chine1 is 0.52 % and in Machine2 is 1.51 %. With HermiT, the error rate of the
1st prediction in Machine1 is 0.76 % and in Machine2 is 1.86 %. Working on
the ontologies which resulted in wrong predictions, deeper analysis can be made
about the energy prediction, but we leave this analysis as a future work. After
1st prediction, we focussed on the prediction of the energy consumption. We
trained our regression model with the data provided by the previous executions
and predicted how much energy will a new ontology consume, applying 10-fold
cross validation. The results are illustrated in Table 3.

Table 3. Regression Model Assessment

Machine1 Machine2

R2(%) RMSE R2(%) RMSE

HermiT 94.05 5.43 89.85 10.35

TrOWL 98.59 4.62 95.64 10.86

In Table 3, R2 and RMSE values as obtained from the prediction models
are shown. Making more observations with different device-reasoner pairs will
enhance the precision of the model, which we plan to do in future work.

To see the percentage of this error in prediction according to the amount
of actual energy consumptions, we have grouped ontologies according to actual
energy consumptions and obtained average percentage of error in prediction
according to amount of actual energy consumption, as illustrated in Table 4.

Table 4. Percentage of Error Rates according to Actual Energy Consumption

Machine1 Machine2

Group Hermit TrOWL Hermit TrOWL

1 (Up to 1 Ws.) 20.21% 18.88% 43.50% 50.20%

2 (1 − 5 Ws.) 24.90% 13.88% 56.33% 47.38%

3 (5 − 10 Ws.) 25.51% 16.35% 58.88% 33.93%

4 (10 − 50 Ws.) 21.48% 15.66% 40.59% 28.40%

5 (50 −Ws.) 14.80% 5.43% 21.11% 14.06%

General 21.46% 14.11% 45.12% 40.00%

From Table 4, we make the following observations. Machine1, which pro-
duces less varied energy consumption results, has less error rate in all groups
of actual energy consumption. Whereas, Machine2, which produces more varied
energy consumption results, has more error rate in all groups of actual energy
consumption.
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When the variation of energy consumption of the device-reasoner is lower,
percentage of error rate is lower too. This encourages us to obtain more accurate
execution data for training our model. Because, the more we can standardize
our results for training, the more precise our prediction will be.

The random forests based regression model makes predictions in a very bal-
anced way. As our energy measurement interval is 100 milliseconds, we were
expecting that there would be high percentages of error in predictions of 1st

group of which the reasoning finishes less than a second. We find the difference
of error rate between the 1st group and general acceptable.

These energy prediction results are obtained after predicting whether an
ontology can be processed within 100 seconds with an accuracy of over 98%.
When energy consumption is very small, the energy prediction model can predict
with an accuracy of nearly 80% in Machine1 and nearly 50% in Machine2. With
the increase in reasoning time, the accuracy in Machine1 reaches about 90% and
the accuracy in Machine2 reaches about 80%.

From all the experiments we have done, we are concluding that:

1. Treating the device (including OS, manufacturer specific apps and hardware
specifications, etc.) as a black-box with the reasoner, we obtained affirmative
results, indicating that the classification and regression models generated
with this approach show a good measure for validity to describe the relation
between energy consumption and structure of the ontology.

2. The classification models (which predict whether the ontology will be pro-
cessed in the predefined time (100 seconds)) achieve very low error rates. It
validates the feasibility and practicality of our approach, as it can be ap-
plied to minimize the risk of Out of memory (OOM) exceptions and general
uncertainty about whether an ontology can be processed on a mobile device.

3. Using structure of the ontology (metrics) and previous ontology reasoning
energy consumption data, actual energy consumption of a new ontology can
be predicted with high accuracy. When the execution time of the ontology
increases and standardized training data can be supplied, this accuracy reach
94.57% as in Machine1 with TrOWL reasoner.

4. Patton and McGuinness had hypothesized that the amount of energy used
for reasoning would be linearly related to the amount of time required to
perform the reasoning, in their power consumption benchmark [18] for rea-
soners over mobile devices. Seeing experiment results with Machine2 about
energy–time relation, we observe that energy consumption is not always par-
allel to the time consumption and this hypothesis is limited to old CPUs with
standard speed. As the device contains many internal (OS policies-services-
apps, manufacturer specific apps, hardware specifications, etc.) and external
(movement of the user, bandwidth change, temperature, etc.) influences, in-
stead of trying to sort out every variable and their weight in the energy
consumption, using a holistic approach and collecting more and more data
will be a more effective way for obtaining a more precise energy predic-
tion mechanism. We conclude that the relation between time and energy is
changeable according to hardware and software specifications of the device
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and this necessitates making separate prediction mechanisms for time and
energy consumption.

6 Conclusion

Mobile devices, such as smartphones and tablets, have markedly different perfor-
mance characteristics and requirements, most prominently limited energy, which
poses a significant challenge for deploying computation-intensive tasks, such as
ontology reasoning on mobile devices. In this paper, we developed statistical
methods that predict energy consumption of ontology reasoning on various mo-
bile devices, using different reasoners and ontologies in the OWL 2 EL profile.
Our main contributions include the following. Firstly, high prediction accuracy
is achieved for our random forest-based regression models with R2 of 90% or
higher. It is also observed that the prediction error rate is the lowest for ontolo-
gies with the highest actual energy consumption, showing that our prediction
models are accurate when it matters. Our approach is hardware independent, i.e.
hardware specification is not used as a parameter of our prediction model, thus
our approach can be applied to devices other than the two that we tested. Sec-
ondly, we observe that a linear relation between time and energy consumption on
a mobile device is not a valid assumption, especially with new hardware (CPU’s
containing cores with different speed) and software (multi-threading) improve-
ments. Thirdly, the comprehensive dataset used in our evaluation has been made
available to allow for reproducibility and encourage further investigation.

Our plan for future work is to improve our approach and make it applicable
to real-world scenarios. First, we will extend our experiments with more devices
and combine all models of different device-reasoner pairs into one comprehen-
sive, general model. Second, we are planning to implement this approach in the
Android version of TrOWL reasoner and empowering this prediction mechanism
by collecting data from devices using this implementation. Third, we will build
an optimisation mechanism that will manage the integration of mobile-cloud
using this approach with user preferences taken into account.
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