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ABSTRACT
GPU-based methods represent state-of-the-art in approximate near-
est neighbor (ANN) search, as they are scalable (billion-scale), accu-
rate (high recall) as well as efficient (sub-millisecond query speed).
Faiss, the representative GPU-based ANN system, achieves con-
siderably faster query speed than the representative CPU-based
systems. The query accuracy of Faiss critically depends on the num-
ber of indexing regions, which in turn is dependent on the amount
of available memory. At the same time, query speed deteriorates
dramatically with the increase in the number of partition regions.
Thus, it can be observed that Faiss suffers from a lack of robust-
ness, that the fine-grained partitioning of datasets is achieved at
the expense of search speed, and vice versa. In this paper, we intro-
duce a new GPU-based ANN search method, Robust Quantization
(RobustiQ), that addresses the robustness limitations of existing
GPU-based methods in a holistic way. We design a novel hierarchi-
cal indexing structure using vector and bilayer line quantization.
This indexing structure, together with our indexing and encod-
ing methods, allows RobustiQ to avoid the need for maintaining a
large lookup table, hence reduces not only memory consumption
but also query complexity. Our extensive evaluation on two pub-
lic billion-scale benchmark datasets, SIFT1B and DEEP1B, shows
that RobustiQ consistently obtains 2–3× speedup over Faiss while
achieving better query accuracy for different codebook sizes. Com-
pared to the best CPU-based ANN systems, RobustiQ achieves even
more pronounced average speedups of 51.8× and 11× respectively.
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1 INTRODUCTION
Approximate nearest neighbor (ANN) search of high-dimensional
data [13] is an important task in modern computer vision and deep
learning research. Quantization-based methods for ANN search
have recently attracted significant attention. The current breed of
high-performing billion-scale quantization-based ANN systems [1,
3, 4, 9, 15, 16] typically comprises three main components: (1) an
indexing structure that partitions the dataset space into a large
number of disjoint regions, (2) an encoding method that compresses
dataset points into a memory-efficient representation, and (3) a
search and query algorithm that, given a query point, computes the
distance between points only in the regions closest to the query
point.

GPUs provide massive parallelism and GPU-based methods rep-
resent state-of-the-art in quantization ANN search. It has been
shown that GPU-based systems are far superior to CPU-based
systems in terms of efficiency while maintaining comparable accu-
racy [9, 15]. To the best of our knowledge, there are two GPU-based
ANN systems that are capable of handling billion-scale datasets:
PQT [15] and Faiss [9]. PQT proposes a novel quantization method
call line quantization (LQ) and is the first billion-scale similarity
retrieval system on the GPU. Subsequently Faiss implements an
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indexing structure based on vector quantization (VQ) [11], and cur-
rently has the state-of-the-art performance on GPUs in both search
accuracy and speed.

We observe that the VQ-based system Faiss exhibit a lack of
robustness. There is an inherent trade-off between search accuracy
and search speed. An increase in one is typically achieved at the
expense of the other, and vice versa. The lack of robustness of
Faiss is mainly due to the inherent conflict between its indexing
structure and distance computation algorithm. To achieve high
accuracy, the VQ-based indexing structure needs to store a large
number of full dimensional centroids, which is memory-consuming.
At the same time, Faiss’ distance computation algorithm depends
on a precomputed, large lookup table, whose memory usage also
increases with the number of centroids. Given the limited amount
of memory on GPUs, Faiss needs to reduce either the number of
centroids or the size of the lookup table, resulting in reduced search
accuracy. Besides, the large lookup table needs to be frequently
visited during the query process, which reduces query speed.

In this paper, we present RobustiQ, a novel billion-scale ANN
similarity search framework. RobustiQ includes a three-level hier-
archical inverted indexing structure based on Vector and Bilayer
Line Quantization (VBLQ), which can be implemented on GPU effi-
ciently and an efficient approximate distance computation method.
The main contributions of our solution are threefold.

(1) We demonstrate how to increase the number of regions with
memory efficiency by the novel inverted index structure.
The efficient indexing contributes to high accuracy for ap-
proximate search.

(2) We propose a novel approximate distance algorithm that
do not depend on a memory-consuming lookup tables like
Faiss.

(3) A range of experiments shows that our system consistently
and significantly outperforms state-of-the-art GPU- and
CPU-based retrieval systems on both recall and efficiency
on two public billion-scale benchmark datasets with single-
and multi-GPU configurations.

The rest of the paper is organized as follows. Section 2 introduces
related works on indexing with quantization methods. Section 3
presents RobustiQ system, our approach for approximate nearest
neighbor (ANN)-based similarity search method and the details of
GPU implementation. Section 4 provides a series of experiments,
and compares the results to the state of the art.

2 RELATEDWORK
In this section, we briefly introduce some quantization methods
and several retrieval systems related to our approach. For example,
we assume that X = {x1, . . . , xN } ⊂ RD is a finite set of N data
points of dimension D.

2.1 Vector quantization (VQ) and Product
quantization (PQ)

In vector quantization [11] (Figure 1 a), a quantizer is a function
qv that maps a D-dimensional vector x to a vector qv (x) ∈ C ,
where C is a finite subset of RD , of k vectors. Each vector c ∈ C
is called a centroid, and C is a codebook of size k . We can use
Lloyd iterations [2] to efficiently obtain a codebook C on a subset

(a) Vector Quantization. (b) Product Quantiza-
tion.
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(c) Line Quantization.

Figure 1: Three different quantization methods. Vector and
Product quantization methods are both with k = 64 clusters.
The red dots in plot a and b denote the centroids and the grey
dots denote the dataset points in both plots. Vector quanti-
zation (a) maps the dataset points to the closest centroids.
Product quantization (b) performs clustering in each sub-
space independently (here axes). In plot (c), a 2-dimensional
point x (red dot) is projected on line l(ci , c j ) with the an-
chor point ql (x) (black dot). The a,b, c denote the values of
∥x − ci ∥

2,∥x − c j ∥
2 and ∥ci − c j ∥

2 respectively. We use the pa-
rameter λ to represent the value of ∥ci −ql (x)∥/c . The anchor
point ql (x) can be represented by ci , c j and λ. The distance
from x to l(ci , c j ) can be calculated by a,b, c and λ.

of the dataset. According to Lloyd’s first condition, to minimize
quantization error a quantizer qv should map vector x to its nearest
codebook centroid. Hence, the set of pointsXi = {x ∈ RD | qv (x) =
ci } is called a cluster or a region for centroid ci .

Product quantization [5] (Figure 1 b) is an extension of vector
quantization. PQ can generateKm centroids withm codebooks ofK
sub-centroids each. The benefit of PQ is that it can easily generate
a much larger number of centroids than VQ with moderate values
ofm and K . So PQ can be used to compress datasets. Typically each
sub-codebook of PQ contains 256 sub-centroids and each vector x
is mapped to a concatenation ofm sub-centroids (c1j1 , · · · , c

m
jm

), for
ji is a value between 1 and 256. Hence the vector x can be encoded
into anm-byte code of sub-centroid index (j1, · · · , jm ). With the
approximate representation by PQ, the Euclidean distances between
the query vector and the large number of compressed vectors can
be computed efficiently. According to the ADC procedure [7], the
computation is performed based on lookup tables.

∥y − x ∥2 ≈ ∥y − qp (x)∥
2 =

m∑
i=1

∥yi − ciji ∥
2 (1)

where yi is the ith subvector of a query y. The Euclidean distances
between the query sub-vector yi and each sub-centroids ciji can be
precomputed and stored in lookup tables that reduce the complexity
of distance computation from O(D) to O(m). Due to the high com-
pression quality and efficient distance computation approach, PQ is
considered the top choice for compact representation of large-scale
datasets[3, 4, 6, 10, 12].

2.2 Line quantization (LQ)
Line quantization (LQ) [15] quantizes a data point to a closest
project point ql (x) on a line. We also call the project point as an
anchor point. LQ owns a codebook C of K centroids like VQ. As
shown in Figure 1 (c), with any two different centroids ci , c j ∈ C ,



a line is formed and denoted by l(ci , c j ), and the anchor point is
denoted by ai j . A line quantizer ql quantizes a point x to the closest
anchor point on a line as follows:

ql (x) = argmin
ai j

d(x,ai j ), (2)

where d(x,ai j ) is the Euclidean distance from x to anchor point
ai j on the line l(ci , c j ), and the set Xi , j = {x ∈ RD |ql (x) = ai j } is
called a cluster or a region for line l(ci , c j ). The squared distance
d(x,ai j )

2 can be calculated as follows:

d(x,ai j )
2 = (1 − λ)∥x − ci ∥

2 + (λ2 − λ)∥c j − ci ∥
2

+ λ∥x − c j ∥
2 (3)

Because the values of ∥x − c j ∥
2, ∥x − ci ∥

2, ∥c j − ci ∥
2 can be pre-

computed between x and all centroids, Equation 3 can be calculated
efficiently. The anchor point ai j of x is computed in the following
way:

ai j = (1 − λ) · ci + λ · c j , (4)
where λ is a scalar parameter that can be computed as follows:

λ = 0.5 ·
(∥x − ci ∥

2 + ∥c j − ci ∥
2 − ∥x − c j ∥

2)

∥c j − ci ∥2
. (5)

When x is quantized to a region of l(ci , c j ), then the displacement
of x from ai j can be computed as follows:

rql (x) = x − ai j . (6)

For a codebook with K centroids, LQ can form K · (K − 1) lines,
or K · (K − 1) regions. Thus, the benefit of an LQ-based indexing
structure is that it can produce many more regions than that of
VQ-based regions. However it is considerably more complicated to
find the nearest line for a point when K is large. So we use LQ as
an indexing approach with a codebook of a few lines.

Faiss [9] is a very efficient GPU-based retrieval approach, by
realizing the idea of IVFADC [7] on GPUs. Faiss uses the inverted
index based on VQ [14] for non-exhaustive search and compresses
the dataset by PQ. The inverted index of IVFADC owns a vector
quantizer q with a codebook of K centroids. Thus there are K re-
gions for the data space. Each point x ∈ X is quantized to a region
corresponding to a centroid by a VQ quantizer qv . The displace-
ment of each point from the centroid of a region it belongs to is
defined as

rq (x) = x − q(x), (7)
where the displacement rq (x) is encoded by a PQ quantizer qp with
m codebooks shared by all regions. For each region, an inverted list
of data points is maintained, along with PQ-encoded displacements.

When the candidate list Lc for query is collected, the squared
distance between y and data point x ∈ Lc can be approximated by
following equation:

∥y − x ∥2 ≈ ∥y − q(x)∥2 = ∥y − qv (x) − qp (x − qv (x))∥
2. (8)

Moreover, the ∥y−q(x)∥2 in Equation 8 can be further decomposed
to following expression:

∥qp (· · · )∥
2 + 2⟨qv (x),qp (· · · )⟩︸                                   ︷︷                                   ︸

term1

+ ∥y − qv (· · · )∥
2︸             ︷︷             ︸

term2

− 2⟨y,qp (· · · )⟩︸         ︷︷         ︸
term3

,

(9)

where ⟨·, ·⟩ denotes the inner product between two points. The
term1 in Expression 8 is independent to of the query. It can be
precomputed from the quantizers, and stored in a lookup table T
of size K ×m × 256. However the storage of Table T is memory
consuming, when K andm is large. For example, when K = 218
andm = 16, it requires more than 2GB memories for the lookup
table. The large codebook and lookup table will slow down query
speed by a large margine. We will discuss that in Sec.4.1.

Ivf-hnsw [4] proposed on a two-level inverted index structure,
which can partition the data space better than that of Faiss with a
subtle memory overhead. Ivf-hnsw can splits the data space intoK ·n
regions with a vector quantizer q with a codebook of K centroids
and an n-nearest neighbor (n-NN) graph. The n-NN graph is a
directed graph in which nodes are first-level centroids and edges
connect a centroid to its n nearest neighbors. Then the second-level
centroids are built on the edges of the n-NN graph, and the second-
level regions are splited by the sub-censtroids. Ivf-hnsw has a better
query accuracy than Faiss, however, its query speed is much slower
than that of Faiss, because it is only implemented on CPU.

Inspired by the above two systems, We propose an efficient
indexing structure that is improved based on that of Ivf-hnsw and
a better GPU implementation than that of Faiss. The two factors
make our system has a better query accuracy and speed than Faiss
and Ivf-hnsw.

3 THE ROBUSTIQ SYSTEM
In this section we introduce our GPU-based ANN retrieval system,
RobustiQ, that contains a three-layer hierarchical indexing struc-
ture based on vector and bilayer line quantization (VBLQ) and an
asymmetric distance computation method (Sec. 3.1). The indexing
and encoding process will be presented in Sec. 3.2, and the querying
process is discussed in Sec. 3.3.

Comparing with the state-of-the-art GPU-based system Faiss,
RobustiQ has two main advantages. (1) Our VBLQ indexing struc-
ture can generate shorter and more accurate candidate lists for the
query point, which will considerably accelerate query speed. (2)
RobustiQ incorporates a novel encoding method that removes the
need for maintaining a large lookup table that is required by Faiss.
This reduction significantly reduces the complexity in distance
computation and hence contributes to the improvement in query
speed. In the remainder of this section we use Figure 2 to illustrate
our framework.

3.1 The VBLQ-based indexing structure
For billion-scale datasets with a moderate number of regions (e.g.
217) produced by vector quantization (VQ), the number of data
points in most regions is too large, which negatively affects search
accuracy (high quantization error) and query speed (a large fraction
to traverse). To alleviate this problem, we propose a hierarchical
indexing structure, the vector and bilayer line quantization (VBLQ)
method. In VBLQ, VQ is used as a global coarse quantizer to par-
tition the dataset space into several global regions, such as the
four shaded regions in Figure 2 (left). Each region is then locally
quantized into several sub-regions by a two-layer line quantizer.
Therefore, the data points in each region can be further distributed
into the sub-regions to avoid overcrowding in regions and also
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Figure 2: An illustration of our VBLQ-based indexing structure on data points (small blue dots) of dimension 2 (D = 2). Each
level of our indexing structure is described in a separate plot. The large red dots denote the first-level centroids, the small red
dots denote the second-level anchor points and the purple dots denote the third-level anchor points. The data point x (small
blue dots) is quantized to the closest anchor point in the middle and right plots. The middle and right plots are zoomed in and
masked to highlight the part relevant to the discussion. Left: The 4 shaded areas represent the first-level regions, which are
produced by VQ, one for each first-level centroid. They represent the fraction of the dataset that needs to be traversed for the
query point y by a VQ-based system such as Faiss. Middle: For the top-left centroid in the middle plot, n1 = 4 closest top-level
centroids are found. In other words the n1-NN graph consists of all the centroids and the first-level edges (thick dashed lines)
connecting each centroid to the n1 closest centroids. Each first-level region in the left figure is split into 4 second-level regions,
each of which encloses the data points closest to the second-layer anchor point aiu (small red dots) on the corresponding edge.
During query, only 1/2 of the closest second-level regions are retained fory. Right:We connect each second-layer anchor point
to another n2 = 2 nodes siuv which connect the same centroid ci and regard the lines between the anchor points and nodes as
the second-level edges (green dashed lines). Each second-level region is further split into 2 third-level regions, each of which
represents the data points closest to the third-layer anchor point aiuv (small purple dots) on the corresponding second-level
edge. Again only 1/2 of the closest third-level subregions (shaded in blue) need to be traversed for a query. As can be seen,
VBLQ allows search to process a substantially smaller fraction (1/4) of the dataset than a VQ-based approach such as Faiss.

reduce quantization error. Thus the proposed indexing structure
can substantially increase the search accuracy (lower quantization
error) and query speed (smaller fraction to traverse).

Our indexing structure is a three-layer hierarchical structure
which consists of two kinds of quantizers. The first level contains
a vector quantizer qv with a codebook of K centroids. The vector
quantizer qv partitions the data point space X into K regions. Each
first-level region is further split into n1 second-level regions by a
first-layer line quantizer q1l with an n1-nearest neighbor (n1-NN)
graph. Finally, each second-level region contains n2 third-level
regions by a second-layer line quantizer q2l with an n2-edge graph.

Illustrated in Figure 2 (middle), the line quantizer q1l is responsi-
ble for quantizing the data points in each first-level region to the
closest anchor points (small red dots) of first-layer edges (thick
blue dashed lines) in the region. In Figure 2 (right), within each
second-level region, we connect each anchor point (e.g. aiu ) on a
first-layer edge to another n2 (≤ n1 − 1) nodes (e.g. siuv ) which
connect to the same centroid (e.g. ci ) to form the n2 second-layer
edges (green dashed lines). Then the data points in each second-
level region is further quantized to n2 anchor points (small purple
dots) on the corresponding second-layer edges by q2l . Thus each
second-level region is divided into n2 third-level regions. Overall
there are K · n1 · n2 third-level regions in total.

Memory overhead of indexing structure. One advantage of
our indexing structure is its ability to produce substantially more

subregions with little additional memory consumption. Same as VQ,
our first layer codebook needsK ·D·sizeo f (float) bytes. In addition,
for second-level indexing, for each of the K first-layer centroids,
the n1-NN graph only needs to store (1) the indices of its n1 nearest
neighbors, (2) the distances to its n1 nearest neighbors, and (3)
the distances from the first-layer anchor points to its n2 nodes,
which amounts to K · n1 · (sizeo f (int) + (n2 + 1) · sizeo f (float))
bytes. Because We choose the n2 nodes in an fixed order, we don’t
need to store the indices of second-layer nodes. Moreover, we need
two sets of scalar parameters {λ11, · · · , λ1K }, {λ21, · · · , λ2K } to
compute the two-layer anchor points . That will comsume another
K · n1 · 2 · sizeo f (float) bytes. Note we do not need to store the
full-dimensional points. For a typical values of K = 217 centroids,
n1 = 32 and n2 = 4 , the additional memory overhead for storing
the graph is 217 · 32 · 8 · 4 bytes (134 MB), which is acceptable for
billion-scale datasets.

Instead of utilizing line quantization, an alternative way to pro-
duce the subregions is by utilizing vector quantization (VQ) hierar-
chically in each region. However, that would require storing full-
dimensional subcentroids and thus consume too much additional
memory. For the same configuration as above (K = 217 centroids
and n = 32 · 4 third-level subcentroids) and a dimension of D = 128,
the additional memory overhead for a VQ-based three-layer hierar-
chical indexing structure would be 217 · 32 · 4 · 128 · sizeo f (float)



additional bytes (4,096MB). As can be seen, our VBLQ-based hierar-
chical indexing structure is substantially more compact, consuming
only 3.3% of the memory required by a VQ-based hierarchical ap-
proach.

We note that the PQ-based indexing structure requires O(K ·

(D + K)) memory to maintain the indexing structure, which is
memory inefficient as it is quadratic in K . This is a limitation of
PQ-based indexing structure. In contrast, the space complexity of
our hierarchical indexing structure is O(K · (D + n1 · n2)), where
typically n1 ·n2 ≪ K (n1 ·n2 is much smaller than k), hence making
our index much more memory efficient.

3.2 Indexing and encoding
In this subsection we describe the indexing and encoding processes.
For our three-level VBLQ indexing structure, the indexing process
comprises two different quantization procedures, VQ for the first
layer and LQ for the second and third layers.

3.2.1 First-level indexing. Similar to the IVFADC scheme [7], each
dataset point is quantized by the vector quantizer qv to the first-
level regions surrounded by the solid lines in Figure 2 (left).

3.2.2 Second-level indexing. Let Xi be a region of {x1, . . . , xNi }

that corresponds to a centroid ci , for 1 ≤ i ≤ K . In constructing
the n1-NN graph, let Si = {si1, . . . , sin1 } denote the set of the n1
centroids closest to ci and l(ci , siu ) denote the edge between ci and
siu , for 1 ≤ u ≤ n1. Using the scalar parameter λ1i , The n1 anchor
points (small red dots in Figure 2) can be computed for the n1 edges
using Equation 4.

aiu = (1 − λ1i ) · ci + λ1i · siu . (10)

The points in Xi are then quantized to the n1 second-level re-
gions by a line quantizer q1l with the codebook Ai of n1 anchor
points {ai1, . . . ,ain1 }. Thus the regionXi is split inton1 subregions
{Xi

1 , . . . ,X
i
n1 } and each point x ∈ Xi is quantized to a second-level

subregion Xi
u , which corresponds to the closest anchor point aiu

on the edge l(ci , siu ).

3.2.3 Third-level indexing. Let Siu = {siu1, . . . , siun2 } denote the
set of the n2 nodes sampled from Si , where siuv , siu ∈ Si and
siuv , siu . We connect the anchor point aiu to all the nodes in the
Siu to form a n2-edge graph, and the l(aiu , siuv ) denotes a second-
layer edge between aiu and siuv , for 1 ≤ v ≤ n2. Using the scalar
parameter λ2i , The n2 anchor points (small purple dots in Figure 2)
can be computed for the n2 edges using Equation 4.

aiuv = (1 − λ2i ) · aiu + λ2i · siuv . (11)

Thus, each second-level region Xi
u is further split into n2 third-

level regions {Xi
u1, . . . ,X

i
un2 }. The points in Xi

u are quantized to
the n2 third-level regions by a line quantizer q2l with a with a
codebookAiu ofn2 anchor points {aiu1, . . . ,aiun2 }. Each pointx ∈

Xi
u is assigned to a third-level subregion Xi

uv , which corresponds
to the closest anchor point aiuv (small purple dots in Figure 2
(right)) on the edge l(aiu , siuv )). So the entire space X are divided
into K × n1 × n2 third-level regions. As can be seen in the figure,
comparing to first-level centroids (large red dots), the second-level
anchor points are closer to the data points and query point, resulting
in smaller quantization errors in VBLQ than in VQ. Therefore,

RobustiQ is able to improve search accuracy while reducing search
space.

Sampling the second-level nodes. We use a uniform-interval
sampling method to choose the second-level nodes. We assume
that the n1 = 32 and n2 = 4, so the interval equals to 32/4 = 8. So
we choose si1, si9, si17 and si25 from the first-level nodes set Si to
form a subset Siu for the anchor point aiu . If u is in the numbers
of {1, 9, 17, 25}, i.e. siu is sampled to the subset Siu, we use si(u+1)
to replace the node siu . Although the uniform-interval sampling
method is not the optimal way to choose the second-level nodes,
it is the most straightforward way to construct an n2-edge graph
for the second-level anchor points and proved to be efficient and
effective.

Learning λ1i and λ2i .According to Line quantization, each data
point x has its own anchor point when quantized to a edge, and
each anchor point corresponds to a scalar parameter λ, however
that will increase the complexity of the distance computation for
our system. In order to simplify the computation we unified all
the anchor points on the same edge to a single anchor point by a
uniformed parameter λ. So we use two parameters λ1i and λ2i for
the line quantizers q1l and q2l respectively within each first-level
regionXi . The value of λ1i and λ2i in Equation 10 and 11 are learnt
on the training set. Given a first-level region Xi corresponding to
first-level centroid ci , letXi contain Ni data points. Each data point
x j ∈ Xi is quantized to a nearest first-level edge l(ci , siu ) by line
quantizer q1l .

The scalar parameter λ1i is used to compute the anchor point
aiu , and its value is computed by averaging the projections of all
data points in the second-level subregions, by computing λ1j .

λ1i =
1
Ni

Ni∑
j=1

λ1j . (12)

According to Equation 5, the scalar parameters λ1j can be com-
puted as follows:

λ1j = 0.5 ·
(∥x j − ci ∥

2 + ∥siu − ci ∥
2 − ∥x j − siu ∥

2)

∥siu − ci ∥2
(13)

When λ1i has been learnt, the anchor point aiu is determined for the
edge l(ci , siu ). x j is then quantized to a nearest second-level edge
l(aiu , siuv ) by line quantizer q2l . Similarly, the scalar parameter λ2j
is computed by the following equation:

λ2j = 0.5 ·
(∥x j − aiu ∥

2 + ∥siuv − aiu ∥
2 − ∥x j − siuv ∥

2)

∥siuv − aiu ∥2
. (14)

And the value of scalar parameters λ2i is computed as follows:

λ2i =
1
Ni

Ni∑
j=1

λ2j . (15)

3.2.4 Encoding. To encode data point x by PQ, the displacement
between x and the corresponding anchor point is required first.
Suppose data point x is quantized to the third-level region of anchor
point aiuv on second-level edge l(aiu , siuv ), the displacement can
be computed as follows:

rql (x) = x − aiuv , (16)

where aiuv can be computed according to Equation 11.



The value of rql (x) is first computed by Equation 16 and en-
coded intom bytes using PQ [7]. The PQ codebooks are denoted by
C1, . . . ,Cm , each containing 256 sub-centroids. The vector rql (x)
is mapped to a concatenation ofm sub-centroids (c1j1 , · · · , c

m
jm

), for
ji is a value between 1 and 256. Hence the vector rql (x) is encoded
into anm-byte code of sub-centroid index (j1, · · · , jm ). In Figure
1(c), assuming ci is the closest centroid to x , we can observe that
the anchor point of point x is closer to it than ci . So the dataset
points can be encoded more accurately with the same code length.
This will improve the recall rate of search, as can be seen in our
evaluation in Section 4.

3.3 Query
One important advantage of our VBLQ indexing structure is that
at query time, a specific query point only needs to traverse a small
number of regions whose edges are closest to the query point, as
shown in Figure 2 (right). There are three steps for query processing:
(1) region traversal, (2) distance computation and (3) re-ranking.

3.3.1 Region traversal. The region traversal process consists of two
steps: first-level regions traversal and second-level regions traversal.
During first-level regions traversal, a query point y is quantized
to itsw1 nearest first-level regions produced by quantizer qv , and
thew1 nearest first-level regions correspond tow1 ·n1 second-level
regions. The second-level regions traversal is then performedwithin
only thew1 ·n1 second-level regions. Moreover,y is quantized again
tow2 = α1 ·w1 · n1 nearest third-level regions by quantizer q1l .

Next, the third-level regions traversal is performed again within
only thew2 ·n2 third-level regions. Andy is further quantized again
tow3 = α2 ·w2 ·n2 nearest third-level regions by quantizer q2l . Then
the candidate list of y is formed by the data points only within the
w3 nearest third-level regions.

Because thew3 third-level regions is obviously smaller than the
w1 first-level regions, the candidate list produced by our VBLQ-
based indexing structure is shorter than that produced by the VQ-
based indexing structure, such as the one used by Faiss. This will
result in a faster query speed of RobustiQ.

We use parameter α1 to determine the portion ofw1 · n1 second-
level regions and parameter α2 to determine the portion ofw2 · n2
third-level regions to be traversed give a query, such that w3 =
α1 · α2 · w1 · n1 · n2. In practice, we observed that α1 = 0.25 and
α2 = 0.5 provide significant search acceleration with negligible
(less than 1%) accuracy loss.

3.3.2 Distance computation. Distance computation is a prerequi-
site condition for candidate re-ranking. Given a query point y and
a candidate point x , the approximate distance between y and x
can be evaluated by asymmetric distance computation (ADC) as
follows [7]:

∥y − q1(x) − q2(x − q1(x))∥
2 (17)

where q1(x) is the anchor point on the closest line and q2(· · · ) is
the PQ approximation of the xi displacement.

Expression 17 can be further decomposed as follows [3]:

∥y − q1(x)∥
2 + ∥q2(· · · )∥

2 + 2⟨q1(x),q2(· · · )⟩−
2⟨y,q2(· · · )⟩.

(18)

where ⟨·, ·⟩ denotes the inner product between two points.

If the anchor point aiuv is the closest anchor point to x , i.e.,
q1(x) = aiuv , Expression 18 can be transformed in following ex-
pression according to Expression 9 :

∥q2(· · · )∥
2 + 2⟨aiuv ,q2(· · · )⟩︸                                 ︷︷                                 ︸

term1

+ ∥y − aiuv ∥
2︸         ︷︷         ︸

term2

− 2⟨y,q2(· · · )⟩︸         ︷︷         ︸
term3

.

(19)
According to Equation 3 and 11, term2 in Expression 19 can be

computed in the following way:

∥y − aiuv ∥
2 = (1 − λ2i ) ∥y − aiu ∥

2︸       ︷︷       ︸
term4

+

(λ22i − λ2i ) ∥aiu − siuv ∥
2︸           ︷︷           ︸

term5

+λ2i ∥y − siuv ∥
2︸        ︷︷        ︸

term6

.
(20)

According to Equation 3 and 10, term4 and term5 in Expression
20 can be computed in the following expression respectively:

(1 − λ2i )∥y − ci ∥
2 + (λ21i − λ1i )∥ci − siu ∥

2 + λ1i ∥y − siu ∥
2, (21)

and

(1 − λ1i )∥siuv − ci ∥
2 + (λ21i − λ1i )∥ci − siu ∥

2 + λ1i ∥siuv − siu ∥
2.

(22)
In Expression 19 and Equation 20, some computations can be

performed in advance and stored in a lookup table as follows:
• Term1 is independent of the query. It can be precomputed
when the data point is encoded. We quantized it into 256
values and explicitly keep its quantized value as an additional
byte for each data point. The lookup table just need 256
floating point values.

• Term2 are the distances from the query point to the closest
second-level anchor points. They can be precomputed during
region traversal.

• Term4 is the scalar product of the PQ sub-centroids and
the corresponding query subvectors and can be computed
independently before the search. Its computation costs 256×
D multiply-adds [9].

The proposed decomposition is used to simplify the distance
computation. According to Faiss, It need to maintain a large lookup
table of 2 ·K ·m · 256 bytes for Term1. The lookup table grows with
the codebook size and have a negative impact on query speed when
it grows large. While our decomposition only need 4 · 256 bytes
for Term1. Therefore the proposed decomposition is more scalable.
Our decomposition only costs 256 · D multiply-adds, while that of
Faiss requires 256 · D multiply-adds andw1 ·m · 256 additions [9].
Hence, the distance computation of RobustiQ is more efficient in
terms of memory and runtime.

3.3.3 Re-ranking. Re-ranking is the last step of the query process.
It sorts the list of candidates data points by their distances to the
query point. We employ the efficient sorting algorithm of [9] in
our re-ranking step. Due to the shorter candidate list and the more
efficient approximate distance computation, the re-ranking step of
our system is both faster and more accurate than that of Faiss.

4 EXPERIMENTS AND EVALUATION
In this section, we evaluate the performance of our system Ro-
bustiQ in terms of query speed and query accuracy. We compare



RobustiQ against three state-of-the-art billion-scale ANN search
systems, including Faiss [9], the best GPU-based system and two
GPU-based retrieval systems Ivf-hnsw [4] and Multi-D-ADC [2].
All experiments are conducted on a machine with two 2.1GHz Intel
Xeon E5-2620 v4 CPUs and two NVIDIA GTX Titan X GPUs with
12 GB memory each.

The evaluation is performed on two large public available datasets
that are commonly used to evaluate billion-scale ANN search:
SIFT1B [8] of 109 128-D vectors and DEEP1B [16] of 109 96-D
vectors. Each dataset has a 10,000 query set with the precomputed
ground-truth nearest neighbors. For RobustiQ, we sample 2 × 106
vectors from each dataset for learning all the trainable parame-
ters. We evaluate query accuracy by Recall@k , which is the rate of
queries for which the nearest neighbor is in the top k results.

4.1 Recall rate and query time
In experiment 1, we evaluate the recall rates and query time of all
the systems. Each system is configured as follows:

(1) Faiss. We construct three VQ codebooks of different number
of centroids using Lloyd iteration: K = 218/217/216.

(2) Ivf-hnsw. We use a codebook of K = 217 centroids as de-
scribed in Sec. 2.1, and set 64 sub-centroids for each first-level
centroid.1

(3) Multi-D-ADC. We construct two codebook with different
sizes: K = 212/214 and use the implementation from the
Faiss library.

(4) RobustiQ. We use VQ (the same codebooks as Faiss) as the
first-level indexing structure, a 32-edge k-NN graph as the
second-level indexing structure, and a 4-edge graph as the
third-level indexing structure.

We report the Recall@k values for different k = 1/10/100, aver-
age query time on both datasets in milliseconds (ms), and speedup
(su) over the slowest system.We compare RobustiQwith the current
state-of-the-art GPU-based system Faiss with different codebook
sizes in Table 1. For these two GPU-based systems, the experiments
are performed on 1 GPU for the 8-byte encoding length, and on 2
GPUs for the 16-byte encoding length. From Table 1, a number of
observations can be made.

(1) Overall superiority. RobustiQ outperforms Faiss in both
accuracy and query time by a large margin, in all experimental
settings except for R@100 with 16-byte codes for both datasets.

(2) Substantial speedup. For each codebook size, RobustiQ out-
performs Faiss in query time. The speedup is especially prominent
for the largest codebook (K = 218), where RobustiQ provides a
speedup of ~3×.

(3)Enhanced robustness.The query speed of Faiss deteriorates
considerably when the codebook size increases. For SIFT1B with
8-byte encoding length, the query speed of Faiss with codebook size
K = 217 is 3x slower than that of Faiss with codebook size K = 216.
In contrast, in the same circumstance, the query speed of RobustiQ
with codebook size K = 217 is just 2× slower than K = 216, and
the average query time of codebook size K = 217 only increased
0.03ms, comparing to the 1.83ms increase for Faiss.

1We use implementation of Ivf-hnsw that is available online (https://github.com/
dbaranchuk/ivf-hnsw) for all the experiments.

Table 2 presents the comparison with the two best CPU-based
systems, Ivf-hnsw and Multi-D-ADC. The codebook of size 217 for
RobustiQ is chosen for comparison as its performance is the most
balanced between search quality and query speed. From the table
we can make the following important observations.

(1) Remarkable speedup. RobustiQ is consistently faster than
the two systems by an order of magnitude in all experiments. For
all configurations, RobustiQ’s query time is around 0.062 millisec-
onds, while the other systems’ query times vary greatly. Compared
to Ivf-hnsw, RobustiQ is on average 51.8× faster and up to 62×
faster. RobustiQ is also consistently faster than Multi-D-ADC, by
an average 11× speedup.

(2) Competitive accuracy. At the same time, on DEEP1B, Ro-
bustiQ achieves best recall while being also the fastest. On SIFT1B,
RobustiQ does not exhibit best recall values, though the difference
from the best values are quite small.

4.2 Robustness comparison
Table 1 gives a detailed account of RobustiQ’s performance advan-
tage over Faiss with different codebook sizes. In this experiment
we compare the robustness of RobustiQ against Faiss. Figure 3
shows, for SIFT1B and DEEP1B, the change in recall and query time
for Faiss and RobustiQ for the same codebook sizes and encoding
length. As can be seen in the figure, the recall value of both systems
naturally increase with the increase in codebook size. More impor-
tantly, the query time increase of RobustiQ is much slower than
that of Faiss, clearly demonstrating RobustiQ’s superior robustness
over Faiss.

We also evaluated the performance of RobustiQ with different
parameter settings and found that increasing the number of second-
level and third-level edges can improve search accuracy, while
slightly increasing query time.

5 CONCLUSION
Approximate nearest neighbor (ANN) search has important applica-
tion in large-scale machine learning and computer vision research,
and has recently gained significant attention. GPU-based methods
such as Faiss are able to handle billion-scale datasets, and they
represent the state-of-the-art in ANN performance, in terms of
both search accuracy speed. However, the vector quantization (VQ)-
based indexing structure of Faiss is not robust enough, so that
the increase in search accuracy is achieved only with significantly
reduced search speed.

We present RobustiQ, a GPU-based ANN search method that
addresses the inherent robustness limitation of VQ. RobustiQ in-
corporates two congruent components: (1) a novel hierarchical
indexing structure comprising one layer of vector quantization and
two layers of line quantization that induces smaller quantization
errors than VQ, and (2) an indexing and encoding method that
uses sampling to improve space efficiency of indexing and time
complexity of querying. Together, they allow RobustiQ to optimise
both search accuracy and speed.

Our comprehensive evaluation on two public billion-scale bench-
marks, SIFT1B and DEEP1B, show the overall superior performance
of RobustiQ over Faiss in both search accuracy and speed, achieving
an average speedup of 2–3×. We also demonstrate the improved

https://github.com/dbaranchuk/ivf-hnsw
https://github.com/dbaranchuk/ivf-hnsw


Table 1: Performance comparison between RobustiQ and Faiss of recall@1/10/100, query time (ms) and speedup (su) on SIFT1B
and DEEP1B. We compare the two systems under three codebooks of different sizes (K). Speedup is computed against the
slowest system. Best result in each column is bolded, and second best is underlined.

System (K )
SIFT1B DEEP1B

8 bytes 16 bytes(2 GPUs) 8 bytes 16 bytes(2 GPUs)
R@1 R@10 R@100 t (ms) su R@1 R@10 R@100 t (ms) su R@1 R@10 R@100 t (ms) su R@1 R@10 R@100 t (ms) su

Faiss (218) 0.1383 0.4432 0.7978 0.31 1× 0.3180 0.7825 0.9618 0.280 1× 0.2101 0.4675 0.7438 0.32 1× 0.3793 0.7650 0.9509 0.33 1×
Faiss (217) 0.1310 0.4262 0.7833 0.25 1.24× 0.3077 0.7590 0.9445 0.10 2.8× 0.2038 0.4520 0.7330 0.26 1.2× 0.3715 0.7517 0.9361 0.18 1.8×
Faiss (216) 0.1231 0.4198 0.7763 0.077 4× 0. 3018 0.7569 0.9556 0.064 4.37× 0.1976 0.4318 0.7173 0.064 5× 0.3658 0.7415 0.9411 0.063 5.2×
RobustiQ (218) 0.173 0.540 0.860 0.10 3.1× 0.3535 0.8115 0.9538 0.11 2.54× 0.240 0.530 0.817 0.098 3.3× 0.4047 0.7967 0.9469 0.10 3.3×
RobustiQ (217) 0.165 0.517 0.840 0.060 5× 0.3488 0.7925 0.9355 0.062 4.5× 0.231 0.513 0.782 0.061 5.2× 0.395 0.7676 0.925 0.060 5.5×
RobustiQ (216) 0.1623 0.5063 0.819 0.030 10× 0.3319 0.7640 0.9004 0.033 8.5× 0.217 0.483 0.76 0.030 10.7× 0.3800 0.7511 0.8964 0.030 11×

Table 2: Performance comparison between RobustiQ and two CPU-based systems of recall@1/10/100, query time (ms) and
speedup (su) on SIFT1B and DEEP1B. For each system the codebook size is specified beneath each system’s name. Speedup is
computed against the slowest system. Best result in each column is bolded, and second best is underlined.

System (K )
SIFT1B DEEP1B

8 bytes 16 bytes 8 bytes 16 bytes
R@1 R@10 R@100 t (ms) su R@1 R@10 R@100 t (ms) su R@1 R@10 R@100 t (ms) su R@1 R@10 R@100 t (ms) su

Ivf-hnsw
(217)

0.1708 0.5247 0.8217 2.57 1× 0.3575 0.7796 0.8855 3.55 1× 0.230 0.506 0.7724 2.82 1× 0.3646 0.7491 0.8804 3.72 1×

Multi-D-ADC
(214 × 214)

0.1703 0.5270 0.8530 0.423 6× 0.3572 0.8048 0.9314 0.587 6× 0.2034 0.4543 0.7389 0.632 4.5× 0.3693 0.7405 0.9190 1.065 3.5×

Multi-D-ADC
(212 × 212)

0.1420 0.4720 0.8183 0.367 7× 0.3324 0.8029 0.9752 1.603 2.2× 0.1874 0.4240 0.6979 0.839 3.4× 0.3557 0.7087 0.9059 1.52 2.4×

RobustiQ (217) 0.165 0.517 0.840 0.060 42.1× 0.3488 0.7925 0.9355 0.062 57.2× 0.231 0.513 0.782 0.061 46.2× 0.395 0.7676 0.925 0.060 62×
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Figure 3: Comparison of recall@10 and average query time between RobustiQ and Faiss under the same codebook sizes. The
two systems are compared with 8-byte encoding length. The x axis indicates the 3 different codebook sizes (K = 216/217/218).
The left y axis is the recall@10 value and the right y axis is the average query time (ms).

robustness over Faiss, as RobustiQ is much less susceptible to the
negative impact on query speed from increase in search accuracy.
Compared with the two best CPU-based ANN systems, RobustiQ
achieves up to 58.3× speedup .
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