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Abstract—Generating photo-realistic images from labels (e.g., semantic labels or sketch labels) is much more challenging than
the general image-to-image translation task, mainly due to the large differences between extremely sparse labels and detail rich
images. We propose a general framework Lab2Pix to tackle this issue from two aspects: 1) how to extract useful information from
the input; and 2) how to efficiently bridge the gap between the labels and images. Specifically, we propose a Double-Guided
Normalization (DG-Norm) to use the input label for semantically guiding activations in normalization layers, and use global
features with large receptive fields for differentiating the activations within the same semantic region. To efficiently generate the
images, we further propose Label Guided Spatial Co-Attention (LSCA) to encourage the learning of incremental visual
information using limited model parameters while storing the well-synthesized part in lower-level features. Accordingly,
Hierarchical Perceptual Discriminators with Foreground Enhancement Masks are proposed to toughly work against the generator
thus encouraging realistic image generation and a sharp enhancement loss is further introduced for high-quality sharp image
generation. We instantiate our Lab2Pix for the task of label-to-image in both unpaired (Lab2Pix-V1) and paired settings
(Lab2Pix-V2). Extensive experiments conducted on various datasets demonstrate that our method significantly outperforms
state-of-the-art methods quantitatively and qualitatively in both settings.

Index Terms—Generative Adversarial Networks (GANSs), Label-to-Image Synthesis, Photo-realistic Image Generation

1 Introduction

enerating photo-realistic images from labels (e.g., se-

mantic labels or sketch labels), which we refer to as
label-to-image, or Lab2Pix hereinafter, can be considered as
a subtask of image-to-image translation, which is valuable
to many applications including datasets synthesis and image
processing. Recently, great progress [1], [2], [8], [4], [B], [6] on
image synthesis has been made especially with the advance of
Generative Adversarial Networks (GANS) [[7]. Label-to-image
synthesis is one of the most challenging problems among all
types of image synthesis tasks, due to the complexity of scenes
that contain multiple objects of different categories. Thus, in
order to synthesize high-quality images, it is necessary to
focus on both global shapes as well as detailed textures for
each object.

Both paired and unpaired data have been used to train
Lab2Pix models. Recent paired-data methods [}, [B], [B],
[B] and unpaired-data methods [4], [9], [10], [L1], [L2] have
achieved remarkable abilities of generating realistic images
from simple scenes. However, for more challenging multi-
object or complex-objects scenarios, existing architectures
still exhibit unsatisfactory performance. For instance, some
state-of-the-art works [B], [4] are unable to synthesize details
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well on objects with complex textures, while some others [[12],
[13] require significant computational resources to portray
details of a single object.

As pioneering general image translation frameworks, the
paired-data method Pix2Pix [§] and unpaired-data method
CycleGAN [10] are the first to translate labels to real images.
Some works [B], [0], [4], [14] leverage the advantage of multi-
stage learning to stabilize the training process and improve
the quality of synthesized samples. However, such multi-stack
architectures result in a tremendous increase in the number of
parameters and training time. Different from the multi-stage
design, some works [4], [L1] propose to add extra modules
(e.g., dilated convolution) to improve performance. These
methods show noticeable improvements on the background
but inappreciable effects on foreground objects. Besides,
inspired by the idea of disentanglement [[15], some works [[12],
[13] propose to encode a whole image as two one-dimension
latent code parts (i.e. content and style). Since the code length
limits the expression of detailed textures for multi objects, the
quality of the synthesized details is poor in complex multi-
object scenes.

Label-to-image synthesis is a challenging task due to two
major reasons. (1) Compared with other image translation
tasks, Lab2Pix suffers from the tremendous differences be-
tween the input labels and output images, which has not been
specifically considered by existing methods. The input labels
only contain pixel-level category attributes while the output
images are semantically rich. (2) The sparse information in
input labels makes it hard to extract useful features for guid-
ing generation and constraining the synthesized images. For
example, in addition to local pixel features, global contents
for all instances should be considered for generation. Previous
works usually consider this task as a normal image-to-image
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Fig. 1: Some synthesized examples of our Lab2Pix-V1 (above the dash) and Lab2Pix-V2 (below the dash). Our Lab2Pixs take
label maps as the inputs and predicts the corresponding realistic images with unpaired-data and paired-data learning. The
task is extremely hard since the generated samples are supposed to match the input label maps and keep realistic in complex
scenes at the same time. The generated samples from our model are colorful and photo-realistic and contain detailed textures.

translation, and barely consider the special attributes in the
input label map, the output raw image, and the huge gap
between them. Thus, they often achieve incomplete generation
and obtain results with blank holes and few details.

In this paper, we focus on two aspects in the label-to-
image task. First, to comprehensively extract features from
input label maps with sparse information, we propose Double-
Guided Normalization (DG-norm) and Label Guided Spatial
Co-attention (LSCA) for the image generator. Specifically,
DG-norm provides extra global information (e.g., the en-
tire shape of an object and its neighboring instances) in
guiding image generation compared with existing methods
that only consider pixel-level attributes. LSCA prevents the
network from losing well-synthesized parts under limited
model parameters with the guidance of label maps. Second,
to constrain output images thus encouraging photo-realistic
image generation from label maps, we design a novel and
powerful Hierarchical Perceptual Discriminator (HPD) and
a general Sharp Enhancement Loss. In detail, Hierarchical
Perceptual Discriminators are designed in different structures
for different scale images, to discriminate objects with both
low-level visual concepts and high-level semantic information.
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Compared with existing ones, HPD provides hierarchical
discrimination to fully consider different objects in complex
scenes described by output images with the help of auxiliary
perceptual features. Furthermore, we take advantage of data
itself to make blurry samples, and add them as negative
samples into the adversarial training to boost clear image
generation which we term as the sharp enhancement loss.
Additionally, we propose a novel Foreground Enhancement
Mask in adversarial loss calculation to focus more on the
challenging foreground generation with the label guidance.
Different from existing methods, we fully consider the sparse
information contained in the input label and the abundant
detail described in the output image. We propose several
modules and loss functions to boost the complete feature
extraction and expression. Meanwhile, we introduce simple
fusion modules to maintain the large-span translation with
the limited model.

Based on the above components, we propose a unified
GAN framework Lab2Pix, illustrated in Fig.E, with two
versions (Lab2Pix-V1 [@] in Fig.ﬂ and Lab2Pix-V2 in Fig.E)
for the challenging Lab2Pix task in the unpaired-data and the
paired-data settings, respectively. Both generators produce
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multi-scale images in one forward pass and each image is
distinguished by one independent discriminator. To stabilize
the unpaired-data training, we further propose Image Con-
sistency Loss and Cycle Segmentation Loss. To confirm our
model’s ability of generating high-resolution images, we build
Lab2Pix-V2-H to synthesize double-scale samples of basic
Lab2Pix-V1 and Lab2Pix-V2.

The major contributions of this paper can be summarized
as follows:

1) To extract useful information from sparse labels, we
propose a Double-Guided Normalization (DG-Norm),
where the input label is utilized for semantically guid-
ing generation. The global feature with large receptive
fields is added to differentiate the activations within
the same semantic region.

2) To efficiently generate the images using limited model
parameters, we propose a Label Guided Spatial Co-
Attention (LSCA) to encourage the incremental learn-
ing of visual information while storing the well synthe-
sized part in lower-level features.

3) To encourage realistic and clear image generation with
abundant details, we equip our model with a set of
novel hierarchical perceptual discriminators and con-
straints including sharpness enhancement loss, image
consistency loss and cycle segmentation loss.

4)  We instantiate our Lab2Pix framework for the task of
label-to-image with both unpaired and paired settings.
Extensive experiments on six benchmark datasets
demonstrate that both our models achieve state-of-
the-art results both quantitatively and qualitatively.

Our source code and models are available at https://github.
com/RoseRollZhu/Lab2Pix.

2 Related Work
2.1 Conditional GANs

Generative Adversarial Networks (GANs) [] are proposed
to synthesize various data. In general, they can be divided
into conditional and unconditional types. Conditional GANs
provide approaches for users to control synthesized data with
some additional information. For instance, categories [L7],
(18], sketches [L9], [2Q], descriptions [21], [22], bounding
boxes [23], [24] and special attribute codes [25], [26] have
all been used as the input guidance.

Most of the earlier studies on conditional GANs are based
on paired-data learning. Later architectures were prposed [27],
28], [29], [BQ] to support unpaired-data learning. Compared
with the unconditional setting, conditional GANs rely more
on paired data for training. The accurate mapping functions
between condition values and generated results are difficult
to learn if corresponding samples are not given. Because of
this, with the same or similar structures, models with paired
learning usually perform much better (e.g., [11]). In general,
the performances of paired-data learning are much better than
unpaired-data ones. In this work, we employ the conditional
GAN model trained with both paired and unpaired data.

2.2 Image Synthesis from Label

Image-to-image translation, usually tackled by GANs [[], is
to synthesize images in the target domain from the source
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domain (e.g., image style translation [B1], [32], object trans-
lation [B33], [B4], image super-resolution [B5], [BG]). Label-
to-mage synthesis, a subtask of image-to-image translation,
limits the source domain to label maps (e.g., semantic label
maps or sketch label maps) and the target domain to real-
world images. Totally, this task can be divided into paired-
data and unpaired-data training settings.

In the paired-data training setting, the model are fed
with label maps and corresponding images for training. The
pioneering work Pix2Pix [B] directly applies U-Net [37] to gen-
erate the images. CRN [[l] suggests to synthesize the images
from low resolution to high resolution progressively, which
may stabilize the training process and improve image quality.
Pix2PixHD [p] seeks to address super high resolution image
generation by splitting the task to multi separate stages.
The state-of-the-art method SPADE [B] proposes the spatial
adaptive normalization for labels to guide generation without
erasing useful information. Inspired by SPADE [3], many
works have been proposed. CC-FPSE [3§] design a conditional
convolution and semantics-embedding strategy for label maps
to better guide the generation and discrimination. TSIT [39]
adopts a versatile two-stream framework with multi-scale
feature normalizations to integrate the content and style of
generated images. Compared with SPADE only focusing on
local information, we introduce a double-guided normalization
to fully consider the local and global features of label maps
for complex objects.

For the more challenging unpaired-data training setting,
unpaired label maps and images are used for training. Cy-
cleGAN [[L0] firstly proposes a cyclic architecture to support
this task. Most works follow the basic cyclic structure to train
with unpaired data. SCAN [9] uses a two-stack architecture
to synthesize high-resolution images progressively, where the
first stack processes data in half scale, and the parameters
of each stack are updated iteratively. Inspired by the seg-
mentation network, SPAP [4] designs a coarse-to-fine fusion
structure with dilated convolutions. They use convolutions
with different dilation sizes to capture multi-scale information
of the image. MUNIT [12] encodes image information as style
and content parts and exchanges these two parts to synthesize
images in different styles.

Different from prior works, which usually design the
architecture for the general image-to-image translation, our
Lab2Pix models consider the specific properties that make
label-to-image more challenging, i.e., the significant differ-
ences between the input labels and output images.

3 Proposed Method

Given a label map M (i.e., a semantic map or a sketch map),
we aim to synthesize a high-resolution photo-realistic image
with an end-to-end label-to-image network. Moreover, our
design is supposed to support both the unpaired-data and
paired-data training, which means the real image Y provided
in each training pair shares the same or different layout with
the provided M. Considering the challenging label-to-image
task, we can conclude that the input labels only contain
pixel-level category attributes and no semantic information,
while the output images are supposed to be aligned with
the input labels, photo-realistic and semantically rich. To
generate high-quality images under limited model parameters,
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Fig. 2: llustration of our proposed unified Lab2Pix (including
Lab2Pix-V1 and Lab2Pix-V2) framework. The generator
takes a label map to synthesize multi-scale images, and
independent discriminators give hierarchical discriminative
results for each image based on the foreground map extracted
from the label map.

the network is supposed to dig information from input label
maps as much as possible and bridge the gap between the
sparse labels and detailed rich images. Thus, we propose a
few modules in generators to process the label maps, a set of
strong discriminators and extra loss functions to encourage
realistic image generation, which compose a unified Lab2Pix
framework as illustrated in Fig.

3.1 Extract Information from Sparse Label

We propose three modules to extract information from sparse
labels for comprehensive label processing. The three modules
address the challenging label processing in different ways and
can coexist in one model.

3.1.1 Adaptive Label Encoder.

To generate images, we are supposed to encode labels at
the front stage of the network. Given a semantic label, each
pixel contains a semantic category information. In contrast,
a sketch label contains few information and its informative
pixels are extremely sparse. Therefore, we design two label
encoders: the semantic label encoder and the sketch label
encoder to adaptively handle semantic and sketch informa-
tion. Their detailed structure is shown in Fig. E Both label
encoders take a label map M and a randomly generated
standard Gaussian noise z as input. In this task, we add a fully
connected layer to z and then reshape it to a 3-dimensional
noise feature f,. Then, we combine the noise feature f, with
a label feature. Specifically, for the sketch label encoder, we
design a sketch encoder with multiple convolutions to extract
the overall feature f;_, of the sketch labels. The strides are set
as 2 for expanding the receptive field of each pixel. Finally,
we concatenate f, with f;_, as the output of the sketch label
encoder. For the semantic label encoder, we use two stacked
generative residual blocks (GenResBlk) to encode the input
label map and fuse it with the noise information. Specifically,
we input f, and M to the first GenResBlk and obtain a
coarse feature, as illustrated in Fig. §. Then, we inject the
coarse feature and M to the second GenResBlk for further
encoding and take the result as the output of the semantic
label encoder. Here, no extra encoder is required, since every
pixel in M provides rich guiding information.

3.1.2  Generative Residual Blocks (GenResBlk).

GenResBlk is the conditional residual block that synthesizes
image features at a specific scale along with the whole

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https.//www.ieee. org/I)ubI|cat|ons/r|ghts/|ndex html for more information.
Authorized licensed use limited to: Monash University. Downloaded on July 10,2022 at 09:18:59 UTC from IEEE Xp

Sketch

Encoder

Concatenate —»

Sketch Label Map

Noise F
C

Z~ N(0,1)
(a) Sketch Label Encoder

Semantic Label Map <
Noise F Gen & o Gen |
Z~ N(0,1) C ResBlk ResBlk
N (b) Semantic Label Encoder )

Fig. 3: The structure of our Adaptive Label Encoder. It sepa-
rately encodes the sketch and semantic label maps according
to their characteristics.

generation. Inspired by the previous work [3], we adopt the
normalization layer for the label to guide the image synthesis
described as a function G,;,. The entire process of GenResBlk
can be described as follows:

dpr1 = GLy(de, M), (1)

where d; is the input of the t-th GenResBlk and dyy; is
upscaled from d; by a factor of 2. We find that SPADE [3]
only processes the label maps with one-layer embeddings
(only two layers of 3 x 3 convolutions) as the input. Thus,
the guidance information only contains pixel-level category
attributes. This design works fine for objects with similar
textures in different patches (e.g., sky, road, grass), but
gives unsatisfactory performances in instances with complex
textures (e.g., vehicle, animals). Each patch in these instances
contains different sub-objects, which means the generator
needs to locate each body part from the global shape for
high-quality synthesis.

The category information is not enough for high-quality
image synthesis. If the global information (e.g., global shapes,
global positions) is ignored in the guidance, the generated
objects in the scenes may not be reasonable even though some
patches are well synthesized. Thus, we design a global encoder
to provide an extra feature for generation. The encoder
consists of several convolutions with stride 2. We only want
to obtain the global feature, so the global encoder only gives
one final result. The process can be expressed as follows:

H= Eglobal(M)' (2)

Then, unlike baseline GenResBlk G,;, with the help of
the global encoder, we add global information as an extra
condition to guide generation in GenResBlks. We design
the novel Double-Guided Normalization (DG-Norm), which
is shown in Fig. M. Let E® denote the activation before
normalization. In DG-Norm, E° will go through a batch
normalization BN, which can be expressed as follows:

E' — u(E")

BN(EZ) :WBN(W)—FBBN. (3)
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Fig. 4: The structure of our DG-Norm. The input feature is
normalized by batch normalization first. Then we use both the
label map and global feature to predict the new distribution
parameters which effect the normalized feature.

where ygn and pN are learned parameters in the batch
normalization. u(E') and o(E®) can be calculated as follows:

p(E)e = NI > Ehehus

n,h,w

; ()

o(B)e = \| N

Z ( f’LChw)2 - /’L(Ei)w

n,h,w

where H® and W* are the height and width of E’. Then,
we can de-normalize the feature with new parameter, the
function can be expressed as:

DG(E") = ype - (BN(EY) + 1) + Bpa, (5)

where Ypg and Bpg can be obtained as in Fig. @ ‘We resize
the label map and global feature to the same size as the
input E. We fuse the guidance information by element-wise
addition. The total process of proposed new GenResBlk G,.p,
containing DG-Norm can be described as follows:

dt+1 = Gf“b* (dta M7 H)a (6)

where d; is the input of the t-th GenResBlk, and d;+1 is
upscaled from d, by a factor of 2.

3.1.3 Label Guided Spatial Co-attention (LSCA).

As the resolution goes higher at the back stage of generation,
the classical GenResBlk, which is equipped with convolution
and normalization layers to process data in low dimension,
may not be able to maintain all object features. Objects
features include lower-level visual features like textures and
colors, middle-level visual features like object part attributes,
and high-level visual features like object semantic informa-
tion. Note that, the lower-level coarse and high-level fine
structures of objects with simple textures (e.g., grass) are
similar, which helps these textures to be synthesized well
enough at the early generation stage. As a result of limited
network parameters, these simple visual features may be
cleaned away quickly during the later generation stage when
the generator focuses on complex object textures, or the model
has to give up synthesizing incremental fine details for these
objects.

To address this issue, we propose the LSCA to relieve
the information loss by producing a co-attention map to
refine image features. It fuses features at different scales and
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Fig. 5: The structure of an Label Guided Spatial Co-Attention
(LSCA) block. Our LSCA fuses features in different layers
by an attention map with label guidance. C' denotes the
operation of concatenating.

dimensions with the label guidance. The structure of our
proposed LSCA is demonstrated in Fig. . It has three inputs:
previous low-level visual features hy_p, current high-level
visual features f, which is the output of current GenResBIk,
and the label map M with semantic information. First, to
avoid the Checkerboard-Artifacts issue [40], hy_1 is upscaled
by a factor of 2 and operated by a 3 X 3 convolution to produce
a merge-able low-level feature hj,_;. Besides, we resize M to
the same size as hj,_; and fi. The resized M is defined as
fin. Second, all the above three features are concatenated to
obtain an attention map A,, by passing it in a convolution
layer activated by a sigmoid function. Finally, h},_; and fj
are filtrated by A, to yield the fused feature fj, described as:

frp =hj 1A+ (1—Ay), (7)

where - represents element-wise product with broadcasting
and + indicates an element-wise sum operation.

3.2 Bring the Gap between Label and Image

We propose a set of novel discriminators and loss functions to
constrain the synthesized images thus encourage high-quality
images with rich details generation from label maps.

3.2.1 Hierarchical Perceptual Discriminator.

For a GAN network, competition in this minimax two-player
game drives both models to improve their performance until
the counterfeit samples are indistinguishable from the genuine
samples [7]. In this paper we propose novel hierarchical
perceptual discriminators D, whose discriminative ability is
strong and competitive in contrast to our generator’s genera-
tive power thus encourage high-quality image generation.
The translation process from label to image consists of
the synthesis of a variety of visual concepts for multiple
objects, such as textures, various compositional parts, and
categorized attributes. Thus, fully checking the object details,
parts and category information is beneficial for improving
the ability of a discriminator. Specifically, we design three
independent discriminators (i.e., D1, D2 and D3) to consider
multi-scale information. All the discriminators are designed in
PatchGAN [g§] style which means that no fully-connected layer
is used to capture global information. All the real samples
are resized to the size of the generated samples. Specifically,
we equip our discriminators with three novel model designs
(i.e., hierarchical discrimination, mini-inception block and
perceptual branch) and one novel function design (i.e., fore-
ground enhancement mask), which make them significantly
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Fig. 6: The proposed hierarchical perceptual discriminator structure, which includes two branches. The perceptual branch
take the images as the input. The concatenation of images and the corresponding label maps are fed to the main branch in
Lab2Pix-V2, while in Lab2Pix-V1, only images are fed. v;, v2 and v3 indicate Conv; j-pools, Convy j-pool, and Convs ;-
pooly of pretrained VGG16. s represents stride in convolution and pooling. C' denotes the operation of concatenating.

different from existing ones. The details will be described in
the following subsections.

Hierarchical Discrimination. As shown in Fig. H and
Fig. B, for both models, we have multiple discriminators to
discriminate multi-scaled images X;. The structure of D3 with
full components is shown in Fig. E A W x H image contains
more precise high-level visual information than its half-sized
(0.5W x 0.5H) image. Thus, D3 has three levels of outputs
to recognize visual concepts: low-, middle- to high-level, while
D5 removes the third output and focuses on capturing low-
and middle-level visual concepts. Similarly, D; is designed
with the first output to capture low-level visual concepts.

If we only directly input the images to discriminators
which is a typical and suitable condition for most image
generation tasks (including the unpaired setting in our label-
to-image), the three discriminators in our model are defined
as follows:

1

Dy (X1) = {D1(X1)},
D5(X3) = {D3(X2), D3(X2)},
Ds(X3) = {D3(X3), D3(X3), D3(X3)},

(8)

where D! indicates the output of D; in level .

Mini-Inception Block. To increase the depth of the dis-
criminator network while keeping the computational budget
constant, we borrow the idea of Inception [41] and design
a mini-inception block to further improve our discriminator.
As Fig. g shows, it has three parallel branches. The different
branches extract features in different levels and combine them
as the output.

Perceptual Branch. In VGG-GAN [42], a pre-trained deep
classification network is embedded inside the discriminator
to improve the robustness and efficiency of perceptual losses.
However, directly embedding a pre-trained deep classification
network works for facial images with a single object but
fails for natural images with several objects. To address this
issue, we consider a pre-trained deep classification network
as a supplementary perceptual branch to our discriminator.
Our framework is different from VGG-GAN in two impor-
tant aspects. Firstly, our discriminators are designed mainly
based on an independent encoder structure. Secondly, we
add the perceptual branch to boost their performance as a
supplementary module. If the perceptual part is removed,
our discriminators can still distinguish samples with a weaker
ability, while discriminators in VGG-GAN would be non-
functional. As shown in Fig. [, we divide the perceptual
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branch into three parts vy, vy and wvz. The perceptual
information extracted from each part is combined to the main
branch by concatenation. In addition, we choose VGG16 [43]
pre-trained on the ImageNet [44], and all parameters are fixed
during training.

Apart from basic discriminator structure design, we pro-
pose novel Foreground Enhancement Mask in the adver-
sarial loss calculation. Compared with substances in the
background, foreground objects have more complex textures,
which make them difficult to synthesize. Enabling the dis-
criminator to focus more on the foreground may boost the
ability of foreground object generation. Motivated by this,
we multiply the prediction result with a weight map Wﬁ to
increase the weight of foreground parts when calculating the
GAN loss function. Different from the current self-attention
mechanism in image generation [45], our function uses an
accurate weight map to lead the attention on foreground parts
with little computational cost. Specifically, a label map M
can be manually divided into two parts: foreground pixels
(e.g., vehicle, bicycle and sign) with a small number A and
background pixels (e.g., sky, building and road) with a large
number B. To obtain W, we create a foreground enhance
mask Mg, which only contains two values. All background
pixels have value P and all foreground pixels have value
T x P, where T is a hyper-parameter to control the rate of
enhancement. For unpaired-data learning, since real samples
do not have the corresponding label map, it is important to
keep the mean value of the whole mask M, to 1. Thus, P
can be calculated as:

P=(A+B)/(T x A+ B) (9)
Our PatchGAN-style discriminators’ outputs share the same
spatial layout of the input images and its label map M. Thus,
we can adjust each pixel’s weight of the discrimination result
Di» by simply multiplying a M,,-related enhancement map
W!, which shares the same scale with D}. To obtain W', we
perform average pooling on M, with different kernel sizes.
Based on adversarial loss calculation functions proposed in
previous works [7], [46], we use LE, and LE, to indicates
adversarial loss functions for real and fake samples. Thus, the
GAN loss function for the generator is:

LEX)=)

i

1 < .
———> Ma(EY[L
23:1 )‘ilg

R
adv

(Di(X))- (10)
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The GAN loss function for the discriminators can be divided
into two parts: real prediction loss and fake prediction loss,
which can be expressed as:

1
5(‘6?(Y)R + LY (X)r)-
We obtain the fake prediction loss as:
LY (X)r= Z
Zl 1
As for real prediction loss, the foreground enhancement mask

is not available in unpaired-data learning. Thus, it can be
calculated as:

LPX,Y) = (11)

ZA“E” Ladv( z( Z))] (12)

zll 1

POr=3 LS MELLE, UYL (1)
Zl 1 zlz 1
where
Efy[a] = E[W} - g, (14)
and - is element-wise dot production and A; is the hyper-

parameter. We set A\;; = 1 and A\jgq1) = %)\il. Note that
the sketch maps lack semantic categorical information, thus
we do not use the foreground enhancement mask, which is
equivalent to setting W! as a matrix of ones.

Finally, the loss function of our GAN is:

L1(X,Y) = LY (X) + LP(X,Y). (15)

3.2.2 Loss Functions

We propose a novel and general Sharpness Enhancement Loss
for the photo-realistic image generation. One major difficulty
in synthesizing high-resolution images is that the network may
fail to penalize real but blurry images. To solve this problem,
we downscale real images and upscale the downsampled ones
both with a scale factor 2 to obtain real but blurry images, and
treat them as fake samples. If discriminators can differentiate
these samples, they will force the generator to synthesize
sharp and realistic images in return. Specifically, we manually
pre-process the training samples Y into three resolutions
Y/ (i = 1,2,3), where Y{ has the lowest resolution. When
training our discriminators, we only consider the ground-truth
image Y; as the real sample. The sharpness enhancement loss
is a supplement to the generative adversarial loss. On the one
hand, we directly add the extra fake prediction loss. On the
other hand, we need to increase the real prediction loss with
the same weight. Since this function itself only adds the loss
on the fake part to the total adversarial loss, we keep the
real-fake balance by adding the real part loss value with the
same weight. The loss function is defined as:

Lo(Y,YT) =

SEPMR+ LPOp) (16)

4  Lab2Pix Model

To evaluate the proposed modules and optimization strate-
gies, we instantiate our Lab2Pix framework with two models
(i.e., Lab2Pix-V1 and Lab2Pix-V2) for the label-to-image task
under unpaired-data and paired-data settings respectively.
According to the big gap of the two different settings, we
slightly adjust the models and propose extra novel loss
functions for better performance.
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4.1 Lab2Pix-V1

The Lab2Pix-V1 model is an end-to-end label-to-image net-
work to synthesize a high-resolution photo-realistic image
trained with unpaired data.

4.1.1 Model.

Our Lab2Pix-V1 model mainly consists of one generator and
three independent discriminators. The generator G, is in
essence a mapping function, which transfers a label map M
of size W x H into an image X; of size W x H finally.
Inspired by the success of progressive generation scheme in
other tasks [47], [4&], our generator produces three different
scale images in one forward process. The generation process
can be defined as follows:

X; =Gpi(z, M), i=1,2,3 (17)

where z is a 128-dim noise providing the style information
of the image X;, X3 is the final W x H synthesized image,
and X; and X are synthesized images of lower resolutions.
Specifically, the generator produces outputs of three scales in
a coarse-to-fine manner to keep training stable when no paired
data is provided. Note that the scale of X;; is as twice as Xj;.
We use the discriminators described in the previous sections
directly, and we notate them as D1 (i = 1,2, 3).

4.1.2 Auxiliary Loss Functions.

To help stabilize the unpaired-data training and help the
model converge, we propose two novel auxiliary loss functions
in Lab2Pix-V1.

Image Consistency Loss. In StackGAN-++ [f], a color-
consistency regularization, e.g., color mean value and co-
variance, is proposed to make sure the multi-scale generated
samples are consistent. This constraint works for synthesizing
a single object, but not for our case where images contain
multiple objects with complex textures. In addition, as the
resolution of synthesized image increases, the training process
tends to be more unstable especially with unpaired-data
training. Inspired by StackGAN-++ [6], we postulate that if
we keep the synthesized images at different scales with similar
global structures and contents, the network will tend to be
more stable. Consequently, we propose an image consistency
loss to guarantee the similarity of the generated images in our
unpaired-data model.

Specifically, the generator outputs X; (i = 1,2,3) at
one time. We consider two adjacent outputs as a pair, and
two pairs: (X1,X2) and (Xg2,X3) are acquired. We adopt a
VGGI6 [43] pre-trained on the ImageNet [44] to process each
synthesized image to obtain five features respectively from
‘Convlig’, ‘COnV27277 ‘COnV3727, ‘CODV4727 and ‘OOTL’U5727.
Let ®;(1 = 1,2,3,4,5) be the I-th output. The loss function
can be described as:

ZZH‘I)I Pa(Xit1)) — ®u(X

where X means the set of X; and Ps indicates the pooling
with stride 2.

Cycle Segmentation Loss. To support the unpaired-data
training process where the input labels are not paired to
the input images, we design a cycle segmentation loss. The
training dataset consists of data from two domains: the label

v13
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Fig. 7: The proposed unpaired-data Lab2Pix-V1 structure. It takes either a sketch label map or a semantic label map as input
to produce photo-realistic images. The generator use an adaptive label encoder to separately encode the sketch and semantic
label maps according to their characteristics, and gradually outputs higher-resolution (small, medium and large) images in
one forward process. The structures of different images is guaranteed to be close by the image consistency loss, while the
correspondence of the output image and input label is verified by the cycle segmentation loss.

map domain My and the image domain );. Our generator
learns a mapping function G : My — )y, while we apply
segmentation networks ICNet [49] to learn another mapping
function S : Y3 — M. Since our generator progressively
synthesizes images of three different scales, we apply three
independent segmentation networks S1, So and S3 to obtain
their semantic maps or sketch maps. Consequently, our cycle
segmentation loss is defined as:

7w ST (X)
L1 a(X, M)i_ZHivvh,lz:,llog W, (19)

where H, W is the height and width of the image. N is
the class number of the whole dataset. S?’h’w represents the
output in position (h,w) of predicted class n. 7 is the correct
class of pixel in position (h,w). For the sketch-to-image task,
there are only two classes (N = 2): sketch pixels and blank

pixels.

4.1.3 Optimization.

With previously defined loss functions in Formulas (@), (E),
(@) and (@), we obtain the overall loss function to optimize
our network, which is expressed as follows:

La(X,Y, Y M) = L, 1(X,Y) + ALy 2(Y, YY)

+A3Lp1 3(X) + ALy 4(X, M),
(20)
where Ag, A3 and A4 are weights for each auxiliary loss.

In addition, the whole network is required to learn pa-
rameters of Gy1, Dy ¢ (1 = 1,2,3) and S; (1 = 1,2,3).
Therefore, we consider G,1 and S; (i = 1,2, 3) as nety, and
D,1 (i = 1,2,3) as nety. When optimizing the parameters
of nety, the parameters of nety are fixed and vice versa. We
train the network iteratively until convergence.
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4.2 Lab2Pix-V2

The Lab2Pix-V2 model is trained in a paired-data manner,
with paired data, where the given label map M and ground
truth Y indicate the same semantic content.

4.2.1 Model.

Like Lab2Pix-V1, Lab2Pix-V2 consists of one generator and
several independent discriminators, and its generator Gio
maps a label map M of size W x H to an image X; of size
W x H finally. The mapping function G2 can be described
as follows:

X = GUQ(Z, M) (21)
Note that, the generator only produces one final image X
of size H x W itself since the paired data guarantees the
relative stability of training. It has been proved efficient [H} to
discriminate images in multiple scales for high-resolution im-
age generation. Thus, we downsample X with different kernel
sizes to obtain smaller images X; and Xs, and we rename X
to X3 to maintain consistency in notations. The framework of
Lab2Pix-V2 is illustrated in Fig. §. Note that, we do not add
the LSCA into this model on account of our limited memory
when experimenting with the same training parameters with
our competitors. The framework is illustrated in Fig. §.

We use three independent discriminators (i.e., Dy 1,
Dy2 2 and D,y 3), which share similar structures with those
in Lab2Pix-V1, to consider multi-scale information. However,
to save memory, we address the label and image matching
issue in Lab2Pix-V2 discriminators instead of additional
loss functions. Specifically, we concatenate the images with
label maps into the discriminators of Lab2Pix-V2, which is
illustrated in Fig. fj. For each of the three discriminators D,2_;
(i = 1,2,3), the input of the discriminator can be expressed
as:

X} = (X, M), Y] = (Yi,M). (22)
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Fig. 8: The proposed paired-data Lab2Pix-V2 structure. The generator outputs one high-resolution image in one forward pass
and we downsample it to obtain images in lower resolutions. The generated samples and real samples are concatenated with
the label maps respectively before inputted to D;. Note that, we give up LSCA owing to our limited hardware settings.

The three discriminators in our model are defined as:

Doz 1(X7) = {Dyy 1(X1)},

Dua 2(X3) = {Dys 5(X3), Dy 5(X3)}, (23)
Doy 3(X3) = {Dv2 3(X3), sz 3(X3), sz 3(X3)},
where D!, _; indicates the output of Dya_; on level I. Thus,

the GAN loss function for the generator is:
Z )"Ll Ell Lad'u( v2_ 1( % ))])

L8
v2_ 1( ) Zzl . dl - (24)

The GAN loss function for the discriminators can also be
divided into two parts: real prediction loss and fake prediction
loss. The discriminator loss can be expressed as:

(‘CUQ 1(

The fake prediction loss can be calculated as:

’Cv2 1(X*7Y*) *)R +£1?271(X

)F). (25)

[':UD271(X*)F Z Z)‘IZEZZ Ladv U2 z( ))]

Zl 1 zlz 1
(26)

We calculate real prediction loss as:
ZAZ[E” Ladv v2 Z( ))]

ZZZ 1 zlz 1
(27)

We set all hyper parameters in the same way as Lab2Pix-V1.

L (Y)r=

4.2.2 Auxiliary Loss Functions.

To guarantee the quality of the synthesized images, we follow
the previous work [3], [H], to use the perceptual loss L2 5 and
the discriminator feature matching loss £,5 ¢ in this paired-
data architecture. The perceptual loss is defined as:

ZZ/\MIH‘I’Z (Y1,

where ®; (I = 1,2,3,4,5) is the [-th output of the pretrained
VGG19 network, and Ay (I = 1,2,3,4,5) is the weight for

Ly 5(X,Y) (28)
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each part. We set A\pr1 = 1/32, Aye = 1/16, Az = 1/8,
>\M4 = 1/4 and /\M5 =1.
The discriminator feature matching loss can be expressed

as:
k k

Luo 6(X,Y) Z Znniﬁ (X)) =D (Yol (29)

where D7(J2) , indicates the k-th layer output of Dyg ;. The two

loss functions optimize the distribution of generated samples
to be close to that of real samples in different ways.

To match the paired-data setting, we slightly adjust the
original Sharpness Enhancement Loss function described in
the previous section. Specifically, we resize the real image
samples to obtain the blurry ones and use them with un-
changed labels to calculate the additional adversarial loss.

The loss function is defined as:
* * 1 *
Loz 2(Y*,Y/*) = 5(51;[)271 (Y

where Y/* is obtained in the same way as Y*.

)R+ Lip 1 (Y)r), (30)

4.2.3 Optimization.

With the previous defined loss functions in Formulas (@),
(@) and (@)7 we form the total loss to optimize our network,
which can be described as:

Lop(X, Y, YT M) =Lon 1(X*,Y") + MaLog o(Y*,YT™)
+ ALz 5(X,Y) + X6 L2 6(X,Y)
(31)
where Ao, A5 and \g are weights for each loss. In particular,
Lo 1(X5Y%) =L ((X*) + LD (X5, Y") (32)

Lab2Pix-V2 only consists of G2 and Dyo ; (i = 1,2,3).
Therefore, we directly train the two adversarial components
Gy2 and Dy (i = 1,2, 3) iteratively until convergence.

5 Experiments
5.1 Datasets

We evaluate our proposed methods on six publicly avail-
able datasets. These include four label-to-image datasets:
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Fig. 9: Ablation study results on the Cityscapes dataset with unpaired-data training. Lab2Pix-V1 with all components obtains

the best results.
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Fig. 10: Ablation study results on the Cityscapes dataset with paired-data training. Lab2Pix-V2 with all components obtains

the best results.

Cityscapes [@], COCO-Stuff [Eh, ADE20K [@], and Fa-
cades [53], and two sketch-to-image datasets: Edges2shoes
and Edges2handbags (provided by Pix2Pix [E}) Cityscapes
contains 2048 x 1024 resolution images recorded in street
scenes from 50 different cities. Each street scene image is
annotated with labels from 35 categorizes. It has 2,975
samples for training and 500 for validation. All images are
resized to 512 x 256 or 1024 x 512 through nearest neighbor
interpolation. COCO-Stuff consists of various scene images
with various resolutions. The objects in each image belong
to 182 different categories. The dataset consists of 118,000
training samples and 5,000 validation samples. ADE20K is
similar to COCO-Stuff. It defines 150 semantic categories
and contains 20,210 training samples and 2,000 validation
samples. Both images from COCO-Stuff and ADE20K are
resized to 256 x 256 resolution. Facades contains 12 semantic
labels and all images are 256 % 256. It has 400 training samples
and 100 validation samples. The other two datasets are sketch
datasets with image resolution 256x256. Edges2shoes has
approximately 50,000 samples with 49, 825 for training and
200 for validation, while Edges2handbags is the larger one
with 138,567 for training and 200 for validation.
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5.2 Implementation details

Lab2Pix-V1 training. For the semantic label to image task, we
set batch size N = 1, hyper-parameter T' = 2 and epochs as
100. During the whole training process, we linearly increase
Ao from zero to one. The learning rates are set as 0.0002 for
the first 50 epochs, and then decay to 0 in the remaining
50 epochs. For the sketch label to image task, we train the
network for 10 epochs with N = 4. Ay and the learning
rate are set as 1 and 0.0002 respectively. In addition, for all
experiments, we set A3 = 5e~% and Ay = 10. The Adam
optimizer [@} is adopted with 51 = 0.5 and B = 0.999, and
we choose vanilla adversarial loss calculation fﬂ} for a better
performance. All experiments are conducted on an NVIDIA
Titan Xp GPU.

Lab2Pix-V2 training. We design 4 GenResBlks apart from
those in the semantic label encoder and one downsample
operation on X3 to obain X5 for 512x256 and 256 x256. In the
higher-resolution (1024 x 512) synthesis model, 5 additional
GenResBlks and two downsample operations on X3 are set to
obtain X; and Xs. For the Cityscapes dataset, we set batch
size N = 20 for 512 x 256 image synthesis, and N = 8
for 1024 x 512 image synthesis. We train the model for 200
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AM i?2 mb2" bim/v-12TBMBBBZI iQ b r'7B # 2 /2 iBOM U.:@LQ KV iQ
MQ'K HT2QTH2 rBi?Qmi T Q72bbBQM H b |v]4 é"r @ﬂ’:%b b 70" saM2" BN
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100 b KTH2b 7Q° 2 +2 T "iB+BT iQ X 1 +2 + % +7BIZAIm 2 10 /Bbs BKEM
bvMi?2bBx2/ BK ;2b Q7 HH }p2 K2i?Q/b7 ') g L M/ +QKTH2U i2tim 2b rBi?
H #2H K TX g2 HbQ T QpB/2 i?2 +Q '2b1, T # H¢§2}-é . iQ 7Q+mb QM +? HH2
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h"Gle, 2bmHibQ7i?2mb2 bim/vQM *Bivb+ T2b- *P*P@aimz M/ .1kyE/ i b2ibX >B;?2
i?Bb K2i?Q/ "2 +QMbB/2°2/iQ ? p2 ?B:;?2 [m HBiv#v ?mK MX g2 HbQ T QpB/2i?2 hQTR
#2biirQ b KTH2bV * i2b Q7 2 +? K2i?Q/BM i?2 mb2" bim/vX

J2i?Q/ | J2 Ma+Q 2 hQTRUWYV | BIQRMMBWY 2 hQTRUWYV | IQMMUBWY 2 hQTRUWYV hQTkU
*Bivb+ T2b *P*P@aimz .1kyE
SBtkSBty. kX8R Xkd 3X8 kRX8 jXyyRXje NX9 kRXN kXeRXdd RkX]j kdXN
asS .1 kKX3R X9k RjXe k3Xe| jXRYRX9d R8XkkeX8 kX3®RXde R8X9jkX3
**@6Sal jX9IRXS8N k3Xk8yX9| jXR&X8d k8Xe 9INXj| jXRIRXNe kkX39jXN
haAh kXeRX8y RjXy k8Xk| jXRyRXee R3X3j8Xy jXykRX3R R3X8jNXe
G #kSBt@dkKedR Xee jeXd ekXy| jXKRRXNj]j JYXN 9dXR jXjNRXN3 jRXR8RXe

(j) hXS "F-JX@uX GBm- hX@*X q M;- M/ CX@uX (k8B X6aQK MiBX BWR@M;- GX : Q- sX GBm- M/ >X hX a“
:2 bvyMi?2bBb rBi? bT iB HHv@ / TiBp2 MQ K HBx+@BQMiB8M S Mb 7Q° 7 +2 ;BM; M/ '2Dmp2M iBC
kyRN X kyR3- TTX 3NN Ny8X

(9) gX amM M/ hX qm- 6G2 "MBM; bT iB H Tv' KB/(kié¢ aMiBDPQBE-QIXH@QB- JX EBK- CX@qX > - aX EBK- M/
BM; BM BK ;2 bvMi?2bBb M/ BK ;2@iQ@BK ;2 i° MdbiH iB\QMMBf2Bp2M2" iBp2 /p2°b "B H M2irQ ' Fb 7
T'2T'BMi sBp,RNyRXyejkk- kyRNX /QK BM BK ;2@iQ@BK ;2i° MbH iBQM-6 BM *0S_- ky

(8) hX@*X g M;- JIX@uX GBm- CX@uX w?m- X h Q-3@dXdX mix- M/

"X *i Mx Q- 6>B;?@ 2bQHmMIBQM BK ;2 bvMiPRdB» hMB; K2M-MXB SQHV F- M/ GX qQH7- 6IMbmT2 pB
K MBTmH iBQM rBi? +QM/BiBQM H; Mb-6 BM *0S _/QWYyBM BKX3dANB2" iBQM-6 BM A*G_- kyRdX
33ydX (k3pX a?m- uX g M;- sX CB - EX > M- >X *?22M- *X sm- 2

(e)>Xw? M;-hXsm->XGB-aXw? M;-sX g M;-sX>m MM/ W sn-X0*Q@2pQHmMiBQM v +QKT 2bbBQM 7Q "
J2i t b- 6ai +F; MYY, _2 HBbiB+ BK ;2 bvMi?2bBbirBMbHiiBEPM-6 BM A**0- kyRN- TTX jkj8 jk99X
;2M2° iBp2 /p2°b "B HM2irQ ' Fb-6 A111h” Mb ¢kBRX bEBMX w2 M;- SXh M- M/JX:QM;-6.m H; M, IMbn
M HvbBb M/J +?BM2 AMi2HHB;2M+2- pQHX 9R- MRXHSHZTXBNM9dZ @NBK-;2@iQ@BK ;2 i° MbH iBQM-56
kyR3X TTX k39N k38dX

(d) AX :QQ/72HHQr- CX SQm;2i@ # /B2- JX JB x {[YhMEBXKqJX2@® - >X EBK- CX EX G22- M/ CX EBK- 6
6 "H2v- aX Px B- X *Qm pBHH2- M/ uX "2M;BQQ bBBMQpadBp2Qbb@/QK BM 2H iBQMb rBi? ;2M2" i
/Ip2°b "B HM2ib-6 BM L2m ASa- kyR9- TTX kedk kd2ynQ Fb-6 BM A*JG- kyRd- TTX R38d R3e8X

(3) SX AbQH - CX@uX w?m- hX w?2Qm- M/ X X 17{[R)sXAK @ IM@REKCX"2HQM;B2- 6 "#Bi" "v bivH2 i° Ml
i MbH iBQM rBi? +QM/BiBQM H /p2'b "B H M2ir@QBRR-BBM/*dEBp2 BMbi M+2 MQ 'K HBx iBQM-06 BM A*
kyRdX R8Ry R8RNX

(N)JIX GB- >X >m M;- GX J - gqX GBm- hX w? M;-(jMCXXCQBMb,QM- X H ?B- M/ GX 62B@62B- 6S2 +2Tim
6IMbmT2 pBb2/ BK ;2@iQ@BK ;2 i° MbH iBQM rBiBk2 bRH2+tV+MBE@ ™ M/ bmT2 @ 2bQHmMIBQM-6 BM
+QMbBbi2Mi /p2°b "B HM2irQ Fb-6 BM 1**0- kyRZNBTKRR RNNX

(RYEX@uX w?m- hX S “F- SX AbQH - M/ X X (7)@%-J6IKAX Bm2/*X gX *?2M- M/ hX J2B- 6. @: L, BMb
BK ;2@iQ@BK ;2 i MbH iBQM mbBM; +v+H2@ + QH\RIpRIvi BMi ; 2 p2 MobHB iBQM #v /22T ii2MiBQM ;2M2" iB
M2irQ ' Fb-6 BM A**o- kyRd- TTX kkkj kkjkX M2irQ ' Fb-6 BM *0oS_- kyR3-TTX 8e8d 8eeeX

(RRX 1X p M /2 Pm/2° -9gQ " HH-6_2p2 'bB#H2 ;(MHaKQIK2KQ*?@- M/ CX a?BM- 6AMbi ; M, AMbi M+2@
2{+B2Mi BK ;2@iQ@BK ;2i° MbH iBQM-6 BM *0S_i&x@BNXX;2 i° MbH iBQM-8 BM A*G_- kyRNX

(Rk3X >m M;- JX@uX GBm- aX "2HQM;B2- M/ CX Ea)iX-@IMHiBKQHHBb- 6X >mbx - CX * # HH2 Q- X *
mMbmT2 pBb2/ BK ;2@iQ@BK ;2 i° MbH iBQM-6 BM Qb kyREXTBX-2M- X h2D MB-CX hQix-wX g M;-
Rdk R3NX 6S?QiQ@ 2 HBbiB+ bBM;H2BK ;2bmT2 @ 2bQHmMIiB«

(RjiNX@uX GBm- hX ""2m2H- M/ CX E mix- 6IMbmT2 pBdd/ BKH MRiOQ@F-6 BM *0S_- kyRd- TTX Ry8 RR9X
BK ;2i° MbH iBQM M2irQ Fb-8 BM L2m ASa- kyRel)s X TqXMy-y EDy Adn- aX gm- CX :m- uX GBm- *X .QM;- u

(R9IX GX .2MiQM- aX *?BMi H - _X 62 ;mb 2i HX-6.22M,/2M2XIBRZBKI@_: L,2M? M+2/bmT2 @ 2bQHmMIiBQ
;2 KQ/2Hb mbBM; H TH +B M Tv® KB/ Q7 /p2°b "BpRA ' M2ZB M2i6Q Fb-6 BM 1**0- kyR3- TTX ej dNX
BML2m ASa- kyR8- TTX R93e RINIX (jd)PX _QMM2#2°;2 - SX 6Bb+?22 - M/ hX " Qt-6l@M2i, *(

(R8BX X :ivb- X aX 1+F2'- M/JX "2i?;2- 6AK ;2 biviM2irQWBB27Q" #BQK2/B+ H BK ;2 b2;K2Mi iBQM-8 E
mMbBM; +QMpQHmMIiBQM HM2m' HM2irQ Fb-6 BM *@aJ_ BRy;Re- RTS8k IRIK kj9 k9R X
k9kijX (j3)sX GBm- :X uBM- CX a? Q- sX g M;- M/ >X GB- 6G:

(ReBX : Q-CX w?m- CX aQM;- 6X w?2M;- M/ >X hX aP2MB6éGHkDBii@iQ@BK ;2 +QM/BiBQM H +QMpQHmM
G #2H@ / TiBp2 ;2M2" iBp2 /p2'b "B HM2irQ F 78K mMbwMi22008B02-/6 BM L2m " ASa- kyRNX
BK ;2 bvMi?2bBb-86 BM *J JJ- kykyX (IN)GX CB M;- *X w? M;- JX >m M;- *X GBm- CX a?B- M/

(RdJX JIJB'x M/ aX PbBM/2 Q- 6*QM/BiBQM H ;2M2" iBHBi/jp2 WBKBIHH2 M/ p2 b iBH2 7° K2rQ'F 7Q° BK ;:
M2ib-6 ‘sBp T'2T'BMi 'sBp,RIRRXRd39- kyR9X i° MbH iBQM-06 BM 1**0- kykyX

(R3)X ""Q+F- CX .QM ?m2- M/ EX aBKQMvV M- 6GOy)X (PH2HR -; X .mKQmHBM- M/ *X PH ?- 6.2+QMpQH
i* BMBM; 7Q" ?B;? }/2HBiv M im> H BK ;2 bvMi?2Rb-R2BM) A7G iB7 +ib-0 .BbiBHH- pQHX R- MQX Ry-
kyRN X (9RAX ax2;2/v- gX GBm- uX CB - SX a2 'K M2i- aX _22/- .X

(RNQX *?2M M/ CX > vb-06aF2i+?v; M, hQr /b /Bp2'b2 M/I"2? WBmiB® M?Qm+F2- M/ X _ #BMQpB+?-6:QBM;
bF2i+? iQ BK ;2 bvMi?2bBb-6 BM *0S_- CmM2 kyR3®QMpQHmMiBQMb-86 BM *0S_- kyR8- TTX R NX

(kyuX Gm- aX gm- uX@gX h B- M/ *X@EX h M;- 6 Ak} X ahM2; iBBMNBM - 1X w F? "Qp- .X IHv MQp- M/ oX
7°QK bF2i+? +QMbi® BMi mbBM; +QMi2tim H ; M-60BMK 12 o MIBYyIRBH iBQM rBi? T2 +2Tim H/Bb+ BKBM i
TTX ky8 kkyX kyR3- TTX 8dN 8N8X

(KRYX GB- sX ZB- hX GmF bB2rB+x- M/ SX >X hQ " {9jjd XVBB K\Q,M2 tN@M/ X wBbb2 'K M- 602°v /22T +QMpQH
imB/2/ BK ;2 K MBTmH iBQM-6 BM *0S_- kykyX rQ'Fb 7Q  H “;2@b+ H2BK ;2 "2+Q;MBiBQM-6 BM A*C

(kkaX L K- uX EBK- M/ aX CX EBK- 6h2ti@ / TiBp292M®2 .2Bn2 @ .QM;- X aQ+?2'- GX@CX GB- EX GB-
p2'b "B HM2irQ ' Fb, K MBTmH iBM; BK ;2brBi? M B@BH&HAKI;AM2ip H ";2@b+ H2 ?B2° "+?B+ H BK ;2 |
BML2m ASa- kyR3-TTX 9k 8RX *0S X A222- kyyN-TTX k93 k88X

(kj)gX amM M/ hX gm- 6AK ;2 bvMi?2bBb 7 QK "2+ @¥gpd WPHM ;H AR @K :QQ/72HHQr- . X LX J2i t b- M/ X P/2
M/ bivH2-6 BM A**0- KyRN- TTX Ry 8jR Ry 89yX ii2MiBQM ;2M2" iBp2 /p2'b "B H M2irQ ' Fb-6 BM A*J

(kOQuUX GB-uX *?2M;-wX: M-GXum-GXqg M;- M/ CX GBjB9 djeqX; M,
>B;?@ 2bQHMIBQM BK ;2 bvMi?2bBb 7' QK b HRERXQ#HD GH K WYMEX BMu2- 6:2QK2i'B+ ; M-6 'sBp
*0oS_- kykyX "sBp,Rdy8Xyk3N9- kyRdX
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(9dhX E *> b- aX G BM2- M/ hX BH - 6 bivH2@# b2/ ;2M2  iQTBM:;Fm M aQM; Ua2MBQ  J2K#2 - A1]
“+?Bi2+im 2 7Q° ;2M2° iBp2 /p2'b B H M2irQ Fb-6 BM *0Stm "2MiHv S Q72bbQ" rBi? i?2 IMBp2"
KyRN- TTX 99yR 99RyX iH2+i"QMB+ a+B2M+2 M/ h2+?MQHQ;v

(930X E *> b- hX BH - aX G BM2- M/ CX G2?iBM2M- 6S Q; 2blBpah*V-*?22M;/m-*?BM X >Bb "2b2 ~+? B
:"QrBM; Q7 ; Mb 7Q  BKT Qp2/ [m HBiv- bi #BHBiv- M/ p "B iBXDWbBM+Hm/2 H “;2@b+ H2 KmHiBK2/B

BM A*G_- KyR3X BK ;2fpB/2Q b2;K2Mi iBQM M/ BK ;2fpl
(IN¥X w? Q- sX ZB- sX a?2M- CX a?B- M/ CX CB - 6A+M2i 7Q ° mMH@bi M/BM; mbBM; ? b?BM;- ;> T? |

iBK2 b2K MiB+ b2;K2Mi iBQM QM ?B;?@ 2bQHmMiBQM BK ;2b-BM sBM/ /22T H2 "MBM; i2+?MB[m2bX .

T 2T 'BMi “sBp,Rdy9Xy3898- kyRdX 2 b #22M M *faS*fS* J2K#2 Q7 Al11

(8ypX *Q lib- JX PK®™ M- aX KQb- hX _2?272H/- JX 1Mxr2BH2 -*QM72°'2M+2 QM *QKTmi2® oBbBQM M/
X"2M2MbQM- X 6" MF2-aX _Qi?- M/"Xa+?B2H2-06h?2 +Bivb+ 22X, MBiBQM 7Q" i?2 i2 K kyR3 kykR-
7ib2i 7Q° b2K MiB+ m'# M b+2M2 mM/2 bi MOBWK >32 BM @2SrBMM2° Q7 i?22"2bi S T2  r '/ BMAMIiI2'M i
kyReX 72°2M+2 QM S ii2°M _2+Q;MBiBQM- J2tB+Q- BM kyRe- i
(8R¥X * 2b - CX IBDHBM;b- M/ 0X 62" "B- 6*Q+Q@8@imrzz,/hBBRMmbM/HB M. i # b2 *QM72°'2M+2- mbi- HB
bimz +H bb2b BM +QMi2ti-6 BM *0S_- kyR3X M/i?2"2bi S T2 >QMQ" #H2 J2MiBQM r /- C T M- BM k
(8k)X w?2Qm- >X w? Q- SX SmB;- aX 6B/H2 - X" "BmbQ- M/ X hQ @
H# - 6a+2M2 T "bBM;i?"Qm;? /2kyF/ i b2i-6 BM *0S —kdeX
(8j)_X hvH2Ii2F M/ _X € -6aT iB HT ii2°"Mi2KTH i2b7Q" "2+Q;MB@
iBQM Q7 Q#D2+ib rBi? "2;mH ~bi'm+im 2-6 BM :2°'K M *QM72 2M+2
QM S ii2°M _2+Q;MBiBQM U:*S_VX aT BM;2 - kyRj-TTX je9 jdoX

(89)X SX EBM;K M/ CX " - 6/ K, K2i?Q/ 7Q" biQ+? biB+
QTiBKBx iBQM-6 "sBp T'2T'BMi 'sBp,R9RkXeN3y- kyR9X um M7 M; GB Bb a2MBQ  G2+im"2" i6 +
(88X GQM;- 1X a?2H? K2'- M/ hX . ""2HH- 66mHHvV +QMpPpQHMABIYIR ' iBQM h2+?MQHQ;v- JQM b? IME
M2irQ ' Fb7Q  b2K MiB+ b2;K2Mi iBQM-6 BM *0S_- kyR8- TTX j9jRbi~ HB X >2 "2+2Bp2/ ?Bb S?X.X BM +{
j99yX b+B2M+2 7°QK L iBQM HIMBp2 bBiv Q7
(8ePX um- oX EQHIimM- M/ hX 6mMF?Qmb2°- 6.BH i2/ "2bB/m H BMilggyeX >Bb "2b2 "+? BMi2 2bib BM+H1
rQ Fb-6 BM *0S_- kyRd- TTX 9dk 93yX 2/;2 ;7 T?b- FMQrH2/;2 "2T 2b2Mi iBQM

(8dGBX@*X *?2M- :X S T M/'2Qm- AX EQFFBMQb- EX Jm T?v- M/bQMBM;- QMiQHQ; ;v H M;m ;2b- M/ k
X GX umBHH2- 6.22TH #, a2K MiB+ BK ;2 b2;K2Mi iBQM rBi? /2MMTBM22 BM;X
+QMpPpQHMIBQM HM2ib- i'Qmb+QMpQHMIBQM- M/ 7mHHV +QMM2+i2/+ 7b-6
A111 hS JA-pQHX 9y-MQX 9- TTX 3j9 393- kyRdX
(83nhX sB Q- uX GBm- "X w?Qm- uX CB M;- M/ CX amM- 6IMB}2/
T2 +2Tim HT "bBM; 7Q° b+2M2 mM/2 bi M/BM;-6 BM 1**0- kyR3-
TTX 9R3 9j9X
(8NJX >2mb2H- >X _ Kb m2 - hX IMi2 i?BM2 - "X L2bbH2 - M/
aX >Q+?°2Bi2°- 6: Mb i BM2/ #v irQ iBK2@b+ H2 mT/ i2 "mH2
+QMp2';2iQ HQ+ H M b? 2[mBHB# BmK-6 BM L2m ASa- kyRd- TTX
eeke eejdX 62M; W?2M; UJ2K#2 - A111V “2+2Bp2/ i?2 S?X.X /2;°22
(eyY¥X ax2;2/v- oX o M?Qm+F2- aX AQz2- CX a?H2MBp2 M/BWMXQQAO®M {2H/- IXEX >2 Bb +m "2MiHv M bbBE
6_2i?BMFBM; i?2 BM+2TiBQM “+?Bi2+im 2 7QrB+®Q K’R2maQmg B2 BWQ W-BpRMbBiv Q7 a+B2M+2 M/ h2+?MQH
*0S_-kyRe- TTX k3R3 k3keX *?BM X >Bb "2b2 "+? BMi2 2bib BM+HmM/2 K +?BM2 H2
(eRWX g M;- X *X "QpBF- >X _X a?2BF?- 1X SX aBKiQMpBRHHBM2U*BX~ M/ ?2mK M +QKTmi2  BMi2" +iBQM
6AK ;2 [m HBiv bb2bbK2Mi, 77QK 2°°Q " pBbB#BHBiv iQ bi'm+im" H
bBKBH "Biv-6 A111 hAS- pQHX Rj- MQX 9- TTX eyy eRk- kyy9X
(ekhX E " b-aX G BM2- JX Bii H-CX >2HHbi2M- CX G2?iBM2M- M/
hX BH -6 M HvxBM; M/ BKT QpBM; i?2 BK ;2 [m HBiv Q7 bivH2@
; M-6 BM *0S_- kyky- TTX 3Ryd 3RReX

SM2HQM; GB UJ6yk@aJoyd@66RKkY Bb 7mHH T Q72bbc
iB}+B H AMi2HHB;2M+2- PSiB+b M/ 1H2+i ' QLB+b UBPS
SQHVi2+?MB+ HIMBp2 bBiv- sB6 M dRyydk- SX_X *?BM

CmM+?2M w?m Bb rQ FBM; iQr */ i?2 S?X.X
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