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Abstract—Generating photo-realistic images from labels (e.g., semantic labels or sketch labels) is much more challenging than
the general image-to-image translation task, mainly due to the large differences between extremely sparse labels and detail rich
images. We propose a general framework Lab2Pix to tackle this issue from two aspects: 1) how to extract useful information from
the input; and 2) how to efficiently bridge the gap between the labels and images. Specifically, we propose a Double-Guided
Normalization (DG-Norm) to use the input label for semantically guiding activations in normalization layers, and use global
features with large receptive fields for differentiating the activations within the same semantic region. To efficiently generate the
images, we further propose Label Guided Spatial Co-Attention (LSCA) to encourage the learning of incremental visual
information using limited model parameters while storing the well-synthesized part in lower-level features. Accordingly,
Hierarchical Perceptual Discriminators with Foreground Enhancement Masks are proposed to toughly work against the generator
thus encouraging realistic image generation and a sharp enhancement loss is further introduced for high-quality sharp image
generation. We instantiate our Lab2Pix for the task of label-to-image in both unpaired (Lab2Pix-V1) and paired settings
(Lab2Pix-V2). Extensive experiments conducted on various datasets demonstrate that our method significantly outperforms
state-of-the-art methods quantitatively and qualitatively in both settings.

Index Terms—Generative Adversarial Networks (GANs), Label-to-Image Synthesis, Photo-realistic Image Generation
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1 Introduction

G enerating photo-realistic images from labels (e.g., se-
mantic labels or sketch labels), which we refer to as

label-to-image, or Lab2Pix hereinafter, can be considered as
a subtask of image-to-image translation, which is valuable
to many applications including datasets synthesis and image
processing. Recently, great progress [1], [2], [3], [4], [5], [6] on
image synthesis has been made especially with the advance of
Generative Adversarial Networks (GANs) [7]. Label-to-image
synthesis is one of the most challenging problems among all
types of image synthesis tasks, due to the complexity of scenes
that contain multiple objects of different categories. Thus, in
order to synthesize high-quality images, it is necessary to
focus on both global shapes as well as detailed textures for
each object.

Both paired and unpaired data have been used to train
Lab2Pix models. Recent paired-data methods [1], [3], [5],
[8] and unpaired-data methods [4], [9], [10], [11], [12] have
achieved remarkable abilities of generating realistic images
from simple scenes. However, for more challenging multi-
object or complex-objects scenarios, existing architectures
still exhibit unsatisfactory performance. For instance, some
state-of-the-art works [3], [4] are unable to synthesize details
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well on objects with complex textures, while some others [12],
[13] require significant computational resources to portray
details of a single object.

As pioneering general image translation frameworks, the
paired-data method Pix2Pix [8] and unpaired-data method
CycleGAN [10] are the first to translate labels to real images.
Some works [5], [6], [9], [14] leverage the advantage of multi-
stage learning to stabilize the training process and improve
the quality of synthesized samples. However, such multi-stack
architectures result in a tremendous increase in the number of
parameters and training time. Different from the multi-stage
design, some works [4], [11] propose to add extra modules
(e.g., dilated convolution) to improve performance. These
methods show noticeable improvements on the background
but inappreciable effects on foreground objects. Besides,
inspired by the idea of disentanglement [15], some works [12],
[13] propose to encode a whole image as two one-dimension
latent code parts (i.e. content and style). Since the code length
limits the expression of detailed textures for multi objects, the
quality of the synthesized details is poor in complex multi-
object scenes.

Label-to-image synthesis is a challenging task due to two
major reasons. (1) Compared with other image translation
tasks, Lab2Pix suffers from the tremendous differences be-
tween the input labels and output images, which has not been
specifically considered by existing methods. The input labels
only contain pixel-level category attributes while the output
images are semantically rich. (2) The sparse information in
input labels makes it hard to extract useful features for guid-
ing generation and constraining the synthesized images. For
example, in addition to local pixel features, global contents
for all instances should be considered for generation. Previous
works usually consider this task as a normal image-to-image
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Fig. 1: Some synthesized examples of our Lab2Pix-V1 (above the dash) and Lab2Pix-V2 (below the dash). Our Lab2Pixs take
label maps as the inputs and predicts the corresponding realistic images with unpaired-data and paired-data learning. The
task is extremely hard since the generated samples are supposed to match the input label maps and keep realistic in complex
scenes at the same time. The generated samples from our model are colorful and photo-realistic and contain detailed textures.

translation, and barely consider the special attributes in the
input label map, the output raw image, and the huge gap
between them. Thus, they often achieve incomplete generation
and obtain results with blank holes and few details.

In this paper, we focus on two aspects in the label-to-
image task. First, to comprehensively extract features from
input label maps with sparse information, we propose Double-
Guided Normalization (DG-norm) and Label Guided Spatial
Co-attention (LSCA) for the image generator. Specifically,
DG-norm provides extra global information (e.g., the en-
tire shape of an object and its neighboring instances) in
guiding image generation compared with existing methods
that only consider pixel-level attributes. LSCA prevents the
network from losing well-synthesized parts under limited
model parameters with the guidance of label maps. Second,
to constrain output images thus encouraging photo-realistic
image generation from label maps, we design a novel and
powerful Hierarchical Perceptual Discriminator (HPD) and
a general Sharp Enhancement Loss. In detail, Hierarchical
Perceptual Discriminators are designed in different structures
for different scale images, to discriminate objects with both
low-level visual concepts and high-level semantic information.

Compared with existing ones, HPD provides hierarchical
discrimination to fully consider different objects in complex
scenes described by output images with the help of auxiliary
perceptual features. Furthermore, we take advantage of data
itself to make blurry samples, and add them as negative
samples into the adversarial training to boost clear image
generation which we term as the sharp enhancement loss.
Additionally, we propose a novel Foreground Enhancement
Mask in adversarial loss calculation to focus more on the
challenging foreground generation with the label guidance.
Different from existing methods, we fully consider the sparse
information contained in the input label and the abundant
detail described in the output image. We propose several
modules and loss functions to boost the complete feature
extraction and expression. Meanwhile, we introduce simple
fusion modules to maintain the large-span translation with
the limited model.

Based on the above components, we propose a unified
GAN framework Lab2Pix, illustrated in Fig.2, with two
versions (Lab2Pix-V1 [16] in Fig.7 and Lab2Pix-V2 in Fig.8)
for the challenging Lab2Pix task in the unpaired-data and the
paired-data settings, respectively. Both generators produce
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multi-scale images in one forward pass and each image is
distinguished by one independent discriminator. To stabilize
the unpaired-data training, we further propose Image Con-
sistency Loss and Cycle Segmentation Loss. To confirm our
model’s ability of generating high-resolution images, we build
Lab2Pix-V2-H to synthesize double-scale samples of basic
Lab2Pix-V1 and Lab2Pix-V2.

The major contributions of this paper can be summarized
as follows:

1) To extract useful information from sparse labels, we
propose a Double-Guided Normalization (DG-Norm),
where the input label is utilized for semantically guid-
ing generation. The global feature with large receptive
fields is added to differentiate the activations within
the same semantic region.

2) To efficiently generate the images using limited model
parameters, we propose a Label Guided Spatial Co-
Attention (LSCA) to encourage the incremental learn-
ing of visual information while storing the well synthe-
sized part in lower-level features.

3) To encourage realistic and clear image generation with
abundant details, we equip our model with a set of
novel hierarchical perceptual discriminators and con-
straints including sharpness enhancement loss, image
consistency loss and cycle segmentation loss.

4) We instantiate our Lab2Pix framework for the task of
label-to-image with both unpaired and paired settings.
Extensive experiments on six benchmark datasets
demonstrate that both our models achieve state-of-
the-art results both quantitatively and qualitatively.

Our source code and models are available at https://github.
com/RoseRollZhu/Lab2Pix.

2 Related Work
2.1 Conditional GANs
Generative Adversarial Networks (GANs) [7] are proposed
to synthesize various data. In general, they can be divided
into conditional and unconditional types. Conditional GANs
provide approaches for users to control synthesized data with
some additional information. For instance, categories [17],
[18], sketches [19], [20], descriptions [21], [22], bounding
boxes [23], [24] and special attribute codes [25], [26] have
all been used as the input guidance.

Most of the earlier studies on conditional GANs are based
on paired-data learning. Later architectures were prposed [27],
[28], [29], [30] to support unpaired-data learning. Compared
with the unconditional setting, conditional GANs rely more
on paired data for training. The accurate mapping functions
between condition values and generated results are difficult
to learn if corresponding samples are not given. Because of
this, with the same or similar structures, models with paired
learning usually perform much better (e.g., [11]). In general,
the performances of paired-data learning are much better than
unpaired-data ones. In this work, we employ the conditional
GAN model trained with both paired and unpaired data.

2.2 Image Synthesis from Label
Image-to-image translation, usually tackled by GANs [7], is
to synthesize images in the target domain from the source

domain (e.g., image style translation [31], [32], object trans-
lation [33], [34], image super-resolution [35], [36]). Label-
to-mage synthesis, a subtask of image-to-image translation,
limits the source domain to label maps (e.g., semantic label
maps or sketch label maps) and the target domain to real-
world images. Totally, this task can be divided into paired-
data and unpaired-data training settings.

In the paired-data training setting, the model are fed
with label maps and corresponding images for training. The
pioneering work Pix2Pix [8] directly applies U-Net [37] to gen-
erate the images. CRN [1] suggests to synthesize the images
from low resolution to high resolution progressively, which
may stabilize the training process and improve image quality.
Pix2PixHD [5] seeks to address super high resolution image
generation by splitting the task to multi separate stages.
The state-of-the-art method SPADE [3] proposes the spatial
adaptive normalization for labels to guide generation without
erasing useful information. Inspired by SPADE [3], many
works have been proposed. CC-FPSE [38] design a conditional
convolution and semantics-embedding strategy for label maps
to better guide the generation and discrimination. TSIT [39]
adopts a versatile two-stream framework with multi-scale
feature normalizations to integrate the content and style of
generated images. Compared with SPADE only focusing on
local information, we introduce a double-guided normalization
to fully consider the local and global features of label maps
for complex objects.

For the more challenging unpaired-data training setting,
unpaired label maps and images are used for training. Cy-
cleGAN [10] firstly proposes a cyclic architecture to support
this task. Most works follow the basic cyclic structure to train
with unpaired data. SCAN [9] uses a two-stack architecture
to synthesize high-resolution images progressively, where the
first stack processes data in half scale, and the parameters
of each stack are updated iteratively. Inspired by the seg-
mentation network, SPAP [4] designs a coarse-to-fine fusion
structure with dilated convolutions. They use convolutions
with different dilation sizes to capture multi-scale information
of the image. MUNIT [12] encodes image information as style
and content parts and exchanges these two parts to synthesize
images in different styles.

Different from prior works, which usually design the
architecture for the general image-to-image translation, our
Lab2Pix models consider the specific properties that make
label-to-image more challenging, i.e., the significant differ-
ences between the input labels and output images.

3 Proposed Method
Given a label map M (i.e., a semantic map or a sketch map),
we aim to synthesize a high-resolution photo-realistic image
with an end-to-end label-to-image network. Moreover, our
design is supposed to support both the unpaired-data and
paired-data training, which means the real image Y provided
in each training pair shares the same or different layout with
the provided M. Considering the challenging label-to-image
task, we can conclude that the input labels only contain
pixel-level category attributes and no semantic information,
while the output images are supposed to be aligned with
the input labels, photo-realistic and semantically rich. To
generate high-quality images under limited model parameters,
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Fig. 2: Illustration of our proposed unified Lab2Pix (including
Lab2Pix-V1 and Lab2Pix-V2) framework. The generator
takes a label map to synthesize multi-scale images, and
independent discriminators give hierarchical discriminative
results for each image based on the foreground map extracted
from the label map.

the network is supposed to dig information from input label
maps as much as possible and bridge the gap between the
sparse labels and detailed rich images. Thus, we propose a
few modules in generators to process the label maps, a set of
strong discriminators and extra loss functions to encourage
realistic image generation, which compose a unified Lab2Pix
framework as illustrated in Fig. 2.

3.1 Extract Information from Sparse Label
We propose three modules to extract information from sparse
labels for comprehensive label processing. The three modules
address the challenging label processing in different ways and
can coexist in one model.

3.1.1 Adaptive Label Encoder.
To generate images, we are supposed to encode labels at
the front stage of the network. Given a semantic label, each
pixel contains a semantic category information. In contrast,
a sketch label contains few information and its informative
pixels are extremely sparse. Therefore, we design two label
encoders: the semantic label encoder and the sketch label
encoder to adaptively handle semantic and sketch informa-
tion. Their detailed structure is shown in Fig. 3. Both label
encoders take a label map M and a randomly generated
standard Gaussian noise z as input. In this task, we add a fully
connected layer to z and then reshape it to a 3-dimensional
noise feature fz. Then, we combine the noise feature fz with
a label feature. Specifically, for the sketch label encoder, we
design a sketch encoder with multiple convolutions to extract
the overall feature flsk of the sketch labels. The strides are set
as 2 for expanding the receptive field of each pixel. Finally,
we concatenate fz with flsk as the output of the sketch label
encoder. For the semantic label encoder, we use two stacked
generative residual blocks (GenResBlk) to encode the input
label map and fuse it with the noise information. Specifically,
we input fz and M to the first GenResBlk and obtain a
coarse feature, as illustrated in Fig. 3. Then, we inject the
coarse feature and M to the second GenResBlk for further
encoding and take the result as the output of the semantic
label encoder. Here, no extra encoder is required, since every
pixel in M provides rich guiding information.

3.1.2 Generative Residual Blocks (GenResBlk).
GenResBlk is the conditional residual block that synthesizes
image features at a specific scale along with the whole
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Fig. 3: The structure of our Adaptive Label Encoder. It sepa-
rately encodes the sketch and semantic label maps according
to their characteristics.

generation. Inspired by the previous work [3], we adopt the
normalization layer for the label to guide the image synthesis
described as a function Grb. The entire process of GenResBlk
can be described as follows:

dt+1 = Gt
rb(dt,M), (1)

where dt is the input of the t-th GenResBlk and dt+1 is
upscaled from dt by a factor of 2. We find that SPADE [3]
only processes the label maps with one-layer embeddings
(only two layers of 3 × 3 convolutions) as the input. Thus,
the guidance information only contains pixel-level category
attributes. This design works fine for objects with similar
textures in different patches (e.g., sky, road, grass), but
gives unsatisfactory performances in instances with complex
textures (e.g., vehicle, animals). Each patch in these instances
contains different sub-objects, which means the generator
needs to locate each body part from the global shape for
high-quality synthesis.

The category information is not enough for high-quality
image synthesis. If the global information (e.g., global shapes,
global positions) is ignored in the guidance, the generated
objects in the scenes may not be reasonable even though some
patches are well synthesized. Thus, we design a global encoder
to provide an extra feature for generation. The encoder
consists of several convolutions with stride 2. We only want
to obtain the global feature, so the global encoder only gives
one final result. The process can be expressed as follows:

H = Eglobal(M). (2)

Then, unlike baseline GenResBlk Grb, with the help of
the global encoder, we add global information as an extra
condition to guide generation in GenResBlks. We design
the novel Double-Guided Normalization (DG-Norm), which
is shown in Fig. 4. Let Ei denote the activation before
normalization. In DG-Norm, Ei will go through a batch
normalization BN , which can be expressed as follows:

BN(Ei) = γBN (
Ei − µ(Ei)

σ(Ei)
) + βBN . (3)
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Fig. 4: The structure of our DG-Norm. The input feature is
normalized by batch normalization first. Then we use both the
label map and global feature to predict the new distribution
parameters which effect the normalized feature.

where γBN and βBN are learned parameters in the batch
normalization. µ(Ei) and σ(Ei) can be calculated as follows:

µ(Ei)c =
1

NHiW i

∑
n,h,w

Ei
nchw,

σ(Ei)c =

√√√√ 1

NHiW i

∑
n,h,w

(Ei
nchw)

2 − µ(Ei)c,

(4)

where Hi and W i are the height and width of Ei. Then,
we can de-normalize the feature with new parameter, the
function can be expressed as:

DG(Ei) = γDG · (BN(Ei) + 1) + βDG, (5)

where γDG and βDG can be obtained as in Fig. 4. We resize
the label map and global feature to the same size as the
input Ei. We fuse the guidance information by element-wise
addition. The total process of proposed new GenResBlk Grb∗
containing DG-Norm can be described as follows:

d
′

t+1 = Gt
rb∗(d

′

t,M,H), (6)

where d
′

t is the input of the t-th GenResBlk, and d
′

t+1 is
upscaled from d

′

t by a factor of 2.

3.1.3 Label Guided Spatial Co-attention (LSCA).
As the resolution goes higher at the back stage of generation,
the classical GenResBlk, which is equipped with convolution
and normalization layers to process data in low dimension,
may not be able to maintain all object features. Objects
features include lower-level visual features like textures and
colors, middle-level visual features like object part attributes,
and high-level visual features like object semantic informa-
tion. Note that, the lower-level coarse and high-level fine
structures of objects with simple textures (e.g., grass) are
similar, which helps these textures to be synthesized well
enough at the early generation stage. As a result of limited
network parameters, these simple visual features may be
cleaned away quickly during the later generation stage when
the generator focuses on complex object textures, or the model
has to give up synthesizing incremental fine details for these
objects.

To address this issue, we propose the LSCA to relieve
the information loss by producing a co-attention map to
refine image features. It fuses features at different scales and

hk-1

fk

resize fm

Up x2

Conv-3x3 h k-1

Conv-3x3

sigmoid
Am

1-
Label Map

C

Low-level Feature

High-level Feature

Attention 

Map

Fig. 5: The structure of an Label Guided Spatial Co-Attention
(LSCA) block. Our LSCA fuses features in different layers
by an attention map with label guidance. C denotes the
operation of concatenating.

dimensions with the label guidance. The structure of our
proposed LSCA is demonstrated in Fig. 5. It has three inputs:
previous low-level visual features hk−1, current high-level
visual features fk, which is the output of current GenResBlk,
and the label map M with semantic information. First, to
avoid the Checkerboard-Artifacts issue [40], hk−1 is upscaled
by a factor of 2 and operated by a 3×3 convolution to produce
a merge-able low-level feature h′k−1. Besides, we resize M to
the same size as h′k−1 and fk. The resized M is defined as
fm. Second, all the above three features are concatenated to
obtain an attention map Am by passing it in a convolution
layer activated by a sigmoid function. Finally, h′k−1 and fk
are filtrated by Am to yield the fused feature fk, described as:

fk = h′k−1 · Am + fk · (1− Am), (7)

where · represents element-wise product with broadcasting
and + indicates an element-wise sum operation.

3.2 Bring the Gap between Label and Image
We propose a set of novel discriminators and loss functions to
constrain the synthesized images thus encourage high-quality
images with rich details generation from label maps.

3.2.1 Hierarchical Perceptual Discriminator.
For a GAN network, competition in this minimax two-player
game drives both models to improve their performance until
the counterfeit samples are indistinguishable from the genuine
samples [7]. In this paper we propose novel hierarchical
perceptual discriminators D, whose discriminative ability is
strong and competitive in contrast to our generator’s genera-
tive power thus encourage high-quality image generation.

The translation process from label to image consists of
the synthesis of a variety of visual concepts for multiple
objects, such as textures, various compositional parts, and
categorized attributes. Thus, fully checking the object details,
parts and category information is beneficial for improving
the ability of a discriminator. Specifically, we design three
independent discriminators (i.e., D1, D2 and D3) to consider
multi-scale information. All the discriminators are designed in
PatchGAN [8] style which means that no fully-connected layer
is used to capture global information. All the real samples
are resized to the size of the generated samples. Specifically,
we equip our discriminators with three novel model designs
(i.e., hierarchical discrimination, mini-inception block and
perceptual branch) and one novel function design (i.e., fore-
ground enhancement mask), which make them significantly
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Fig. 6: The proposed hierarchical perceptual discriminator structure, which includes two branches. The perceptual branch
take the images as the input. The concatenation of images and the corresponding label maps are fed to the main branch in
Lab2Pix-V2, while in Lab2Pix-V1, only images are fed. v1, v2 and v3 indicate Conv1_1-pool3, Conv4_1-pool4 and Conv5_1-
pool5 of pretrained VGG16. s represents stride in convolution and pooling. C denotes the operation of concatenating.

different from existing ones. The details will be described in
the following subsections.

Hierarchical Discrimination. As shown in Fig. 7 and
Fig. 8, for both models, we have multiple discriminators to
discriminate multi-scaled images Xi. The structure of D3 with
full components is shown in Fig. 6. A W ×H image contains
more precise high-level visual information than its half-sized
(0.5W × 0.5H) image. Thus, D3 has three levels of outputs
to recognize visual concepts: low-, middle- to high-level, while
D2 removes the third output and focuses on capturing low-
and middle-level visual concepts. Similarly, D1 is designed
with the first output to capture low-level visual concepts.

If we only directly input the images to discriminators
which is a typical and suitable condition for most image
generation tasks (including the unpaired setting in our label-
to-image), the three discriminators in our model are defined
as follows:

D1(X1) = {D1
1(X1)},

D2(X2) = {D1
2(X2),D2

2(X2)},
D3(X3) = {D1

3(X3),D2
3(X3),D3

3(X3)},
(8)

where Dl
i indicates the output of Di in level l.

Mini-Inception Block. To increase the depth of the dis-
criminator network while keeping the computational budget
constant, we borrow the idea of Inception [41] and design
a mini-inception block to further improve our discriminator.
As Fig. 6 shows, it has three parallel branches. The different
branches extract features in different levels and combine them
as the output.

Perceptual Branch. In VGG-GAN [42], a pre-trained deep
classification network is embedded inside the discriminator
to improve the robustness and efficiency of perceptual losses.
However, directly embedding a pre-trained deep classification
network works for facial images with a single object but
fails for natural images with several objects. To address this
issue, we consider a pre-trained deep classification network
as a supplementary perceptual branch to our discriminator.
Our framework is different from VGG-GAN in two impor-
tant aspects. Firstly, our discriminators are designed mainly
based on an independent encoder structure. Secondly, we
add the perceptual branch to boost their performance as a
supplementary module. If the perceptual part is removed,
our discriminators can still distinguish samples with a weaker
ability, while discriminators in VGG-GAN would be non-
functional. As shown in Fig. 6, we divide the perceptual

branch into three parts v1, v2 and v3. The perceptual
information extracted from each part is combined to the main
branch by concatenation. In addition, we choose VGG16 [43]
pre-trained on the ImageNet [44], and all parameters are fixed
during training.

Apart from basic discriminator structure design, we pro-
pose novel Foreground Enhancement Mask in the adver-
sarial loss calculation. Compared with substances in the
background, foreground objects have more complex textures,
which make them difficult to synthesize. Enabling the dis-
criminator to focus more on the foreground may boost the
ability of foreground object generation. Motivated by this,
we multiply the prediction result with a weight map Wl

i to
increase the weight of foreground parts when calculating the
GAN loss function. Different from the current self-attention
mechanism in image generation [45], our function uses an
accurate weight map to lead the attention on foreground parts
with little computational cost. Specifically, a label map M
can be manually divided into two parts: foreground pixels
(e.g., vehicle, bicycle and sign) with a small number A and
background pixels (e.g., sky, building and road) with a large
number B. To obtain Wl

i, we create a foreground enhance
mask Men which only contains two values. All background
pixels have value P and all foreground pixels have value
T × P , where T is a hyper-parameter to control the rate of
enhancement. For unpaired-data learning, since real samples
do not have the corresponding label map, it is important to
keep the mean value of the whole mask Men to 1. Thus, P
can be calculated as:

P = (A+B)/(T ×A+B) (9)

Our PatchGAN-style discriminators’ outputs share the same
spatial layout of the input images and its label map M. Thus,
we can adjust each pixel’s weight of the discrimination result
Dl

i by simply multiplying a Men-related enhancement map
Wl

i, which shares the same scale with Dl
i. To obtain Wl

i, we
perform average pooling on Men with different kernel sizes.
Based on adversarial loss calculation functions proposed in
previous works [7], [46], we use LR

adv and LF
adv to indicates

adversarial loss functions for real and fake samples. Thus, the
GAN loss function for the generator is:

LG
1 (X)=

∑
i

1∑i
l=1 λil

i∑
l=1

λil(Eil
M[LR

adv(Dl
i(Xi))]). (10)
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The GAN loss function for the discriminators can be divided
into two parts: real prediction loss and fake prediction loss,
which can be expressed as:

LD
1 (X,Y) =

1

2
(LD

1 (Y)R + LD
1 (X)F ). (11)

We obtain the fake prediction loss as:

LD
1 (X)F =

∑
i

1∑i
l=1 λil

i∑
l=1

λilEil
M[LF

adv(Dl
i(Xi))]. (12)

As for real prediction loss, the foreground enhancement mask
is not available in unpaired-data learning. Thus, it can be
calculated as:

LD
1 (Y)R=

∑
i

1∑i
l=1 λil

i∑
l=1

λilE[LR
adv(Dl

i(Yi))], (13)

where
Eil
M[q] = E[Wl

i · q], (14)

and · is element-wise dot production and λil is the hyper-
parameter. We set λi1 = 1 and λi(l+1) = 1

2λil. Note that
the sketch maps lack semantic categorical information, thus
we do not use the foreground enhancement mask, which is
equivalent to setting Wl

i as a matrix of ones.
Finally, the loss function of our GAN is:

L1(X,Y) = LG
1 (X) + LD

1 (X,Y). (15)

3.2.2 Loss Functions
We propose a novel and general Sharpness Enhancement Loss
for the photo-realistic image generation. One major difficulty
in synthesizing high-resolution images is that the network may
fail to penalize real but blurry images. To solve this problem,
we downscale real images and upscale the downsampled ones
both with a scale factor 2 to obtain real but blurry images, and
treat them as fake samples. If discriminators can differentiate
these samples, they will force the generator to synthesize
sharp and realistic images in return. Specifically, we manually
pre-process the training samples Y into three resolutions
Yf

i (i = 1, 2, 3), where Yf
1 has the lowest resolution. When

training our discriminators, we only consider the ground-truth
image Yi as the real sample. The sharpness enhancement loss
is a supplement to the generative adversarial loss. On the one
hand, we directly add the extra fake prediction loss. On the
other hand, we need to increase the real prediction loss with
the same weight. Since this function itself only adds the loss
on the fake part to the total adversarial loss, we keep the
real-fake balance by adding the real part loss value with the
same weight. The loss function is defined as:

L2(Y,Yf ) =
1

2
(LD

1 (Y)R + LD
1 (Yf )F ). (16)

4 Lab2Pix Model
To evaluate the proposed modules and optimization strate-
gies, we instantiate our Lab2Pix framework with two models
(i.e., Lab2Pix-V1 and Lab2Pix-V2) for the label-to-image task
under unpaired-data and paired-data settings respectively.
According to the big gap of the two different settings, we
slightly adjust the models and propose extra novel loss
functions for better performance.

4.1 Lab2Pix-V1
The Lab2Pix-V1 model is an end-to-end label-to-image net-
work to synthesize a high-resolution photo-realistic image
trained with unpaired data.

4.1.1 Model.
Our Lab2Pix-V1 model mainly consists of one generator and
three independent discriminators. The generator Gv1 is in
essence a mapping function, which transfers a label map M
of size W × H into an image Xi of size W × H finally.
Inspired by the success of progressive generation scheme in
other tasks [47], [48], our generator produces three different
scale images in one forward process. The generation process
can be defined as follows:

Xi = Gv1(z,M), i = 1, 2, 3 (17)

where z is a 128-dim noise providing the style information
of the image Xi, X3 is the final W × H synthesized image,
and X1 and X2 are synthesized images of lower resolutions.
Specifically, the generator produces outputs of three scales in
a coarse-to-fine manner to keep training stable when no paired
data is provided. Note that the scale of Xi+1 is as twice as Xi.
We use the discriminators described in the previous sections
directly, and we notate them as Dv1_i(i = 1, 2, 3).

4.1.2 Auxiliary Loss Functions.
To help stabilize the unpaired-data training and help the
model converge, we propose two novel auxiliary loss functions
in Lab2Pix-V1.

Image Consistency Loss. In StackGAN++ [6], a color-
consistency regularization, e.g., color mean value and co-
variance, is proposed to make sure the multi-scale generated
samples are consistent. This constraint works for synthesizing
a single object, but not for our case where images contain
multiple objects with complex textures. In addition, as the
resolution of synthesized image increases, the training process
tends to be more unstable especially with unpaired-data
training. Inspired by StackGAN++ [6], we postulate that if
we keep the synthesized images at different scales with similar
global structures and contents, the network will tend to be
more stable. Consequently, we propose an image consistency
loss to guarantee the similarity of the generated images in our
unpaired-data model.

Specifically, the generator outputs Xi (i = 1, 2, 3) at
one time. We consider two adjacent outputs as a pair, and
two pairs: (X1,X2) and (X2,X3) are acquired. We adopt a
VGG16 [43] pre-trained on the ImageNet [44] to process each
synthesized image to obtain five features respectively from
‘Conv1_2’, ‘Conv2_2’, ‘Conv3_2’, ‘Conv4_2’ and ‘Conv5_2’.
Let Φl(l = 1, 2, 3, 4, 5) be the l-th output. The loss function
can be described as:

Lv1_3(X) =
2∑

i=1

∑
l

∥Φl(P2(Xi+1))− Φl(Xi)∥2, (18)

where X means the set of Xi and P2 indicates the pooling
with stride 2.

Cycle Segmentation Loss. To support the unpaired-data
training process where the input labels are not paired to
the input images, we design a cycle segmentation loss. The
training dataset consists of data from two domains: the label
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Fig. 7: The proposed unpaired-data Lab2Pix-V1 structure. It takes either a sketch label map or a semantic label map as input
to produce photo-realistic images. The generator use an adaptive label encoder to separately encode the sketch and semantic
label maps according to their characteristics, and gradually outputs higher-resolution (small, medium and large) images in
one forward process. The structures of different images is guaranteed to be close by the image consistency loss, while the
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map domain Md and the image domain Yd. Our generator
learns a mapping function G : Md → Yd, while we apply
segmentation networks ICNet [49] to learn another mapping
function S : Yd → Md. Since our generator progressively
synthesizes images of three different scales, we apply three
independent segmentation networks S1, S2 and S3 to obtain
their semantic maps or sketch maps. Consequently, our cycle
segmentation loss is defined as:

Lv1_4(X,M)=−
∑
i

1

HW

H,W∑
h=1,w=1

log
eSn,h,w

i (Xi)∑N
n=1 e

Sn,h,w
i (Xi)

, (19)

where H , W is the height and width of the image. N is
the class number of the whole dataset. Sn,h,wi represents the
output in position (h,w) of predicted class n. n is the correct
class of pixel in position (h,w). For the sketch-to-image task,
there are only two classes (N = 2): sketch pixels and blank
pixels.

4.1.3 Optimization.

With previously defined loss functions in Formulas (15), (16),
(18) and (19), we obtain the overall loss function to optimize
our network, which is expressed as follows:

Lv1(X,Y,Yf ,M) = Lv1_1(X,Y) + λ2Lv1_2(Y,Yf )

+λ3Lv1_3(X) + λ4Lv1_4(X,M),
(20)

where λ2, λ3 and λ4 are weights for each auxiliary loss.
In addition, the whole network is required to learn pa-

rameters of Gv1, Dv1_i (i = 1, 2, 3) and Si (i = 1, 2, 3).
Therefore, we consider Gv1 and Si (i = 1, 2, 3) as net1, and
Dv1_i(i = 1, 2, 3) as net2. When optimizing the parameters
of net1, the parameters of net2 are fixed and vice versa. We
train the network iteratively until convergence.

4.2 Lab2Pix-V2

The Lab2Pix-V2 model is trained in a paired-data manner,
with paired data, where the given label map M and ground
truth Y indicate the same semantic content.

4.2.1 Model.
Like Lab2Pix-V1, Lab2Pix-V2 consists of one generator and
several independent discriminators, and its generator Gv2

maps a label map M of size W × H to an image Xi of size
W ×H finally. The mapping function Gv2 can be described
as follows:

X = Gv2(z,M). (21)

Note that, the generator only produces one final image X
of size H × W itself since the paired data guarantees the
relative stability of training. It has been proved efficient [5] to
discriminate images in multiple scales for high-resolution im-
age generation. Thus, we downsample X with different kernel
sizes to obtain smaller images X1 and X2, and we rename X
to X3 to maintain consistency in notations. The framework of
Lab2Pix-V2 is illustrated in Fig. 8. Note that, we do not add
the LSCA into this model on account of our limited memory
when experimenting with the same training parameters with
our competitors. The framework is illustrated in Fig. 8.

We use three independent discriminators (i.e., Dv2_1,
Dv2_2 and Dv2_3), which share similar structures with those
in Lab2Pix-V1, to consider multi-scale information. However,
to save memory, we address the label and image matching
issue in Lab2Pix-V2 discriminators instead of additional
loss functions. Specifically, we concatenate the images with
label maps into the discriminators of Lab2Pix-V2, which is
illustrated in Fig. 6. For each of the three discriminators Dv2_i

(i = 1, 2, 3), the input of the discriminator can be expressed
as:

X∗
i = (Xi,M), Y∗

i = (Yi,M). (22)
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The three discriminators in our model are defined as:
Dv2_1(X∗

1) = {D1
v2_1(X∗

1)},
Dv2_2(X∗

2) = {D1
v2_2(X∗

2),D2
v2_2(X∗

2)},
Dv2_3(X∗

3) = {D1
v2_3(X∗

3),D2
v2_3(X∗

3),D3
v2_3(X∗

3)},
(23)

where Dl
v2_i indicates the output of Dv2_i on level l. Thus,

the GAN loss function for the generator is:

LG
v2_1(X∗)=

∑
i

1∑i
l=1 λil

i∑
l=1

λil(Eil
M[LR

adv(Dl
v2_i(X∗

i ))]).

(24)
The GAN loss function for the discriminators can also be
divided into two parts: real prediction loss and fake prediction
loss. The discriminator loss can be expressed as:

LD
v2_1(X∗,Y∗) =

1

2
(LD

v2_1(Y∗)R + LD
v2_1(X∗)F ). (25)

The fake prediction loss can be calculated as:

LD
v2_1(X∗)F =

∑
i

1∑i
l=1 λil

i∑
l=1

λilEil
M[LF

adv(Dl
v2_i(X∗

i ))].

(26)
We calculate real prediction loss as:

LD
v2_1(Y∗)R=

∑
i

1∑i
l=1 λil

i∑
l=1

λilEil
M[LR

adv(Dl
v2_i(Y∗

i ))].

(27)
We set all hyper parameters in the same way as Lab2Pix-V1.

4.2.2 Auxiliary Loss Functions.
To guarantee the quality of the synthesized images, we follow
the previous work [3], [5] to use the perceptual loss Lv2_5 and
the discriminator feature matching loss Lv2_6 in this paired-
data architecture. The perceptual loss is defined as:

Lv2_5(X,Y) =
∑
i

∑
l

λMl∥Φl(Xi)− Φl(Yi)∥1, (28)

where Φl (l = 1, 2, 3, 4, 5) is the l-th output of the pretrained
VGG19 network, and λMl (l = 1, 2, 3, 4, 5) is the weight for

each part. We set λM1 = 1/32, λM2 = 1/16, λM3 = 1/8,
λM4 = 1/4 and λM5 = 1.

The discriminator feature matching loss can be expressed
as:

Lv2_6(X,Y) =
∑
i

1

k

∑
k

∥D(k)
v2_i(Xi)− D(k)

v2_i(Yi)∥1, (29)

where D(k)
v2_i indicates the k-th layer output of Dv2_i. The two

loss functions optimize the distribution of generated samples
to be close to that of real samples in different ways.

To match the paired-data setting, we slightly adjust the
original Sharpness Enhancement Loss function described in
the previous section. Specifically, we resize the real image
samples to obtain the blurry ones and use them with un-
changed labels to calculate the additional adversarial loss.
The loss function is defined as:

Lv2_2(Y∗,Yf∗) =
1

2
(LD

v2_1(Y∗)R + LD
v2_1(Yf∗)F ), (30)

where Yf∗ is obtained in the same way as Y∗.

4.2.3 Optimization.
With the previous defined loss functions in Formulas (24),
(25) and (30), we form the total loss to optimize our network,
which can be described as:

Lv2(X,Y,Yf ,M) =Lv2_1(X∗,Y∗) + λ2Lv2_2(Y∗,Yf∗)

+ λ5Lv2_5(X,Y) + λ6Lv2_6(X,Y)
(31)

where λ2, λ5 and λ6 are weights for each loss. In particular,

Lv2_1(X∗,Y∗) = LG
v2_1(X∗) + LD

v2_1(X∗,Y∗) (32)

Lab2Pix-V2 only consists of Gv2 and Dv2_i (i = 1, 2, 3).
Therefore, we directly train the two adversarial components
Gv2 and Dv2_i(i = 1, 2, 3) iteratively until convergence.

5 Experiments
5.1 Datasets
We evaluate our proposed methods on six publicly avail-
able datasets. These include four label-to-image datasets:
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Label Map Ground Truth Au (SPADE + L4) Bu (Au + PG) Cu (Bu + LSCA) Du (Cu + L3) Eu (Du + HPD) Fu (Eu + FE) Gu (Fu + L2) Hu (Lab2Pix-V1)

Fig. 9: Ablation study results on the Cityscapes dataset with unpaired-data training. Lab2Pix-V1 with all components obtains
the best results.

Label Map Ground Truth As (SPADE) Bs (As + HPD) Cs (Bs + FE) Ds (Cs + L2) Es (Lab2Pix-V2)

Fig. 10: Ablation study results on the Cityscapes dataset with paired-data training. Lab2Pix-V2 with all components obtains
the best results.

Cityscapes [50], COCO-Stuff [51], ADE20K [52], and Fa-
cades [53], and two sketch-to-image datasets: Edges2shoes
and Edges2handbags (provided by Pix2Pix [8]). Cityscapes
contains 2048 × 1024 resolution images recorded in street
scenes from 50 different cities. Each street scene image is
annotated with labels from 35 categorizes. It has 2, 975
samples for training and 500 for validation. All images are
resized to 512× 256 or 1024× 512 through nearest neighbor
interpolation. COCO-Stuff consists of various scene images
with various resolutions. The objects in each image belong
to 182 different categories. The dataset consists of 118, 000
training samples and 5, 000 validation samples. ADE20K is
similar to COCO-Stuff. It defines 150 semantic categories
and contains 20, 210 training samples and 2, 000 validation
samples. Both images from COCO-Stuff and ADE20K are
resized to 256× 256 resolution. Facades contains 12 semantic
labels and all images are 256×256. It has 400 training samples
and 100 validation samples. The other two datasets are sketch
datasets with image resolution 256×256. Edges2shoes has
approximately 50, 000 samples with 49, 825 for training and
200 for validation, while Edges2handbags is the larger one
with 138, 567 for training and 200 for validation.

5.2 Implementation details

Lab2Pix-V1 training. For the semantic label to image task, we
set batch size N = 1, hyper-parameter T = 2 and epochs as
100. During the whole training process, we linearly increase
λ2 from zero to one. The learning rates are set as 0.0002 for
the first 50 epochs, and then decay to 0 in the remaining
50 epochs. For the sketch label to image task, we train the
network for 10 epochs with N = 4. λ2 and the learning
rate are set as 1 and 0.0002 respectively. In addition, for all
experiments, we set λ3 = 5e−6 and λ4 = 10. The Adam
optimizer [54] is adopted with β1 = 0.5 and β2 = 0.999, and
we choose vanilla adversarial loss calculation [7] for a better
performance. All experiments are conducted on an NVIDIA
Titan Xp GPU.
Lab2Pix-V2 training. We design 4 GenResBlks apart from
those in the semantic label encoder and one downsample
operation on X3 to obain X2 for 512×256 and 256×256. In the
higher-resolution (1024 × 512) synthesis model, 5 additional
GenResBlks and two downsample operations on X3 are set to
obtain X1 and X2. For the Cityscapes dataset, we set batch
size N = 20 for 512 × 256 image synthesis, and N = 8
for 1024 × 512 image synthesis. We train the model for 200
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Label Map Ground Truth CycleGAN SCAN SPAP Lab2Pix-V1 Pix2Pix 

Fig. 11: Comparison on the Cityscapes dataset with unpaired-data training. Images of CycleGAN, SCAN and SPAP are from
paper [4]. Our Lab2Pix-V1 generates more realistic images than other unpaired-data methods including CycleGAN, SCAN
and SPAP. Note that Pix2Pix is one of the paired-data methods.

Label Map Ground Truth CycleGAN MUNIT Lab2Pix-V1 Lab2Pix-V1*

Fig. 12: Comparison on the Edges2shoes and Edges2-
handbags datasets with unpaired-data training.

epochs. For the COCO-Stuff and ADE20K datasets, we set
batch size N = 40 for 256 × 256 image generation. The
model is optimized for 100 epochs. The learning rates for all
networks are set as 0.0002 at first and linearly decay to 0 in
the last half training epochs. We set hyper-parameters T = 5,
λ2 = 1, λ5 = 10 and λ6 = 10. The Adam optimizer [54] is
adopted in all experiments with β1 = 0 and β2 = 0.9, and
we choose hinge version adversarial loss calculation [46] for a
stable training. All experiments are conducted on 4 NVIDIA
Tesla V100 GPUs.

5.3 Evaluation Metrics
Following previous works [3], [4], [5], [9], [10], we adopt
segmentation networks to obtain three standard segmentation
metric scores to evaluate our method on the semantic label
to image task. They are per-pixel accuracy (PPA), per-
class accuracy (PCA) and mean class IoU (C-IoU) which
are usually named as FCN scores. Specifically, we feed the
generated samples to the segmentation networks and compare

TABLE 1: Ablation study of the proposed unpaired-data
Lab2Pix-V1 on the Cityscapes dataset. FCN scores are ob-
tained with FCN [55].

baseline setup PPA PCA C-IoU FID
Au SPADE w/ L4 0.48 0.09 0.08 133.2
Bu Au w/ PG 0.33 0.11 0.08 117.7
Cu Bu w/ LSCA 0.48 0.15 0.12 83.5
Du Cu w/ L3 0.54 0.18 0.14 83.4
Eu Du w/ HPD 0.64 0.22 0.18 76.0
Fu Eu w/ FE 0.69 0.23 0.18 67.9
Gu Fu w/ L2 0.77 0.22 0.18 65.0
Hu Lab2Pix-V1 0.76 0.25 0.20 67.4

the predictions with the original labels. We adopt FCN [55]
for unpaired-data learning on cityscapes dataset, DRN-D-
105 [56] for paired-data learning on cityscapes dataset,
DeepLabV2 [57] for COCO-Stuff dataset and UperNet101 [58]
for ADE20K dataset. To ensure efficiency, all segmenta-
tion networks have been pre-trained on the corresponding
datasets. Besides, FID [59] is also used with Inception V3
model [60] in our evaluation, which can measure the distance
between the generated and real samples in terms of data
distributions. It is widely adopted in various image synthesis
tasks, including single-object synthesis [2], [6] and multi-
object synthesis [3], [23]. Thus, we apply FID to all but
Facades dataset. For the Facades dataset, we utilize PSNR
and SSIM [61] that are also used in previous works [4], [9],
[10]. The PSNR value represents the disparity between the
fake and real samples on the pixel level, while SSIM measures
the content variation in terms of image luminance, contrast
and structure. Compared with PSNR, SSIM works better in
evaluating the quality of the synthesized image. Note that
our models are not sensitive to random seeds. Thus, we only
report each score with single stable value for each experiment
following competitors.

5.4 Ablation Study
We conduct ablation studies on both the paired-data and
unpaired-data settings to fully demonstrate the advantage
of our proposed components and loss functions. We first
introduce the Baseline Models that we use.

For Lab2Pix-V1, we set SPADE with proposed cycle
segmentation loss (L4) as the basic baseline Au and progres-
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Label Map Ground Truth Pix2PixHD SPADE Lab2Pix-V2CC-FPSE TSIT

Fig. 13: Comparison on the Cityscapes dataset with paired-data training.

TABLE 2: Ablation study of the proposed unpaired-data
Lab2Pix-V1 and paired-data Lab2Pix-V2 on Cityscapes
dataset. FCN scores are obtained with DRN-D-105 [56].

baseline setup PPA PCA C-IoU FID
As SPADE 0.930 0.681 0.592 57.4
Bs As w/ HPD 0.934 0.711 0.621 49.2
Cs Bs w/ FE 0.935 0.727 0.636 48.0
Ds Cs w/ L2 0.934 0.731 0.639 46.0
Es Lab2Pix-V2 0.936 0.738 0.646 45.5

sively add each component to obtain Lab2Pix-V1. Totally,
seven baselines (i.e., Au, Bu, Cu, Du, Eu, Fu and Gu) are
constructed, and Lab2Pix-V1 is denoted as Hu. Based on Au,
we make Bu by adopting the progressive generation scheme.
We add LSCA to Bu and obtain Cu. Then, L3 is further added
to compose baseline Du. We equip Du with our hierarchical
perceptual discriminators (HPD) to make baseline Eu. With
foreground enhancement masks (FE) added, baseline Fu is
constructed based on Eu. Baseline Gu adds the sharpness
enhancement loss (L2) to Fu. Finally, we add DG-Norm to Gu

and obtain the full model Hu. We show quantitative results
in Tab. 1, and demonstrate the qualitative results in Fig. 9.

For Lab2Pix-V2, we take SPADE as the basic baseline
As and gradually add each component to the model to
obtain Lab2Pix-V2. We add our hierarchical perceptual dis-
criminators (HPD) to As to obtain Bs. Then, foreground
enhancement masks (FE) are further added to train the
baseline Cs. Baseline Ds adds the sharpness enhancement
loss (L2) to Cs. Finally, with the global encoder (GE) and
DG-Norm, the full model Lab2Pix-V2 is denoted by Es. The
quantitative results are shown in Tab. 2, and the qualitative
results are demonstrated in Fig. 10.

We can make the following observations from the ablation
analysis results from Tab. 1 and Tab. 2. Comparing Au

with Bu which obtain comparable metrics, naively adding
progressive generation scheme to the Lab2Pix model is in-

capable of improving performance. We observe that pure
progressive generation training of Lab2Pix will be unstable.
For all metrics, baseline Cu is lower than the baseline Du,
which confirms the importance of L3. Also, as we can see
in Fig. 9, the generated samples without L3 are significantly
worse than those with L3. These pictures are rendered in
an unreasonable way, which proves L3 can stabilize the
synthesis process when the progressive generation scheme is
adopted. Comparing Du with Eu and As with Bs, baseline
models with HPD (i.e., Eu and Bs) significantly decrease
the PPA scores. This means that HPD tends to improve
the quality of generation especially for those relative large
objects. Baseline Gu outperforms Fu and Ds outperforms
Cs in almost every metric, which indicates L2 improves the
entire structure of images as it is designed to. Take row one
in Fig. 9 as an example, the vehicles synthesized by Gu are
clear and easy to recognize. If we remove L2 or HPD, these
parts become indistinct. Row three in Fig. 10 confirms this
again in the paired-data setting. Compared with baseline
Fu, which is equipped with the foreground enhancement
mask FE, baseline Eu increases its FID, which indicates
that FE works effectively in unpaired-data learning. As for
paired-data learning, baseline Bs, which is not equipped with
FE, obtains lower scores in all metrics compared with Cs,
which is equipped with FE. Especially, the 16% gap in PCA
and 15% gap in C-IoU are the biggest among all adjacent
baselines. This proves that FE does improve the generation
of foreground objects. Take row five of Fig. 9 and row three
of Fig. 10 as examples, the removal of FE leads to the dim
boundary between foreground and background objects. Recall
that the baselines Gu and Ds are not equipped with DG-Norm
while Hu and Es are. From comparison of Ds with Es, and
Gu with Hu, we can conclude that our proposed DG-Norm
increases model performance, especially in terms of PCA and
C-IoU which reflect the quality of relative small and complex
foreground objects.
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Fig. 14: Comparison on the Cityscapes dataset with paired-data training. In each sample set, the left six images from top
left to bottom right are the label map (a), the ground truth (b), the result of SPADE (c) , CC-FPSE (d), TSIT (e) and
Lab2Pix-V2 (f) in 512× 256 respectively. The right large image is the result of Lab2Pix-V2-H (g) in 1024× 512.

TABLE 3: Quantitative results of different methods on
Cityscapes and Facades datasets. For all metrics, higher is
better. Note that Pix2Pix is a paired-data method.

Method PPA PCA C-IoU PSNR SSIM
Dataset Cityscapes Facades

CycleGAN 0.52 0.17 0.11 11.72 0.20
SCAN 0.64 0.20 0.16 10.67 0.17
SPAP 0.73 0.22 0.17 12.20 0.21

Lab2Pix-V1 0.76 0.25 0.20 11.85 0.28
Pix2Pix 0.71 0.25 0.18 - -

In summary, by observing all metrics in Tab. 1 and Tab. 2
and qualitative comparison results in Fig. 9 and Fig. 10, the
results clearly demonstrate the effectiveness of our proposed
Lab2Pix-V1 and Lab2Pix-V2 models in generating natural
photo-realistic images in both paired-data and unpaired-data
settings. In detail, LSCA and image consistency loss (L3) are
the most essential for Lab2Pix-V1, while HPD and foreground
enhancement mask make the most important contributions to
Lab2Pix-V2. Note that, if we remove the cycle segmentation
loss (L4) which is used to bring the layout of input label
and output image closer, training will not converge. Because
the generated images are not required to be similar to the
input labels when lacking the necessary constraint of this loss
function.

TABLE 4: Quantitative results of different methods on the
Edges2shoes and Edges2handbags datasets. Memory usage
is measured with batch size 4. Time usage ratio indicates
the entire training time normalized by that of Lab2Pix-V1.
Lab2Pix-V1* is trained for ten epochs while all the other
models are trained for five epochs.

Method FID Memory(GB) Time
Datasets shoes handbags Training Info
CycleGAN 137.9 98.0 11 1.4
MUNIT 105.5 87.4 12 2.8

Lab2Pix-V1 100.1 81.1 8 1.0
Lab2Pix-V1* 76.7 78.7 8 2.0

5.5 Comparison with State-of-the-art Models

For the semantic label to image task, we compare our
Lab2Pix models with six state-of-the-art methods on the
Cityscapes, COCO-Stuff, ADE20K and Facades datasets.
The baseline models include three unpaired-data methods
CycleGAN [10], SCAN [9] and SPAP [4], and five paired-
data methods Pix2Pix [8], Pix2PixHD [5], SPADE [3], CC-
FPSE [38] and TSIT [39]. As for the sketch label to image task,
CycleGAN [10] and MUNIT [12] are chosen as the baseline
models.
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TSITCC-FPSESPADEPix2PixHDGround TruthLabel Map Lab2Pix-V2

Fig. 15: Comparison on the COCO-Stuff dataset with paired-data training.

5.5.1 Lab2Pix-V1 Comparison

We choose three unpaired-data competitors: CycleGAN [10],
SCAN [9], SPAP [4] and one paired-data method
Pix2Pix [8] for Lab2Pix-V1 on two label-to-image datasets:
Cityscapes [50] and Facades [53]. CycleGAN [10] and MU-
NIT [12] are chosen to compare with Lab2Pix-V1 on two
sketch-to-image datasets: Edges2shoes and Edges2Handbags.
The quantitative results are presented in Tab. 3 and Tab. 4,
and the qualitative results are shown in Fig. 11 and Fig. 12.

For the label-to-image task, the results are shown in
Tab. 3. We can observe the significant improvements of
Lab2Pix-V1 over the baselines. It consistently outperforms
all unpaired-data methods on all the metrics except for the
PSNR score. However, it is widely agreed that SSIM is a better
metric than PSNR in terms of evaluating image quality. More
specifically, compared with SPAP, the current best unpaired-
data model, our Lab2Pix-V1 outperforms it by 0.03, 0.03,
0.03 and 0.07 for PPA, PCA, C-IoU and SSIM, respectively.
Compared with the paired-data method Pix2Pix, we surpass
it by 0.05 on PPA and 0.02 on C-IoU, and achieve the same
PCA score. These results verify the advantage of our proposed
method. In addition, Fig. 11 shows a qualitative comparison
with these methods on the Cityscapes dataset. Compared
with SPAP, for instance, Lab2Pix-V1 generates more photo-
realistic images, which render sharper boundaries for adjacent
objects (e.g., vehicles) and more natural textures and details

for objects.

For the sketch-to-image task, a comparison is conducted
on the Edges2shoes and Edges2handbags datasets. The quan-
titative results are shown in Tab. 4. For a fair comparison,
we also report training information about memory and time
cost. Both CycleGAN and MUNIT are trained on the same
datasets with officially recommended training settings except
that we keep the same batch size (i.e., 4) with Lab2Pix-V1.
For CycleGAN, MUNIT and Lab2Pix-V1, training epochs are
all set as five, while Lab2Pix-V1* increases the training epochs
to ten. From Tab. 4, we make the following observations
by comparing with the current best model MUNIT. Firstly,
our Lab2Pix-V1 model requires less computational resources
(8GiB vs. 12GiB). Secondly, our Lab2Pix-V1 model achieves
slightly better FID scores on both datasets, but significantly
decreases the training time. Specifically, the training time
of Lab2Pix-V1 is only approximately 36% of that of MUNIT.
Thirdly, trained for twice the number of epochs than Lab2Pix-
V1, our Lab2Pix-V1* model reaches the best FID scores
on both datasets, but still uses less memory and training
time than MUNIT. All quantitative results demonstrate
that our method achieves the best trade-off between quality
and efficiency (both time and memory cost). Furthermore,
qualitative synthesized examples are shown in Fig. 12, which
demonstrate that our proposed methods are able to generate
photo-realistic images with convincing natural textures and
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Label Map Ground Truth Pix2PixHD SPADE Lab2Pix-V2CC-FPSE TSIT

Fig. 16: Comparison on the Ade20K dataset with paired-data training.

details about shoes and bags, showing better performance
than the baselines.

5.5.2 Lab2Pix-V2 Comparison
We compare our Lab2Pix-V2 model with Pix2PixHD [5],
SPADE [3], CC-FPSE [38] and TSIT [39] on three datasets:
Cityscapes [50], COCO-Stuff [51] and ADE20K [52]. The
quantitative results are presented in Tab. 5. The qualitative
results for the three datasets are respectively shown in Fig. 13,
Fig. 15 and Fig. 16. More randomly selected samples are
attached to the supplementary material. As can be observed
in Tab. 5, Lab2Pix-V2 obtains the best performance in FID
on all three datasets. Besides, we can observe that our
Lab2Pix-V2, CC-FPSE and TSIT all obtain larger values
in almost all FCN scores compared to the ground truth
on all datasets. However, real samples set the standard of
realistic and label-matched results, which makes an apparent
conflict with the traditional evaluation strategy that “higher
scores indicate better performance”. We think higher FCN
scores only indicate these methods generate samples easier
for segmentation networks to make pixel-level classification,
instead of they synthesize images in better image quality or
matching input labels better. To address this issue, we add a
user study to evaluate our method.

On the Cityscapes dataset, our method obtains compara-
ble FCN scores with CC-FPSE and TSIT, and significantly
outperforms other methods. Specifically, it surpasses baseline

SPADE by 2.4% on PCA and 2.4% on C-IoU. Besides, our
Lab2Pix-V2 model achieves significantly better FID values
than all other methods. Around 15 point reduction in FID
is made by Lab2Pix-V2 compared with the baseline model
SPADE. The qualitative comparison shown in Fig. 13 also
confirms our improvements. For instance, in rows four and
eight, only Lab2Pix-V2 synthesizes clear and realistic textures
of both vehicles and buildings in these images. In Fig. 14, we
give samples generated by Lab2Pix-V2-H. We can observe
that with our proposed components, the images in higher
resolution give more detailed textures, especially in those
areas with small foreground objects.

As for COCO-Stuff, our Lab2Pix-V2 model achieves com-
parable performances on FCN scores compared with SPADE
and CC-FPSE, and obtains 4.5%, 6.2% and 5.3% higher
FCN scores compared with TSIT. Meanwhile, 5.4 reduction in
FID compared with the baseline SPADE shows our Lab2Pix-
V2 is able to synthesize more realistic images. In Fig. 15,
Lab2Pix-V2 can generate both simple and complex scenes
well. For example, in the first and last two rows, our Lab2Pix-
V2 model is able to generate reasonable and clear object
textures in the simple synthesis of one or two main objects. In
terms of complex multi-object scenes, the generated samples
of Lab2Pix-V2 show sharp boundaries between each two
neighboring instances, and clear and vivid objects.

In experiments on ADE20K, our Lab2Pix-V2 obtains
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TABLE 5: Quantitative results of different methods on
Cityscapes, COCO-Stuff and ADE20K datasets. We demon-
strate the metrics obtained by real images for reference. Each
method is trained with three different random seeds, and each
test sample for each trained model is inferred three times with
different random noises.

Method PPA(%) PCA(%) C-IoU(%) FID
Cityscapes

Ground Truth 93.0 72.7 62.1 -
Pix2PixHD 92.2±0.2 64.4±1.5 55.5±1.6 70.3±3.8
SPADE 93.4±0.1 70.4±0.6 61.2±0.6 62.3±0.9
CC-FPSE 93.5±0.1 72.5±0.9 63.0±0.8 54.8±0.7
TSIT 93.6±0.1 71.5±0.1 62.4±0.3 85.9±0.9

Lab2Pix-V2 93.6±0.0 72.8±0.5 63.6±0.6 47.7±1.2
COCO-Stuff

Ground Truth 59.6 39.3 28.3 -
Pix2PixHD 56.4±0.1 32.0±0.2 22.8±0.1 25.7±0.3
SPADE 61.6±0.5 38.1±0.4 28.0±0.4 22.2±0.6
CC-FPSE 63.6±0.3 41.6±0.1 30.9±0.1 17.8±0.2
TSIT 58.4±0.1 34.7±0.1 25.2±0.2 22.1±0.9

Lab2Pix-V2 62.9±0.3 40.9±0.6 30.5±0.5 16.8±0.5
ADE20K

Ground Truth 77.3 44.8 33.6 -
Pix2PixHD 78.2±0.9 35.8±0.4 32.5±0.4 38.2±0.1
SPADE 81.2±0.1 48.0±0.6 41.0±0.3 34.3±0.3
CC-FPSE 82.3±0.3 50.3±0.8 42.9±0.7 33.2±0.9
TSIT 79.8±0.2 43.4±0.3 36.9±0.2 35.3±0.6

Lab2Pix-V2 80.8±0.4 47.7±0.1 40.7±0.2 28.2±0.5

comparable FCN scores but significantly better FID (i.e.,
over 5 point reduction) compared with all other methods. As
we can observe in Fig. 16, in the first two rows, Lab2Pix-
V2 can synthesize more detailed textures (e.g., ripples of
water, folds on bed) in indoor scenes. For outdoor scenes
that are presented in the last four rows, Lab2Pix-V2 paints
recognizable appearances on each object while keeping their
shapes strictly following the input label maps.

In the user study, we invite 10 participators which are
normal people without professional skills in image processing
and recognition for each dataset, and we randomly choose
100 samples for each participator. Each sample contains
synthesized images of all five methods from the same input
label map. We also provide the corresponding input label
and ground truth image for reference. The generated images
in each sample are randomly shuffled for a fair comparison.
Participators are asked to rank the five images in each sample
according to the image quality and the matching degree with
the input label with no time limitation. Approaches will
obtain from 5 to 1 point as they are chosen from the best
to the worst. We demonstrate the mean scores obtained by
all methods on each dataset and the Top1 and Top2 rates
in Tab.6. It can be observed that images synthesized by
Lab2Pix-V2 are preferred on all datasets, which verifies the
superiority of our method.

5.6 Failure Examples
In Fig. 17, we give some failure examples generated by our
Lab2Pix-V2 model. We can observe that those objects in
multivariate shapes (e.g., various vehicles, trains and pedestri-
ans) are not be synthesized well. These instances are usually
relatively small and rare foreground objects that are able to
move or turn themselves. For example, face generation is an

Fig. 17: Some failure examples in our Lab2Pix-V2 experiments
on the Cityscapes, COCO-Stuff and ADE20K datasets.

independent generation task addressed by many works [47],
[62]. We will direct our future work towards these issues by
investigating solutions for more fine-grained synthesis.

6 Conclusion
In this paper, we propose a novel end-to-end, GAN-based
framework, Lab2Pix, for the label to image synthesis task.
Recognizing the large gap between label maps and real images
and challenges in both unpaired and paired data settings, we
propose effective models for both settings, namely Lab2Pix-
V1 and Lab2Pix-V2. Specifically, for the generator, we design
the Label Guided Spatial Co-Attention (LSCA) to gradually
refine synthesized images under limited parameters, and
Double-Guided Normalization (DG-Norm) to combine local
and global characterizations for generation. To encourage
realistic images generation, the discriminators are designed
in a hierarchical architecture to discriminate image contents
in different sizes and complex textures with foreground en-
hancement masks leading to focus on challenging foreground
objects. In addition, the sharpness enhancement loss is pro-
posed to better constrain the network to generating high-
resolution realistic images. Our Lab2Pix framework obtains
the state-of-the-art performances on six public datasets both
qualitatively and quantitatively, outperforming current best
models in both unpaired and paired data settings. We will
study fine-grained texture generation as a future work.
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Appendix
Randomly Chosen Samples for Comparison
In this part, we provide extra randomly sampled images to
demonstrate the better performance of our Lab2Pix-V2.
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Label Map Ground Truth Pix2PixHD SPADE Lab2Pix-V2CC-FPSE TSIT

Fig. 18: Comparison on Cityscapes dataset. Samples are randomly chosen.
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TSITCC-FPSESPADEPix2PixHDGround TruthLabel Map Lab2Pix-V2

Fig. 19: Comparison on COCO-Stuff dataset. Samples are randomly chosen.
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TSITCC-FPSESPADEPix2PixHDGround TruthLabel Map Lab2Pix-V2

Fig. 20: Comparison on COCO-Stuff dataset. Samples are randomly chosen.
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Label Map Ground Truth Pix2PixHD SPADE Lab2Pix-V2CC-FPSE TSIT

Fig. 21: Comparison on ADE20K dataset. Samples are randomly chosen.
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Label Map Ground Truth Pix2PixHD SPADE Lab2Pix-V2CC-FPSE TSIT

Fig. 22: Comparison on ADE20K dataset. Samples are randomly chosen.
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