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Abstract

Question answering is an effective method for obtaining information from knowledge bases (KB). In this paper, we propose the
Neural-Symbolic Complex Question Answering (NS-CQA) model, a data-efficient reinforcement learning framework for complex
question answering by using only a modest number of training samples. Our framework consists of a neural generator and a
symbolic executor that, respectively, transforms a natural-language question into a sequence of primitive actions, and executes
them over the knowledge base to compute the answer. We carefully formulate a set of primitive symbolic actions that allows
us to not only simplify our neural network design but also accelerate model convergence. To reduce search space, we employ
the copy and masking mechanisms in our encoder-decoder architecture to drastically reduce the decoder output vocabulary and
improve model generalizability. We equip our model with a memory buffer that stores high-reward promising programs. Besides,
we propose an adaptive reward function. By comparing the generated trial with the trials stored in the memory buffer, we derive
the curriculum-guided reward bonus, i.e., the proximity and the novelty. To mitigate the sparse reward problem, we combine the
adaptive reward and the reward bonus, reshaping the sparse reward into dense feedback. Also, we encourage the model to generate
new trials to avoid imitating the spurious trials while making the model remember the past high-reward trials to improve data
efficiency. Our NS-CQA model is evaluated on two datasets: CQA, a recent large-scale complex question answering dataset, and
WebQuestionsSP, a multi-hop question answering dataset. On both datasets, our model outperforms the state-of-the-art models.
Notably, on CQA, NS-CQA performs well on questions with higher complexity, while only using approximately 1% of the total
training samples.
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1. Introduction

Knowledge base question answering (KBQA) [1, 2, 3, 4, 5]
is an active research area that has attracted significant attention.
KBQA aims at interpreting natural-language questions as log-
ical forms, action sequences, or programs, which could be di-
rectly executed on a knowledge base (KB) to yield the answers.

Many techniques have been proposed for answering single-
hop or multi-hop questions over a knowledge base. Neural
network-based methods [1, 2, 3, 4, 5] represent the state-of-the-
art in KBQA. More recently, complex knowledge base question
answering (CQA) [6] has been proposed as a more challenging
task. Complex question answering, the subject of this paper,
focuses on aggregation and multi-hop questions, in which a se-
quence of discrete operations – e.g., set conjunction, counting,
comparison, intersection, and union – needs to be executed to
derive the answer.

Complex question answering is typically cast as a seman-
tic parsing problem, whereby natural-language questions are
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Figure 1: An example illustrating the task of complex question answering.

transformed into appropriate structural queries (sequences of
discrete actions). Such queries are then executed on the knowl-
edge base to compute the answer. Consider the complex ques-
tion “How many rivers flow through India and China?” as a
motivating example. Fig. 1 shows an incomplete sub-graph
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relevant to this question. To answer this question, all entities
whose type is “river” and link to the entity “China” with edge
“flow” will first need to be retrieved from the KB to form the
candidate set S A. Meanwhile, the candidate set S B will also be
formed to represent those rivers that flow through India. After
obtaining the intersection of S A and S B, the number of elements
in the intersection can finally be identified as the correct answer
to the question. It can be seen that a diverse set of operations,
including selection, intersection, and counting operations need
to be sequentially predicted and executed on the KB.

Sequence-to-sequence (seq2seq) models learn to map natu-
ral language utterances to executable programs, and are thus
good model choices for the complex question answering task.
However, under the supervised training setup, such models re-
quire substantial amounts of annotations, i.e., manually anno-
tated programs, to effectively train. For practical KBQA appli-
cations, gold annotated programs are expensive to obtain, thus
most of the complex questions are not paired with the annota-
tions [7]. Reinforcement learning (RL) is an effective method
for training KBQA models [8, 9] as it does not require annota-
tions, but only denotatinons (i.e. answers) as weak supervision
signals. However, RL-based KBQA methods face a number of
significant challenges.

Sparse reward. Neural-symbolic models that are optimized
through RL have been proposed for the complex question an-
swering task [8, 7, 9]. In the RL context, questions of the same
pattern could be regarded as one single task, while programs
trying to solve these similar questions are considered trials.
Instead of using the gold annotations, neural-symbolic mod-
els employ rewards, i.e., comparisons between the predicted
answer and the ground-truth answer as the distant supervision
signal to train the policy [8, 9]. Usually, a positive reward
could only be given at the end of a long sequence of correct
actions. However, in the initial stage of model training, most of
the trials sampled from the sub-optimal policy attain small or
zero rewards [10]. We randomly selected 100 questions from a
complex question answering dataset, and manually inspect the
generated trials. We found that more than 96.5% of the gen-
erated trials led to wrong answers and got zero reward. Thus,
this sparse reward problem in the complex question answering
task is a major challenge that current neural-symbolic models
face.

Complex Imperative Program Induction from Terminal Re-
wards (CIPITR) [7] is the state-of-the-art method for the com-
plex question answering task. It employs high-level constraints
and additional auxiliary rewards to alleviate the sparse reward
problem. By using pre-defined high-level constraints, CIPITR
restricts the model to search for possible actions that are seman-
tically correct. Besides, it rewards the model by the additional
feedback when the generated answers have the same type of
ground-truth answers. However, on the one hand, defining the
high-level constraints comes at the cost of manual analysis to
guide the model’s decoding process, which is tedious and ex-
pensive. On the other hand, CIPITR only harnesses the type of
predicted answers as the auxiliary reward, which makes many
failed experience still only have a zero reward. At the initial
stage of training, most of the programs generated by CIPITR

fail to yield expected answers and gain zero rewards, thus most
of the programs do not contribute to model optimization. Thus,
the sparse reward problem remains a challenge for CIPITR.

Data inefficiency. Furthermore, due to the sparse super-
vision signals, such models are often data inefficient, which
means many trials are required to solve a particular task [11].
Being trained from scratch, RL models often need thousands
of trials to learn a simple task, no matter what policy is em-
ployed to search programs. When faced with a large number
of questions, training such models would consume an enor-
mous amount of time. One way to increase data efficiency is
to acquire task-related prior knowledge to constrain the search
space. However, in most cases, such prior knowledge is un-
available unless manual labeling is employed. Hence, the data
inefficiency problem often makes models expensive to train and
thus infeasible/impractical. Liang et al [8] proposed the Neu-
ral Symbolic Machine (NSM) that maintains and replays one
pseudo-gold trial that yields the highest reward for each train-
ing sample. When using RL to optimize the policy, NSM as-
signs a deterministic probability to the best trial found so far to
improve the training data efficiency. However, in NSM, the best
trial to be replayed might be a spurious program, i.e., an incor-
rect program that happens to output the correct answer. Under
such circumstances, NSM would be misguided by the spurious
programs since such programs could not be generalized to other
questions of the same pattern. Besides, NSM only harnesses the
accuracy of the predicted answers to measure the reward, hence
also suffers from the sparse reward problem.

Large search space. Large KBs, like Wikidata [12] or Free-
base [13], contain comprehensive knowledge and are suitable
to be sources for complex question answering. The KBs with
smaller size usually embrace a limited number of facts, thus are
insufficient to yield the required answers. To answer the ques-
tions, searching for KB artifacts (entities, classes, and predi-
cates in KB) that are related to the questions is a crucial step.
However, large KBs often lead to vast search space. Given a
sequence of actions, at each step of its execution, both the op-
erator and the parameters, i.e., KB artifact, used in action need
to be correct. To produce the correct result, the actions in the
sequence also need to follow a particular order. With the above
factors combined, searching desired action sequences would
consume a considerable amount of time and memory, which
makes the training process slow and expensive. How to design
a set of simple yet effective actions that could reduce the search
space remains a challenge.

In this paper, we propose a Neural-Symbolic Complex Ques-
tion Answering framework, NS-CQA. It trains a policy to gen-
erate the desired programs from the comparison between the
generated answer and the ground-truth result. We incorporate
a memory buffer, design an adaptive reward function, and pro-
pose a curriculum-guided reward bonus to improve the model.

To reduce search space, we use a combination of simple yet
effective techniques to reduce model complexity, increase gen-
eralizability, and expedite training convergence. We employ the
widely-used masking technique to allow the model to handle
unseen KB artifacts effectively. In conjunction, the copy mech-
anism [14] is also employed to reduce the size of the decoder
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Figure 2: Overview of the proposed NS-CQA model.

output vocabulary drastically. Accordingly, the decoder output
vocabulary only needs to contain the primitive actions and a
handful of masks, instead of the entire KB. Also, we carefully
craft a set of primitive actions that are necessary for the complex
question answering task and simplify the query form to reduce
the search space. Our primitive actions free the model from
the need for maintaining expensive and sophisticated memory
modules. On the contrary, the model maintains the intermediate
results in a simple key-value dictionary. The model can directly
compute the final answer to a question by executing a correct
sequence of primitive actions.

Different from previous neural-symbolic models for the com-
plex question answering task, our NS-CQA framework is de-
signed to augment the sparse extrinsic reward by a dense
intrinsic reward and exploit trials efficiently.

Instead of using the manually defined high-level constraints
as in CIPITR, we employ a random search algorithm to find a
few pseudo-gold annotations that lead to correct answers. The
pseudo-gold annotations are used as supervision signals to pre-
train the model, which could guide the model to filter out in-
feasible action sequences. Consequently, in the initial training
stage, we mitigate the cold start issue by using the pseudo-gold
annotations as demonstration data to pre-train our model.

Moreover, instead of recording one trial for each question,
we maintain a memory buffer to store the promising trials, i.e.,
the action sequences that lead to the correct answer or gain high
rewards. In our work, on the one hand, we aim to converge a
behavior policy to a target optimal policy. Thus we need to
measure how similar/important the generated trials are to tri-
als that the target policy may have made. We design a reward
bonus, proximity, to favor these “similar/important” trials. On
the other hand, to avoid overfitting the spurious trials, we also
encourage the policy to explore in undiscovered search space,
i.e., the space that is beyond the imitation of the pseudo-gold

annotations. Therefore, we design another reward bonus, nov-
elty, to the generated action sequences that are “different” from
the trials stored in the memory buffer.

To adaptively control the exploration-exploitation trade-off,
we employ a curriculum learning [15] scheme to dynamically
change the influence of the two reward bonuses, namely the
proximity and the novelty. Particularly, given a question, we
define the proximity for the predicted trial as the highest simi-
larity between the predicted trial and all the trials in the memory
buffer. Novelty is also defined through similarity. We consider
a trial is novel if it is not similar to all the trials in the mem-
ory buffer. At the initial stage, since the policy is sub-optimal
and the trials generated by the policy are generally infeasible,
we prefer more novelty for exploration. We gradually increase
the proportion of proximity and reduce the influence of novelty
during the later training epochs. At the final stage of the train-
ing, the proportion of proximity in the reward bonus will rise
to 100%. Such a delicately designed curriculum method can
significantly improve the learning quality and efficiency [16].

Besides, to alleviate the sparse reward problem, an adaptive
reward function (ARF) is proposed. ARF encourages the model
with partial reward and adapts the reward computing to differ-
ent question types. We sum up the reward bonus with the adap-
tive reward to make our RL model learn from the combined
reward. With this modification, we reshape the sparse rewards
into dense rewards and enable any failed experience to have a
nonnegative reward, thus alleviate the sparse reward problem.

Furthermore, by incorporating a memory buffer, which main-
tains off-policy samples, into the policy gradient framework,
we improve the sample efficiency of the REINFORCE algo-
rithm in our work [11]. We encourage the model to generate
trials that are similar to the trials in the memory buffer by using
the proximity bonus. Therefore the high-reward trials could be
re-sampled frequently to avoid being forgotten in the training
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process. Since a group of question shares the same pattern, a
sequence of the same actions could solve such questions. Once
we improve sample efficiency, we reduce the trials needed for
training. Therefore, using a minimal subset of training samples,
our model can produce competitive results.

Overall, the main contributions in this paper can be summa-
rized as follows.

1. A neural-symbolic approach that is augmented by memory
buffer and is designed for complex question answering. In
our method, for each question, we resort to the previous
promising trials stored in the memory to assist our model
in replaying and generating feasible action sequences.

2. A curriculum-learning scheme that adaptively com-
bines novelty and proximity to balance the exploration-
exploitation trade-off for the model. We treat the combina-
tion of the novelty and proximity as a bonus to the reward,
therefore alleviate the sparse reward and data inefficiency
problems.

3. Several simple yet effective techniques are proposed to re-
duce search space, improve model generalizability, and ac-
celerate convergence. In our work, the masking method
and the copy mechanism are incorporated in Seq2Seq
learning to avoid searching over a large action space.
Also, a set of primitive actions is carefully designed to
solve complex questions by executing actions sequentially,
avoiding the maintenance of complex memory modules.

Our experiments on a large complex question answering
dataset [6] and a relatively smaller multi-hop dataset WebQues-
tionsSP [17] show that NS-CQA outperforms all the recent,
state-of-the-art models. Moreover, NS-CQA performs well on
the questions with higher complexity, demonstrating the effec-
tiveness of our method.

The rest of this paper is organized as follows. Related works
are introduced in Section 2. Our NS-CQA framework is de-
scribed in Section 3. Section 4 describes the experiments and
evaluation results. In Section 5, we perform some qualitative
analysis, showing positive examples and typical errors. We con-
clude our work in Section 6.

2. Related work

The NS-CQA model is inspired by two lines of work: se-
mantic parsing and neural-symbolic systems. Semantic pars-
ing mainly focuses on reformulating natural language ques-
tions into logic forms, which are then executed on knowl-
edge bases (KBs) to compute answers [18, 19, 20]. More re-
cent approaches employ sophisticated deep learning models to
search entities and predicates that are most relevant to the ques-
tion [21, 22, 23].

Many of these works tackle simple one-hop questions that
are answerable by a single triple. Others address the multi-
hop task, in which answers are entities that can be retrieved
by a path of connected triples. In both cases, a model only
retrieves entities as answers in a fixed search space, i.e., the
KB. Our model addresses a more challenging problem, where

answers come from a much larger search space, involving not
only entities in the KB but also their logical combinations and
aggregations (numbers).

The complex KBQA dataset, such as CQA [6], requires the
execution of discrete actions rather than merely searching for
entities in KB. Memory network [4, 24, 25, 26] is used to store
facts in KB and makes it possible to solve complex questions.
Luo et al. [27] encodes complex questions into vectors to rep-
resent the semantics and structure of the input sentence con-
temporaneously, by which the similarity between the question
and the graph could be computed. Dialog-to-Action (D2A) [28]
incorporates dialog memory management in generating logical
forms that would be executed on a large KBs to answer com-
plex questions. It labels all training samples with pseudo-gold
actions and trains the model by imitation learning. It is worth
noting that D2A aims to answer context-dependent questions,
where each question is part of a multiple-round conversation.
On the other hand, in this paper, we consider answering the
single-turn questions. Therefore we do not include D2A as a
baseline method in the evaluation as it is not directly compa-
rable to our problem setup. The semantic parsing approaches
mentioned so far all require the annotation of the entire training
dataset to learn the models. Different from these approaches,
our model can be learned from a small number of pseudo-gold
annotations only.

Some recent studies in KBQA focus on semi-supervised
learning, in which models are trained solely on denotations,
e.g., the execution results of queries, the state of the final
time step, etc. In [1], a semantic parser is trained by learn-
ing from question-answer pairs rather than annotated logi-
cal forms to query the knowledge graph. Furthermore, the
parser could be trained without manual annotations or question-
answer pairs by treating denotations of natural language ques-
tions and related KB queries as weak-supervision [29]. Sim-
ilarly, queries automatically generated from knowledge graph
triples and paraphrased questions without answers are used in
weak-supervision to train subgraph embedding models [30]. To
fully understand the intention of questions, STAGG [5] is pro-
posed to generate a staged query graph and directly map the
graph into λ-calculus.

Neural-symbolic models integrate neural networks with
logic-based symbolic executors to conduct non-differentiable
computations. Neural Turing Machines (NTMs) [31] pioneer
the neural-symbolic methods, in which REINFORCE is em-
ployed to train the model in the RL Neural Turing Machines
(RL-NTMs) [32]. When answering natural language questions
on relational tables, some approaches [33, 34] predict discrete
symbolic operations by neural networks and obtain answers
by executing them. Guu et al. [35] marry RL and maximum
marginal likelihood (MML) to avert the spurious problems.
The neural-symbolic visual question answering (NS-VQA) sys-
tem [36] combines deep representation learning and symbolic
program execution to solve visual question answering problems
over a synthetic image dataset.

Most relevant to this work are two state-of-the-art techniques
on complex KBQA: Neural Symbolic Machines (NSM) [8]
and CIPITR [37]. NSM deals with multi-hop questions in the
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WebQuestionsSP dataset [17] with two components: the pro-
grammer and the computer. By employing an EM-like mecha-
nism, NSM iteratively finds the pseudo-gold trials for the train-
ing questions. NSM then assigns the pseudo-gold trials with
a deterministic probability, therefore, to anchor the model to
the high-reward trials. In a similar vein, CIPITR translates a
natural-language complex question into a multi-step executable
program using the Neural Program Induction (NPI) technique.
CIPITR does not require gold annotations and can learn from
auxiliary rewards, KB schema, and inferred answer types.

Our neural-symbolic model is different from them in that we
augment our RL-based model with a memory buffer to record
the successful trials. With the help of the memory buffer, we
could compute the extra reward bonus to encourage the model
to generate new trials, imitate successful trials, and reshape the
sparse reward to provide dense feedback. As can be seen in Ta-
ble 3, our NS-CQA model outperforms all the baseline models,
and the performance difference is prominent on the more com-
plex categories of questions. Also, in Table 4, we can find that
NS-CQA is better than other baseline models. The superiority
of NS-CQA in both the datasets verified the effectiveness and
generalization ability of the model.

3. NS-CQA: A Complex Question Answering Approach

In our work, the complex question answering problem is re-
garded as a semantic parsing task: given a complex question q
consisting of tokens (w1, . . . ,wm), the model generates a prim-
itive action sequence (a1, . . . , aq), and execute the sequence on
the KB K to yield the answer a.

This section outlines our NS-CQA approach to the complex
question answering problem. We first describe the set of prim-
itive actions in Section 3.1. Given a complex question, the se-
mantic parser (Section 3.2) recognizes KB artifacts that are rel-
evant to the question. By combining the question and the output
of the parser, the neural generator (Section 3.3) transforms the
query into a sequence of primitive actions.

The symbolic executor (Section 3.4) executes the actions on
the KB to obtain an answer. Overall, we employ RL to directly
optimize the generator through a policy gradient on the answer
predicted by the executor (Section 3.5). The high-level archi-
tecture of our model is depicted in Fig. 2.

3.1. Primitive Actions

We propose a set of primitive actions based on the subset
of SPARQL queries that are necessary for the current complex
question answering task and simplify the query form to reduce
the search space. Our actions are designed to be simple, dis-
pensing with SPARQL features, including namespaces, etc. It
also does not support certain SPARQL features, including OP-
TIONAL, FILTER, etc. Since our actions belong to a subset of
SPARQL’s operators, the complexity of our actions follows that
of SPARQL. The main contributions of this paper relate to the
neural generator of these programs. Thus we leave the study of
operator complexity to future research.

Unlike NSM [8], which introduces the variables to save the
intermediate results, we employ a key-value memory to main-
tain the intermediate result. NSM adds a new intermediate vari-
able into the decoder vocabulary after an action is executed,
thus enables the decoder to generate the new variable in later
decoding steps. Consequently, NSM dynamically increases the
size of the decoder vocabulary in the decoding process. On the
contrary, with the help of the memory, our model does not need
to refer to previous intermediate variables, thus fix the size of
the decoder vocabulary to simplify the model.

We use two components, i.e., an operator and a list of vari-
ables, to compose the primitive actions. After analyzing differ-
ent types of complex problems, we design 17 operators in this
work, which are described in Table 2. Besides, the key-value
dictionary D is designed to store intermediate results. Keys in
D refer to entities present in the question or specific special
symbol, and the values are the obtained elements related to it.
Before the execution of the whole action sequence, D is ini-
tialized as empty. When executing an action, the model will
generate an intermediate result based on content in D, which
is the result derived from the last action. Then the generated
intermediate result will be further stored inD to update it. The
contents of updatedD are then preserved for later use.

For instance, when dealing with the question “Which coun-
try has maximum number of rivers?”, the desired output actions
should be “SelectAll(country, flow, river), ArgMax, EOQ”. The
first action has an operator SelectAll, a relation variable flow
and two type variables, i.e., country and river, while no entity
variable is found in this action. Note that the second action only
has one operator ArgMax, and so does the third action EOQ. By
performing the first action, we retrieve KB to find all entities
belong to type ‘country’ as keys. Meanwhile, we set the river-
type entities linked with country-type entities by relation ‘flow’
as values. Like what is demonstrated in Table 1 (the retrieved
results presented in the table are not consistent with the actual
KB while are only for demonstration), one country-type entity
is USA where the linked river-type objects are {Mississippi, Col-
orado, Rio Grande}. The retrieved key-value pairs (the key is
one country-type entity and value is a set of river-type entities)
are then stored in dictionaryD as the intermediate result of this
action. After that, the second action is executed to find the key
whose mapped value has most elements. In could be found in
Table 1 Russia has most elements thus Russia:{Volga, Moskva,
Neva, Ob} is then kept in D and other key-value pairs are re-
moved. Then we update D and view this key-value pair as
the intermediate result of the second action. When encountered
with EOQ, the model outputs the final result inD.

To simplify the action sequence, we design particular actions
(GreaterThan, LessThan, Inter, Union, and Diff) as relatively
‘high-level’ actions that need multiple set operations to per-
form. Though such design will enhance the difficulty of sym-
bolic executor, on the other hand, it could reduce the complexity
of the neural generator. Since the bottleneck of our model lies
in the difficulty of training generator, we make a compromise
between executor and generator.

Take the question “What rivers flow in India but not China?”
as an example. The reference action sequence should be “Se-
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Table 1: Demonstration of how intermediate result evolves when executing actions sequentially.

Question1:
Which
country has
maximum
number of
rivers?

Actions Action1: Action2: Action3:
SelectAll (country, flow,
river)

ArgMax EOQ

Retrieved
Key-Value
Pairs

{China:{Indus, Satluj}} / /

{India:{Indus, Satluj,
Godavari}}
{Russia:{Volga, Moskva,
Neva, Ob}}
{USA:{Mississippi, Col-
orado, Rio Grande}}

Dictionary {China:{Indus, Satluj}} {Russia:{Volga, Moskva,
Neva, Ob}}

{Russia:{Volga, Moskva,
Neva, Ob}}{India:{Indus, Satluj,

Godavari}}
{Russia:{Volga, Moskva,
Neva,Ob}}
{USA:{Mississippi, Col-
orado, Rio Grande}}

Question2:
What rivers
flow in India
but not
China?

Actions Action1: Action2: Action3:
Select (India, flow, river) Diff (China, flow, river) EOQ

Retrieved
Key-Value
Pairs

{India:{Indus, Satluj,
Godavari}}

{China:{Indus, Satluj}} /

Dictionary {India:{Indus, Satluj,
Godavari}}

{India:{Godavari}} {India:{Godavari}}

lect(India, flow, river), Diff(China, flow, river), EOQ”. After ex-
ecuting the first action, a set of rivers flowing in India is stored
in D as the value of the key India. As showed in Table 1, such
key-value pair is India:{Indus, Satluj, Godavari}. When execut-
ing the second action “Diff(China, flow, river)”, all river entities
linked to China by relation flow are first retrieved from the KB.
Then based on the key-value pair stored in D, the entities in-
dexed to India but not China will be kept as the updated value
of the key India. In this case is India:{Godavari}. Then the
key-value pair inD is updated accordingly. Upon encountering
the action EOQ, the key-value pair stored in D is returned as
the final answer to this question.

As described above, the model executes all the actions in se-
quence. With the help of a key-value dictionaryD, the interme-
diate result of the current action is recorded and preserved for
later use. The model could perform the following actions based
on the result stored in D, and the new result would further up-
date D. Therefore, the design of D makes executing actions
sequentially possible.

3.2. Semantic Parser

Given a natural language question, the parser first recognizes
entity mentions (for example India) and class mentions (for ex-
ample river) [38]. A Bidirectional-LSTM-CRF model is em-
ployed to label the entity/type mentions [39]. The parser then
links them with the corresponding entities and types in KB. At
first, the parser tries to retrieve the entity/type candidates re-
lated to mentions by computing the literal similarities. Besides,
the description of the candidates and the question are embed-

ded into vectors to get semantic similarity. The literal and se-
mantic similarities are thus integrated to rank the entity/type
candidates, while the ones have the highest score is selected as
linked entities/types. Subsequently, the entity/class mentions
in the query are replaced with wild-card characters to generate
patterns. We employ a convolutional Seq2Seq model [40] to
transform the the generated patterns to corresponding relations.

3.3. Neural Generator

Our generator is an attention-based Seq2Seq model aug-
mented with the copy and masking mechanisms. Given a ques-
tion with tokens (w1, . . . ,wm), the generator predicts tokens
(a1, . . . , aq). The input of the model is the original complex
question concatenated with KB artifacts generated by the se-
mantic parser, and the output is the tokens of a sequence of
actions. In our work, the output at each time step is a single
token which is used to compose actions with adjacent output
tokens.

For a vanilla Seq2Seq model, all the KB artifacts correspond-
ing to all questions will need to be collected in advance to make
the vocabulary large enough to cover all questions. Let N rep-
resent the maximum number of actions in sequences. Since we
have designed 17 different operators in our work, and each of
operators can take up to three arguments (see Table 2 for de-
tails), in the worst case, the vocabulary size of the decoder is
O(17N ∗ |E|2N ∗ |P|N), where |E| and |P| denote the number of
entities (including types) and predicates in the KB K respec-
tively. Given a large KB such as Freebase, |E| and |P| can be
very large. Such a vocabulary size would be prohibitively large
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Table 2: The set of primitive actions. K represents the knowledge base, e, e1, e2, . . . represent entities, r represents a relation, t represents a type, andD represents a
key-value dictionary which stores intermediate results.

ID Action Retrieved Key-Value Pairs Output
A1 S elect(e, r, t) {e2|e2 ∈ t, (e, r, e2) ∈ K} D = D∪ {e : {e2}}

A2 S electAll(et, r, t) {e2|e1 ∈ et, e2 ∈ t, (e1, r, e2) ∈ K} D = D∪ {e1 : {e2}}

A3 Bool(e) value = 1 i f e ∈ D ; otherwise value = 0 D = {bool : value}
A4 ArgMin {e1|e1 ∈ D,∃(e1 : {e2}) ∈ D,∀e′ : (e′ : {e′2}) ∈ D, |{e2}| ≤ |{e′2}|} D = {e1 : {e2}}

A5 ArgMax {e1|e1 ∈ D,∃(e1 : {e2}) ∈ D,∀e′ : (e′ : {e′2}) ∈ D, |{e2}| ≥ |{e′2}|} D = {e1 : {e2}}

A6 GreaterThan(e) {e1|e1 ∈ D,∃(e1 : {e2}) ∈ D,∃e′2 : (e : {e′2}) ∈ D, |{e2}| ≥ |{e′2}|} D = {e1 : {e2}}

A7 LessThan(e) {e1|e1 ∈ D,∃(e1 : {e2}) ∈ D,∃e′2 : (e : {e′2}) ∈ D, |{e2}| ≤ |{e′2}|} D = {e1 : {e2}}

A8 Inter(e, r, t) {e2|e2 ∈ t, (e, r, e2) ∈ K} D = D∩ {e : {e2}}

A9 Union(e, r, t) {e2|e2 ∈ t, (e, r, e2) ∈ K} D = D∪ {e : {e2}}

A10 Di f f (e, r, t) {e2|e2 ∈ t, (e, r, e2) ∈ K} D = D− {e : {e2}}

A11 Count Card(D) = |{e|e ∈ D,∃(e : {e2}) ∈ D}| D = {num : Card(D)}
A12 AtLeast(n) {e|e ∈ D,∃(e : {e2}) ∈ D, |{e2}| ≥ n} D = {e : {e2}}

A13 AtMost(n) {e|e ∈ D,∃(e : {e2}) ∈ D, |{e2}| ≤ n} D = {e : {e2}}

A14 EqualsTo(n) {e|e ∈ D,∃(e : {e2}) ∈ D, |{e2}| = n} D = {e : {e2}}

A15 GetKeys {e|e ∈ D,∃(e : {e2}) ∈ D} D = {key : {e}}
A16 Almost(n) {e|e ∈ D,∃(e : {e2}) ∈ D, ||{e2}| − n| 6 α} where α is predefined D = {e : {e2}}

A17 EOQ end of sequence D

for the decoder, making it highly unlikely to generate the cor-
rect token, thus negatively affecting the rate of convergence.

By incorporating the masking mechanism, the names of
KB artifacts used for compose actions are replaced with
masks such as <ENTITY1>, <TYPE1> and <PREDICATE1>.
Thus, an action sequence consisted of N actions will be
masked into the following form: A(1)(<E1>, <P1>, <E2>), . . . ,
A(N)(<E2N−1>, <PN>, <E2N>). For instance, the action sequence
‘Select(India, flow, river), Diff(China, flow, river), EOQ’ is
used to solve the problem ’What rivers flow in India but not
China?’. After masking, the real names of artifacts in actions
are substituted with masks, and the action sequence is changed
into ‘Select(ENTITY1, PREDICATE1, TYPE1), Diff(ENTITY2,
PREDICATE1, TYPE1), EOQ’. The mappings between the ac-
tual names and masks are recorded in our model, which will
be later used to recover the exact names of KB artifacts in ac-
tions when being executed. Given the maximum number of
actions N, with the masking mechanism, the decoder vocabu-
lary size is reduced to O(17N ∗ (2N)2N ∗NN), where (2N) � |E|
and N � |P|. As action sequences are typically not long (i.e.,
N ≤ 5 in our observation), this represents orders of magnitude
reduction in vocabulary size.

Also, we could alleviate the Out Of Vocabulary (OOV) prob-
lem with the help of the masking mechanism. OOV words refer
to unknown KB artifacts that appear in the testing questions but
not included in the output vocabulary and would make the gen-
erated action incomplete. When facing a question with unseen
KB artifacts, the model is not able to predict such objects since
they are out of the output vocabulary. However, when employ-
ing the masking mechanism, all the KB artifacts are translated
into masks, thus enabling the model to select masks from rel-
atively fixed output vocabulary. Like the above example pre-
sented, the KB artifacts ‘India’ and ‘China’ are replaced with
the mask ‘ENTITY1’ and ‘ENTITY2’. Thus our model only

needs to generate the masked tokens instead of the real names
of the KB artifacts, which will mitigate the OOV problem. In
consequence, the model could form the actions more precisely.

To further decrease search space, the copy mechanism is also
incorporated. The copy mechanism replicates all masked sym-
bols in the input sequence to form the output, instead of letting
the decoder generate them from the decoder vocabulary. As
a result, the decoder only needs to generate primitive actions,
further reducing vocabulary size to O(17N).

The benefits of our design are twofold. (1) The much-
reduced vocabulary makes convergence faster, as the generator
is only concerned about generating correct primitive actions,
but not names of artifacts from the KB. (2) Solve questions with
unforeseen KB artifacts by directly masking and copying them
from the input question when generating an action sequence.

Encoder. The encoder is a bidirectional LSTM that takes a
question of variable length as input and generates an encoder
vector ei at each time step i.

ei, hi = LS T M(φE(xi), hi−1). (1)

Here φE is word embedding of token E. (ei, hi) is the output
and hidden vector of the i-th time step when encoding. The
dimension of ei and hi are set as the same in this work. ei is
the concatenation of the forward (eF

i ) and backward (eB
i ) output

vector and hi is the encoder hidden vector. The output vectors
(e1, . . . , eT ) is regarded as a short-term memory M, which is
saved to use in copy mode.

Decoder. Our decoder of NS-CQA predicts output tokens fol-
lowing a mixed probability of two models, namely generate-
mode and copy-mode, where the former generates tokens from
the fixed output vocabulary and the latter copies words from
the input tokens. Furthermore, when updating the hidden state
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at time step t, in addition to the word embedding of predicted
word at time t − 1, the location-based attention information is
also utilised.

By incorporating the copy mechanism, the generated actions
might be chosen from the output vocabulary or input tokens.
We assume a fixed output vocabulary Voutput = {v1, . . . , vN},
where Voutput contains operators and related arguments in ac-
tion sequence. In addition to that, all the unique words from
input tokens x = {x1, . . . , xT } constitute another set X whereby
some OOV words could be ‘copied’ when such words are con-
tained in X but not inVoutput. Therefore, the vocabulary unique
to input tokens x is: Vx = Voutput ∪ X.

The generate-mode predicts output token at from the out-
put vocabulary Voutput. Like traditional Seq2Seq model, the
decoder is another LSTM model that generates a hidden vector
qt from the previous output token at−1. Previous step’s hidden
vector qt−1 is fed to an attention layer to obtain a context vector
ct as a weighted sum of the encoded states. Current step’s qt is
generated via:

qt = LS T M(qt−1, [φD(at−1), ct]) (2)

Here φD is the word embedding of input token at−1. The di-
mension of qt is set as dq, and the attention weight matrix is
trainable. The hidden vector qt is used to compute the score of
target word vi inVoutput as:

ψg(at = vi) = v>i Woqt, vi ∈ Voutput (3)

where Wo is trainable matrix and vi is the vector of word vi.
In copy-mode, the score of “copying” word x j from input

tokens {x1, . . . , xT } is computed as:

ψc(at = x j) = σ(e jWcqt), x j ∈ {x1, . . . , xT } (4)

where Wc ∈ Rdq×dq , σ is a non-linear activation function and,
hidden encoder vectors {e1, . . . , eT } in short-term memory M
are used to map the input tokens {x1, . . . , xT } respectively.

Finally, given the hidden vector qt at time t and short-term
memory M, the output token at is generated following a mixed
probability as follows:

p(at |qt, at−1, M) = pcg(at |qt, at−1, M) (5)

where pg and pc indicate the generate-mode and copy-mode
respectively. They are calculated as follows:

pcg =

{ 1
Z eψg(at), at ∈ Voutput
1
Z Σ j:x j=at e

ψc(at), at ∈ X
(6)

where Z is the normalization term and is computed as: Z =

Σv∈Voutput e
ψg(v) + Σx∈Xeψc(x).

At time step t, word embedding of previous output token
at−1 and the location-based attention information are both em-
ployed to update the hidden state. at−1 will be represented as
[φD(at−1); rqt−1 ], where φD(at−1) is the word embedding of at−1
and rqt−1 is the weighted sum of hidden states {e1, . . . , eT } in M.

Vector rqt−1 is calculated as:

rqt−1 = ΣT
τ=1ρtτeτ (7)

ρtτ =

{ 1
K pcg(xτ|qt−1, at−1, M), xτ = at−1
0, otherwise (8)

where K is the normalization term which is
Στ′:xτ′=at−1 pcg(xτ′ |qt−1, at−1, M), considering there might be
input tokens located at different positions which equal to at−1.
ρtτ is viewed as location-based attention in our work.

3.4. Symbolic Executor
A symbolic executor is implemented as a collection of de-

terministic, generic functional modules to execute the primitive
actions, which have a one-to-one correspondence with the func-
tional modules. The symbolic executor first analyzes the output
tokens produced by neural generator, and would assemble the
actions one by one. Given an action sequence that begins with
the first action, the symbolic executor executes the actions in
order, on the intermediate result of the previous one. As dis-
cussed in Section 3.1, this is only possible due to our carefully
designed primitive actions. Otherwise, complex memory mech-
anisms would need to be incorporated to maintain intermediate
answers [28, 8]. Upon encountering the action EOQ, the result
from the last execution step will be returned as the final answer.

3.5. Training Paradigm
As the symbolic executor executes non-differentiable oper-

ations against a KB, it is difficult to utilize end-to-end back-
propagation to optimize the neural generator. Therefore, we
adopt the following two-step procedure to train the generator.
By using a breadth-first-search (BFS) algorithm, we generate
pseudo-gold action sequences for a tiny subset of questions. In
BFS, we assemble all the operators and KG artifacts found in
question to form candidate action sequences in a brute-force
way. We then execute the candidate action sequences to find the
ones that yield the right answer and view them as pseudo-gold
action sequences. Using these pairs of questions and action se-
quences, we pre-train the model by Teacher Forcing.

We then employ RL to fine-tune the generator on another
set of question-answer pairs. The symbolic executor executes
the predicted action sequence to output an answer and yield a
reward for RL. The reward is the similarity between the output
answer and the gold answer.

As shown in Algorithm 1, our method works as follows.
The training starts with an empty memory buffer, and at ev-
ery epoch, for each sample, the generated trials that gain high
reward will be stored in the memory. For each question, we
first use a search algorithm, i.e., greedy-decoding, to generate a
trial. We execute the trial and compute a reward rgreedy, which
is set as the reward threshold. Then we employ a beam search
method to generate a set of candidate trials for the question and
compute their rewards. At every epoch, we compare the gen-
erated trials with the trials in memory to determine the reward
bonus, aka proximity and novelty, and further add the reward
bonus to the adaptive reward. A candidate trial is added into
the memory buffer if its reward is higher than rgreedy. We utilize
the augmented reward to train the policy under the RL setting.

The memory buffer stores a limited set of trials for the train-
ing questions. Once the memory buffer is full, we substitute a
random trial with the current new trial. This strategy enables the
memory buffer to maintain relatively fresher trials, but would
not always abandon the older ones.
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Algorithm 1: Training NS-CQA
Input: Training dataset Qtrain, initial policy θ, memory

buffer M, reward function R(·), learning rate η1
Output: The learned policy θ∗

1 Randomly initialize θ
2 M ← ∅
3 while not converged do
4 Sample batch of data Qbatch ∼ Qtrain

5 L ← 0
6 for q ∈ Qbatch do
7 Get one trial t greedy by greedy-decoding
8 Compute adaptive reward rgreedy

9 Compute cumulative reward R(q, t greedy)
10 Sample K trials: tk ∼ π(t|q; θ)
11 for each trial tk do
12 Compute adaptive reward rtk

13 Compute cumulative reward R(q, tk)
14 Update memory: add tk to M if rtk > rgreedy

15 end
16 L = 1

K
∑K

k=1[R(q, tk) − R(q, t greedy)]log(pθ(tk))
17 L ← L + L
18 end
19 Compute adapted parameters: θ ← θ + η1∇θL

20 end
21 Return The learned policy θ∗ ← θ

The main components of our training paradigm, namely the
RL method, the adaptive reward, and the curriculum reward
bonus, are described in the rest of this section.

Reinforcement Learning. In this step, REINFORCE [41] is
used to finetune the neural generator. Typically, the three no-
tions mentioned in RL are action, state, and reward, respec-
tively. In our scenario, at each step, action as a fundamental
concept in RL is a token produced by a neural generator used
to form an executable action sequence. What needs to be clar-
ified is that when related to RL, the concept of actions refers
to the tokens of a trial. Since the complex question answering
environment is deterministic, we define the state as the ques-
tion combined with the generated tokens so far. Meanwhile,
the reward is the same as the notion in RL.

In our work, the state, action and reward at time step t are de-
noted as st, at and rt respectively. Given a question q, the state
of time step t is defined by q and the action sequence so far:
st = (q, a0:t−1), and the action tokens are generated by the gen-
erator. At the last step of decoding T , the entire sequence of ac-
tions is generated. The symbolic executor will then execute the
action sequence to produce an output answer anso. Therefore
the reward is computed only after the last step of decoding when
anso is output. We design a Adaptive Reward Function (ARF),
which is the adaptive comparison of the output answer anso and
the gold answer ansg. Furthermore, we employ a curriculum-
guided Reward Bonus (CRB), which comprises proximity and
novelty, to assign non-zero rewards for actions that do not yield
correct answers. Specifically, the cumulative reward of an ac-

tion sequence a0:T is the sum of CRB and ARF:

R(q, a0:T ) = CRB + ARF(anso, ansg) (9)

Then R(q, a0:T ) is sent back to update parameters of the neural
generator through a REINFORCE objective as the supervision
signal.

Adaptive Reward. Though the search space is significantly re-
duced to O(17N) after the masking and copy mechanisms are
incorporated, the length of action sequence, which is N, would
be fairly long when solving a relatively more complex ques-
tion. In that case, O(17N), the size of the search space, is still
huge which makes it hard for the model to find correct action
sequences when gold annotations are unavailable.

Moreover, since the reward used to train the model could
only be obtained after a sequence of actions is executed, the
execution of actions is regarded as a part of training. Suppose
a large amount of candidate action sequences (normally more
than 50) are generated, their execution would consume a large
amount of time since it involves searching triples in KB, per-
forming set operations and discrete reasoning. To reduce the
training time, we limit our NS-CQA model to form only 5∼20
candidate action sequences with a smaller beam size. With the
huge search space and small beam size, the sparsity of the re-
ward becomes a problem. Of all the candidate action sequences
that are predicted, very few of them could output correct an-
swers and be positively rewarded while most of them do not
produce any reward. Under such circumstances, without the
notion of partial reward, the neural generator would suffer from
high variance and instability. Therefore the generator would be
inclined to be trapped in local optima and not generalize well
on data never seen before.

Furthermore, different categories of questions entail different
answer types. The reward function should be adaptive to the
diverse answer types which could measure the degree of cor-
rectness of predicted answers more precisely. In other words,
the reward function should encourage the generator to generate
action sequences with the correct answer type while punishing
the model if the predicted answer type is incorrect.

In the complex question answering scenario, the possible
types of answers are integers, sets of entities and Boolean val-
ues. To measure the answer correctness more accurately and
adaptively, and to compute partial reward to alleviate the sparse
reward problem, we define our adaptive reward function ARF.
ARF computes reward based on different answer types using
the function S im between the output answer anso and the gold
answer ansg.

S im(anso, ansg) =


1 − |ansg−anso |

|ansg+anso+ε|
, integer

Edit(ansg, anso), Boolean
F1(ansg, anso), set

(10)

The edit-score is used to measure the accuracy of the output
provided the answer type is Boolean, while the F1-score is used
as a reward when answer is a set of entities. When the answer
type is Boolean, the expected output is a list of Boolean value,
for instance as what is presented in Table 6, the expected answer
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of the question “s Alda Pereira-Lemaitre a citizen of France and
Emmelsbull-Horsbull?” is [True, False]. Regard each Boolean
value as a single element in a list, the edit (Levenshtein) dis-
tance is used to compute the similarity between two lists, i.e.,
output answer list, and gold answer list. Thus the similarity is
calculated as follows:

Edit(ansg, anso) = 1 −
Levenshtein(ansg, anso)

max(|ansg|, |anso|)
(11)

On the other hand, suppose the type of answer is a set of enti-
ties, F1-score is computed as:

F1(ansg, anso) = 2∗
precision ∗ recall
precision + recall

= 2∗

|ansg∩anso |

|anso |
∗
|ansg∩anso |

|ansg |

|ansg∩anso |

|anso |
+
|ansg∩anso |

|ansg |

(12)
If the answer type is incorrect or the action sequence is semati-
cally invalid, reward is set as 0. On the other hand, if the answer
type is the same as the gold answer, partial reward is granted.
We then defined ARF as follows:

ARF(anso, ansg) = Rtype ∗ (W1 + W2 ∗ S im(anso, ansg)) (13)

In our work, ε, W1 and W2 are predefined hyper-parameters
and set as 0.001, 0.2 and 0.8 repectively. If the type of predicted
answer is correct, Rtype is set as 1, otherwise 0.

Curriculum-guided Reward Bonus. In many RL settings, the
reward is positive only when a trial, i.e., a long sequence of
actions generated by a policy, could yield the correct result. At
the initial stage, since the policy is not yet fully-trained, out of
all the generated trials, the rate of successful trials is rare. Thus,
there is an insufficient number of collected successful trials for
training the RL model, which causes the sparse reward problem.

Besides, the suboptimal policy will not explore the search
space effectively since many sampled trials could be repeated.
Moreover, the policy will forget the rare successful trials easily
since the trials may not be re-sampled frequently. These factors
often lead to the data inefficiency problem.

To solve the above problems, we design two reward bonuses
to learn from failed trials. We introduce a memory buffer to
record the high-reward trials for each training sample. We com-
pare a generated trial with those stored in the memory buffer to
see how similar it is to the recorded trials. Therefore we give
proximity bonus to a generated trial even if it fails to yield the
correct answer. By doing this, we could encourage the policy
to re-sample the high-reward trials and accordingly reduce the
frequency of generating infeasible trials. Also, we give nov-
elty bonus to the generated trials that differ from the trials in
the memory buffer. The novelty bonus encourages the policy to
generate different trials, thus avoid being trapped by spurious
ones. Once the reward is augment with the above two bonuses,
the corresponding failed experience is assigned with a nonneg-
ative reward and can contribute to learning the policy.

To balance proximity and novelty, we employ a curriculum-
learning method to regulate their trade-off dynamically. In the
earlier epochs, higher novelty can help the policy to explore

unseen areas and generate more diverse trials. However, in the
later epochs, such novelty will bring more noise (often as spu-
rious trials) into training and distract the policy. At the later
stage of training, the policy has gained sufficient knowledge
about the tasks and is able to generate high-reward, promising
trials. Therefore, proximity becomes more critical since it will
encourage the policy to proceed towards the correct trials and
to focus on learning how to generate promising trials.

Given a question q, suppose the high-reward trials tq
1, . . . , t

q
m

have already been stored in the memory buffer M. For one gen-
erated trial t, we compute the reward bonus CRB as:

CRB = α(λFprox(t,M) + (1 − λ)Fnovel(t,M)), (14)

where α ∈ [0, 1] is the weight of the reward bonus and depen-
dent on the scale of the task rewards. The term Fprox reflects
the proximity of the trial t to the recorded trials in memory M
while Fnovel measures the novelty of t. The value of λ controls
their relative proportion, which is adjusted by the curriculum
learning method.

We compute the similarity between the generated trial t with
one trial tq

i in M by edit distance, which is:

si = Edit(t, tq
i ) (15)

Thus we define the proximity Fprox as the highest similarity
between the trial t and all the trials tq

1, . . . , t
q
m in the memory

buffer, which is:

Fprox(t,M) = max
16i6m

(si) (16)

The term novelty Fnovel measures the diversity of the trial t
from the trials tq

1, . . . , t
q
m. We assign a high novelty to a gener-

ated trial if it is different from the trials in M, thus we define the
novelty as:

Fnovel(t,M) = β −
1
m

Σm
i=1si, (17)

where β ∈ [0, 1] is used to measure the diversity and is depen-
dent on the scale of the similarity.

We employ a curriculum learning scheme to adaptively
change the weight λ in Formula 14. We start from learning
to generate novel trials with large diversity, and gradually focus
on re-sampling the trials which have high proximity to the de-
sired successful trials stored in the memory buffer. This method
is achieved by progressively increasing the weight λ, which is
exponentially increased λ with the training epochs:

λ = min{1, (1 + η)γλ0}, (18)

where η ∈ [0, 1] is the learning pace which controls the curricu-
lum learning, γ represents the number of the epochs that have
been trained, and λ0 is the initial weight of λ.

In our work, α, β, η, and λ0 are hyper-parameters which are
defined as 0.1, 1.0, 0.08, and 0.1, respectively in our work.

REINFORCE. At each time step, the output token generated
by agent is decided by a certain policy (which is the generator
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in our work), and the probability that one token a is chosen is
computed as below, where θ denotes model parameters:

πθ(q, a) = Pθ(at = a|q, a0:t−1) (19)

Thus, the probability of an entire action sequence a0:T is
given by:

Pθ(a0:T |q) =

T∏
t=1

Pθ(at |q, a0:t−1) (20)

In 9, we define the cumulative reward R(q, a0:T ). Our objec-
tive is to maximize the expected cumulative reward. Therefore
we use the policy gradient method such as the REINFORCE
algorithm to finetune the generator. The objective and gradient
are:

JRL(θ) =
∑

q

EPθ(a0:T |q)[R(q, a0:T )]

∇θJRL(θ) =
∑

q

∑
a0:T

Pθ(a0:T |q) · [R(q, a0:T )

− B(q)] · ∇θlogPθ(a0:T |q)

(21)

B(q) = R(q, â0:T ) is a baseline that reduces the variance of the
gradient estimation without introducing bias. In our work, the
baseline is set as what is used in the self-critical sequence train-
ing (SCST) [42]. Also, Monte Carlo integration is employed to
approximate the expectation over all possible trials in the pol-
icy gradient method [41]. The training method is presented in
Algorithm 1.

4. Experiments

We evaluated our model NS-CQA on a large-scale complex
question answering dataset (CQA) [6], and a challenging multi-
hop question answering dataset WebQuestionsSP [17].

The CQA dataset is generated from the facts stored in
Wikidata [12], consisting of 944K QA pairs for training and
100K/156K QA pairs for validation and test, respectively. The
CQA dataset is characterised by the challenging nature of the
questions. To answer them, discrete aggregation operators such
as set union, intersection, min, max, counting, etc. are required
(see Table 2 for more details). The CQA questions are orga-
nized into seven categories, as shown in Table 3. Some of
these categories (e.g., Simple Question) have entities as an-
swers, while others have numbers (e.g., Quantitative (Count))
or Boolean values (e.g., Verification (Boolean)) as answers. We
used ‘accuracy’ as the evaluation metric for categories whose
answer type is ‘Verification’, ‘Quantitative (Count)’, and ‘Com-
parative (Count)’; and ‘F1 measure’ for other types of ques-
tions. However, to simplify the presentation and stay consistent
with literature [7, 9], we denote ‘accuracy’ as ‘F1 measure’ in
Table 3. Hence, the model performance was evaluated on the F1
measure in this paper. Furthermore, we computed the micro F1
and macro F1 scores for all the models based on the F1-scores
of the seven question categories.

In our analysis of the CQA dataset, we found that the seven
categories of questions vary substantially in complexity. We
found that ‘Simple’ is the simplest that only requires two ac-
tions to answer a question, whereas ‘Logical Reasoning’ is

more difficult that requires three actions. Categories ‘Verifica-
tion’, ‘Quantitative Reasoning’, and ‘Comparative Reasoning’
are the next in the order of difficulty, which need 3–4 actions to
answer. The most difficult categories are ‘Quantitative (Count)’
and ‘Comparative (Count)’, needing 4–5 actions to yield an an-
swer. Saha et al. [7] drew a similar conclusion through manual
inspection of these seven question categories.

The WebQuestionsSP dataset collects multi-hop questions,
i.e., the questions require a chain of KB triples to answer, via
the Google Suggest API. In comparison to the CQA dataset,
WebQuestionsSP can be considered easier as it only contains
multi-hop questions, and the answers are (sets of) entities only.
It consists of 3,098 question-answer pairs for training and 1,639
questions for testing. We utilized the same evaluation metrics
employed by [6, 8], the F-1 measure, to evaluate model perfor-
mance on the testing questions.

4.1. Model Description
Our model is evaluated against three baseline models:

HRED+KVmem [6], NSM [8] and CIPITR [7]. We used the
open-source code of HRED+KVmem and CIPITR to train the
models and present the best result we obtained. As the code
of NSM has not been made available, we re-implemented it
and further incorporated the copy and masking techniques we
proposed. HRED+KVmem does not use beam search, while
CIPITR, NSM, and our model all do for predicting action se-
quences. When inferring the testing samples, we used the top
beam [7], i.e., the predicted program with the highest probabil-
ity in the beam, to yield the answer.

HRED+KVmem [6] is the baseline model proposed together
with the CQA dataset [6], which combines a hierarchical
encoder-decoder with a key-value memory network. The
model first encodes the current sentence with context into
a vector, whereby a memory network retrieves the most
related memory. Then the retrieved memory is decoded to
predict an answer from candidate words. HRED+KVmem
was designed specifically for the CQA dataset, thus was
not included in our experiments on WebQuestionsSP.

NSM [8] is an encoder-decoder based model which is trained
by weak-supervision, i.e., the answers to the questions.
NSM first employs an Expectation-Maximization-like
(EM-like) method to find pseudo-gold programs that at-
tain the best reward. It iteratively uses the current policy
to find the best programs and then maximizes the proba-
bility of generating such programs to optimize the policy.
Then NSM replays one pseudo-gold trial that yields the
highest reward for each training sample when employing
REINFORCE to train the policy. It assigns a determinis-
tic probability to the best trial found so far to improve the
training data efficiency. NSM was at first proposed to solve
the problems in WebQuestionsSP, and we reimplemented
it to also handle the CQA dataset.

As presented in 3.1, unlike NSM, we do not refer to the in-
termediate variables when generating the tokens of a trial.
Therefore it is unnecessary to incorporate the key-variable
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Table 3: Performance comparison (measured in F1) of the four methods on the CQA test set. Best results for each category is bolded, and second best is underlined.

Method HRED+KVmem CIPITR-All CIPITR-Sep NSM Vanilla PG NS-CQA

Simple Question 41.40% 41.62% 94.89% 88.33% 85.13% 84.25% 88.83%
Logical Reasoning 37.56% 21.31% 85.33% 81.20% 70.46% 68.37% 81.23%
Quantitative Reasoning 0.89% 5.65% 33.27% 41.89% 47.96% 56.06% 56.28%
Comparative Reasoning 1.63% 1.67% 9.60% 64.06% 54.92% 67.79% 65.87%

Verification (Boolean) 27.28% 30.86% 61.39% 60.38% 75.53% 83.87% 84.66%
Quantitative (Count) 17.80% 37.23% 48.40% 61.84% 66.81% 75.69% 76.96%
Comparative (Count) 9.60% 0.36% 0.99% 39.00% 34.25% 43.00% 43.25%

Overall macro F1 19.45% 19.82% 47.70% 62.39% 62.15% 68.43% 71.01%
Overall micro F1 31.18% 31.52% 73.31% 76.01% 74.14% 76.56% 80.80%

memory, which is used to maintain and refer to intermedi-
ate program variables in our work. We thus removed the
key-variable memory component in the seq2seq model in
our reimplementation of NSM.

CIPITR [7] employs an NPI technique that does not require
gold annotations. Instead, it relies on auxiliary awards,
KB schema, and inferred answer types to train an NPI
model. CIPITR transforms complex questions into neu-
ral programs and outputs the answer by executing them.
It designs high-level constraints to guide the programmer
to produce semantically plausible programs for a ques-
tion. The auxiliary reward is designed to mitigate the ex-
treme reward sparsity and further used to train the CIPITR
model. CIPITR is designed to handle the KBQA problems
proposed in both CQA and WebQuestionsSP.

4.2. Training

The NS-CQA model was implemented in PyTorch with the
model parameters randomly initialized1. The Adam optimizer
is applied to update gradients defined in Formula 21. We used
the fixed GloVe [39] word vectors to represent each token in
input sequences and set each unique, unseen word a same
fixed random vector. We set a learning rate of 0.001, a mini-
batch size of 32 samples to pre-train the Seq2Seq model with
pseudo-gold annotations. On average, after about 70 epochs,
the Seq2Seq model would converge. Then we trained the RE-
INFORCE model with a learning rate of 1e-4 and a mini-batch
size of 8 on the pre-trained Seq2Seq model until accuracy on
the validation set converged (at around 30 epochs).

As solving the entity linking problem is beyond the scope
of this work, we separately trained an entity/class/relation
linker. When training the NS-CQA model, the predicted en-
tity/class/relation annotations along with the pseudo-gold ac-
tion sequence (which are generated by a BFS algorithm) were
used. The entity/class/relation annotations predicted by the re-
spective linker were used when conducting experiments on the
test dataset.

1To encourage reproductivity, we have released the source code at https:
//github.com/DevinJake/NS-CQA.

Incorporating the copy and masking mechanisms, our full
model took a total of at most 3,700 minutes to train 100 epochs
(70 epochs for the Seq2Seq model and 30 epochs for REIN-
FORCE) till convergence. Most of the time was spent on RL
training, which is over 3,633 minutes. In constraints, when we
tried to train CIPITR [7], the model required over 24 hours to
complete one epoch of training while the max number of epochs
is also set as 30.

Training with annotations would make the model learn to
search in a relatively more accurate space, thus converging
faster. However, the limited availability of annotations remains
a bottleneck for model training in many CQA tasks. On the
other hand, training without annotations but with denotations
solely makes model convergence harder.

We married the two ideas together: training with a small
number of annotations and then the denotations. First, we au-
tomatically produced pseudo-gold annotations for a small set
(e.g., less than 1% of the entire CQA training dataset) of ques-
tions. The pseudo-gold annotations were utilized to pre-train
the model to constrain the search space. After that, the model
was further trained with only denotations.

4.3. Results on CQA
Table 3 summarizes the performance in F1 of the four models

on the full test set of CQA.
It must be pointed out that CIPITR [7] separately trained one

single model for each of the seven question categories. We de-
note the model learned in this way as CIPITR-Sep. In testing,
CIPITR-Sep obtained test results of each category by employ-
ing the corresponding tuned model [7]. In practical use, when
trying to solve a complex question more precisely, CIPITR-Sep
has to first trigger a classifier to recognize the question cate-
gory. Only after acquiring the question categories information
could CIPITR-Sep know which model to select to answer the
question. If the number of question categories is increased,
CIPITR-Sep needs to train more models, which will impede the
system from generalizing to unseen instances. Besides, CIPITR
also trained one single model over all categories of training ex-
amples and used this single model to answer all questions. We
denote this single model as CIPITR-All. Therefore, we sepa-
rately present the performance of these two variations of CIP-
ITR in Table 3. On the other hand, we tuned NS-CQA on all
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categories of questions with one set of model parameters. Our
model is designed to adapt appropriately to various categories
of questions with one model, thus only needs to be trained once.

We also compared our full model, NS-CQA, with several
model variants to understand the effect of our techniques pre-
sented in this work. Specifically, Vanilla is an imitation-
learning model that was trained with pseudo-gold annotations.
PG denotes the RL model that was optimized by the Policy
Gradient algorithm based on the pre-trained model Vanilla. NS-
CQA means the RL model that is equipped with all the tech-
niques proposed in this work, notably the memory buffer and
the reward bonus.

In Table 3, several important observations can be made.

1. Over the entire test set, our full model NS-CQA achieves
the best overall performance of 71.01% and 80.80% for
macro and micro F1, respectively, outperforming all the
baseline models. The performance advantage on macro
F1 over the four baselines is especially pronounced, by
51.56, 51.19, 23.31, and 8.62 percentage points over
HRED+KVmem, CIPITR-All, CIPITR-Sep, and NSM re-
spectively. Also, NS-CQA improves over the micro F1
performance of HRED+KVmem, CIPITR-All, CIPITR-
Sep, and NSM by 49.62%, 49.28%, 7.49%, and 4.79%.
Moreover, our model achieves best or second-best in all
the nine items being evaluated (the seven categories, plus
overall macro F1, and overall micro F1). The improve-
ment is mainly due to the techniques presented in this
work. We introduce masking and copy mechanisms to re-
duce the search space effectively and carefully design a set
of primitive actions to simplify the trials, therefore enable
the model to efficiently find the optimal trials. We also
augment the RL model with a memory buffer, whereby
the model could circumvent the spurious challenge, and
remember the high-reward trials to re-sample them.

2. Out of the seven categories, our full model NS-CQA
achieves the best performance in four categories: Quan-
titative Reasoning, Verification (Boolean), Quantitative
(Count), and Comparative (Count), and second best in the
rest three. In the hardest categories, Quantitative (Count)
and Comparative (Count), NS-CQA is substantially supe-
rior over the four baseline models, and outperforms our
PG model. Since the length of the questions in the hardest
categories is usually higher than in the other categories, it
is always hard to find correct trials. Under such circum-
stances, the memory buffer could make the model search
in unknown space while keeping the previous high-reward
trials in mind, which makes the model easier to train. This
is the main reason that NS-CQA performs the best in the
hardest categories.

3. CIPITR-Sep achieves the best performance in two easy
categories, including the largest type, Simple Question.
For the harder categories, it performs poorly compared
to our model. Also, CIPITR-All, the single model that
is trained over all categories of questions, performs much
worse in all the categories than CIPITR-Sep, which learns
a different model separately for each question category.

For CIPITR-Sep, the results reported for each category
are obtained from the model explicitly tuned for that cate-
gory. A possible reason for CIPITR-All’s significant per-
formance degradation is that the model tends to forget the
previously appeared high-reward trials when many infeasi-
ble trials are generated. Besides, the imbalanced classes of
questions also deteriorates the performance of the model.
Different from CIPITR, our model is designed to remem-
ber the high-reward trials when training.

4. NSM and NS-CQA both produce competitive results. The
copy mechanism, masking method, and our carefully-
defined primitive actions presented in this work were used
in both models when we implemented them. By compar-
ing the overall macro and micro F-1 score, it could be ob-
served that NSM performed the best in all the four baseline
models. This helps to validate the effectiveness of our pro-
posed techniques. However, NSM is worse than NS-CQA
in all categories, especially in the harder ones. Since NSM
records one promising trial for each question, it might be
faced with the spurious problem. Different from NSM, we
design a memory buffer for recording all successful trials
to circumvent this problem. Also, NSM only considers the
correctness of the predicted answers when measuring the
reward, hence suffers from the sparse reward problem. Un-
like NSM, our NS-CQA model augments the reward with
proximity and novelty to mitigate this problem. These two
factors make our model superior to the NSM model in all
question categories.

5. Both of our model variants perform competitively. In
Table 3, it can be seen that the PG model, which was
equipped with RL, performed better than the Vanilla
model in five categories, but did not perform well in the
two easy categories, Simple and Logical Reasoning. We
analyzed the degeneration and found that for these two
types of questions, usually, each question has only one
correct sequence of actions. When training with PG, some
noisy spurious trials were introduced by beam search and
thus degraded the model’s performance. Our full model is
better than the PG model in six of the seven categories and
substantially improved performance in the Logical Rea-
soning category. We compared the trials generated by the
full model and the PG model, and found that many noisy
trials are removed with the help of the memory buffer.
That is the main reason for the improvement in the Logical
Reasoning category. However, we also found that the full
model performed worse than PG in Comparative Reason-
ing, which will be further investigated in the future.

The above results demonstrate the effectiveness of our tech-
nique. It is worth noting that our model is trained on only 1% of
the training samples, whereas the baseline models use the entire
training set. Besides, our approach uses one model to solve all
questions, while CIPITR-Sep trains seven separate models to
solve the seven categories of questions. Thus our model is vir-
tually compared with seven individually training models used
in CIPITR-Sep. However, our model still achieves best perfor-
mance overall as well as in five of the seven categories.
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Table 4: Performance comparison (measured in F1) of the four methods on the
WebQuestionsSP test set. Best results is bolded.

Method F1 measure

CIPITR-All 43.88%
NSM 70.61%
PG 70.72%
NS-CQA 72.04%

4.4. Results on WebQuestionsSP

Table 4 summarizes the performance in the F1 measure of
the four models on the full test set of WebQuestionsSP.

Similar to the CQA dataset, CIPITR also divided questions
into five categories, and then separately train one model for
each category. However, since the category information is not
provided in the WebQuestionsSP dataset, we did not classify
the questions and trained one single model, CIPITR-All, for all
the training samples by using its open-source code.

From Table 4, we can observe that NS-CQA can indeed
learn the rules behind the multi-hop inference process directly
from the distance supervision provided by the question-answer
pairs. Without manually pre-defined constraints, our model
could learn basic rules from the pseudo-gold annotations, and
further complete the rules by employing RL.

NS-CQA performed the best in the four models and signifi-
cantly outperformed the CIPITR-All. The main reason is that
it is hard for CIPITR-All to learn one set of parameters that fits
the different samples.

Also, by introducing the masking and copy mechanism,
NSM could achieve a performance competitive to our models
PG and NS-CQA. By employing memory buffer, our NS-CQA
model can alleviate the sparse reward problem and avert being
trapped by spurious trials, which makes the model more robust,
therefore achieving the best performance.

Furthermore, NS-CQA achieves the best result on both the
CQA and WebQuestionsSP datasets, which attests to the effec-
tiveness and the generalizability of our method.

4.5. Model Analysis

To study how the different components influence the perfor-
mance of our seq2seq model, i.e., Vanilla, we conduct an ab-
lation experiment as follows. Each of the main components:
attention, copy mechanism, and masking method, is removed
one at a time from the full seq2seq model to study how its re-
moval affects model performance. We also study the effect of
smaller training samples on performance, by using 1K and 2K
samples for training, instead of 10K used in the full model.

Table 5 summarizes performance degradation on the CQA
test set, where the Vanilla model achieves a macro F1 score of
62.15%. It can be seen that the removal of masking produces
the largest drop in performance, of 37.10%. Masking method
significantly decreases the search space by replacing all the en-
tity, relation and type names with wildcard tokens. This result
demonstrates that although a simple approach, masking proves
to be valuable for the CQA task.

Table 5: Ablation study on the CQA test set, showing the macro F1 score drop
by removing each main component, or by learning from a subset of the training
set. The Vanilla model has macro F1 of 62.15% as shown in Table 3.

Feature Macro F1

Vanilla 62.15%
Masking -37.10%
Copy -11.52%
Attention -4.30%

1,000-training -5.78%
2,000-training -4.09%

When the copy mechanism is removed, performance de-
creases by 11.52%. This is consistent with our expectation
since masking has already considerably decreased the search
space, the improvements that copy mechanism could makes is
relatively limited. Lastly, when training on fewer samples la-
beled with pseudo-gold actions, the model under-fits.

When training on even smaller datasets, the performance
degradation is not as severe as we expected. With as a training
set as small as 1,000, our model is able to generalize well, only
suffering a 5.78% drop on a test set of 15.6K. With a training
set of 2,000 samples, our model suffers a modest 4.09% drop
in performance. This study further demonstrates the robustness
and generalizability of our model.

4.6. Sample Size Analysis
In this subsection, we analyze the effect of training samples

of different sizes on our PG module. Since the WebQuestionsSP
consists of a limited number of questions, it is hard to conduct
the sample size analysis on it. Instead, we trained our model
by using different CQA subsets to make a comparison. Specif-
ically, given the same pre-trained model, we train the NS-CQA
model on 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, and 1.2% of total
944K training samples. Note that the evaluation results of the
full model presented in Section 4.3 are obtained from 1.0% of
training data and the entire test set (i.e., 156K). For experiments
described in this subsection, evaluation is performed on a subset
of the full test set that is 10% of its size (i.e., 15.6K). Training
of the REINFORCE model is stopped at 30 epochs, which is
when all models have been observed to converge.

We first study the effect on model performance. Figure 3
plots the macro F1 values of the seven categories of questions
as well as the overall performance. With the increase in train-
ing data size, a general upward trend in macro F1 values can be
observed, with the category Simple Question being the excep-
tion. For the overall test set, we can observe that the macro F1
value plateaus at 1.0% and does not increase when training data
is expanded to 1.2%.

For Simple Question, the output actions are relatively the
‘simplest’. In most cases, one ‘Select’ action is needed to solve
a question. Consequently, with the help of methods to decrease
search space and better use data, after pre-training, the model
overfits on the Simple Question type rapidly. Therefore the
performance of answering Simple Question fluctuates with the
change of training sample size.
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Figure 3: Changes in macro F1 values with varying percentages of training data
for the PG module.

On the other hand, for the other categories, it could be found
that the model can use data efficiently and obtain the best result
by training on only 1% samples.

More samples might help the model on some question cate-
gories, but more training time is consumed. The training time
of the REINFORCE module is plotted in Figure 4. As can be
seen, there is a significant increase in training time when train-
ing data increases from 1.0% to 1.2%. Together with the trend
of the macro F1 value, as shown in Figure 3, we can empiri-
cally determine the best trade-off between model performance
and training efficiency at 1.0%.
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Figure 4: Changes in training time (in seconds) with varying percentages of
training data.

5. Qualitative Analysis

In this section, we analyze the quality of our NS-CQA model
in more detail. We first present some success cases where NS-
CQA can predict the action sequence that produces correct an-
swers. A detailed analysis of typical errors is then performed,
which sheds light on the areas that can be further investigated.

5.1. Sample Cases

In Table 6 below, we present some example questions from
different categories that our model NS-CQA can correctly pre-
dict action sequences.

We can inspect the complexity of the CQA problem from
these instances. As is demonstrated in the table, Simple and
Logical questions are simplest to answer since commonly,
only 2-3 actions are needed. The following four categories,
i.e., Quantitative, Comparative, Verification, and Quantitative
Count, are relatively more difficult types with around 3-4 oper-
ations. For instance, the Verification question “Is Alda Pereira-
Lemaitre a citizen of France and Emmelsbüll-Horsbüll?” has an
answer “YES and NO respectively”. Answering this question
involves selecting all countries which Alda Pereira-Lemaitre is
a citizen of, and verifying whether France and Emmelsbüll-
Horsbüll is in this set respectively. The last type, Compara-
tive Count, is the most complex for questions of which will be
transformed into more than five actions.

Evident from the Quantitative Count and the Comparative
Count questions in the last two rows of the table, answering
CQA questions involve discrete actions. In the case of the ques-
tion “How many assemblies or courts have control over the ju-
risdiction of the Free Hanseatic City of Bremen?”, the set oper-
ation Union is required. In the case of the question “How many
art genres express more number of humen or concepts than flo-
ral painting?”, numerical operations (GreaterThan and Count)
are required.

These example questions attest to the challenging nature of
the CQA dataset and the capability of our NS-CQA model.

5.2. Error Analysis
To analyze the limitations of our NS-CQA model, 200 sam-

ples in each category that produce incorrect answers are ran-
domly selected from the test dataset. In summary, a large num-
ber of errors can be categorised into one of the following five
classes.

5.2.1. Linking Problem
Since different entities/types might have the same surface

name, in addition to literal similarity, the embedding of the de-
scription of entities/types and the embedding of question is em-
ployed to compute semantic similarity in our approach. When
mapping the predicates to queries, a state-of-the-art convolu-
tional sequence to sequence (Seq2Seq) learning model [40] im-
plemented in fairSeq [43] is used. Even so, some linking prob-
lems remain.

Example:. “Where are around the same number of geographic
locations located on as Big Salmon Range?”.

When our model is answering the above question, the rela-
tion ‘located on street’ is wrongly linked to the question instead
of the correct relation ‘located on terrain feature’. This type of
errors can be addressed by learning better semantic meaning of
the entities/types/relations from the context in the knowledge
graph.

5.2.2. Infeasible Action
NS-CQA occasionally produces meaningless and repetitive

actions which are semantically incorrect. For instance, some
actions are predicted to union the same set, which is reluctant.
In some cases, two repeated ‘Count’ actions are predicted.
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Table 6: Examples of action sequences correctly predicted by NS-CQA for different types of questions.

Q. type Question KB artifacts Action sequence Answer
Simple Which administrative terri-

tory is Danilo Ribeiro an in-
habitant of?

E1: Danilo Ribeiro
R1: country of citizenship
T1: administrative territory

Select(E1, R1, T1)
EOQ

Brazil

Logical Which administrative terri-
tories are twin towns of
London but not Bern?

E1: London
E2: Bern
R1: twinned adm. body
T1: administrative territory

Select(E1, R1, T1)
Diff(E2, R1, T1)
EOQ

Sylhet, Tokyo, Pod-
gorica, Phnom Penh,
Delhi, Los Angeles,
Sofia, New Delhi, . . .

Quantitative Which sports teams have
min number of stadia or
architectural structures as
their home venue?

R1: home venue
T1: sports team
T2: stadium
T3: architectural structure

SelectAll(T1, R1, T2)
SelectAll(T1, R1, T3)
ArgMin()
EOQ

Detroit Tigers, Drbak-
Frogn IL, Club Sport
Emelec, Chunichi
Dragons, . . .

Comparative Which buildings are a part
of lesser number of ar-
chitectural structures and
universities than Midtown
Tower?

E1: Midtown Tower
R1: part of
T1: building
T2: architectural structure
T3: university

SelectAll(T1, R1, T2)
SelectAll(T1, R1, T3)
LessThan(E1)
EOQ

Amsterdam Centraal,
Hospital de Sant Pau,
Budapest Western
Railway Terminal, El
Castillo, . . .

Verification Is Alda Pereira-Lemaitre a
citizen of France and Em-
melsbüll-Horsbüll?

E1: Alda Pereira-Lemaitre
E2: France
E3: Emmelsbüll-Horsbüll
R1: country of citizenship
T1: administrative territory

Select(E1, R1, T1)
Bool(E2)
Bool(E3)
EOQ

YES and NO respec-
tively

Quantitative
Count

How many assemblies or
courts have control over
the jurisdiction of Free
Hanseatic City of Bremen?

E1: Bremen
R1: applies to jurisdiction
T1: deliberative assembly
T2: court

Select(E1, R1, T1)
Union(E1, R1, T2)
Count()
EOQ

2

Comparative
Count

How many art genres ex-
press more number of hu-
men or concepts than floral
painting?

E1: floral painting
R1: depicts
T1: art genre
T2: human
T3: concept

SelectAll(T1, R1, T2)
SelectAll(T1, R1, T3)
GreaterThan(E1)
Count()
EOQ

8

Example:. “What social groups had Canada and Austria as
their member?”

When our model is solving the above question, it predicts the
following action sequence:

Select (Canada, member of, social group)
Bool (Austria)
EOQ

The operator ‘Bool’ is invalid since in this question the
expected answer type is entities but not Boolean values.
Semantic-based constraints could be employed to make the
model produce feasible actions.

5.2.3. Spurious Problem
In our approach, the pseudo-gold action sequences are gen-

erated by a BFS algorithm. Therefore corresponding to each
question, multiple possible sequences may evaluate to the same
expected results. Among these sequences, there might be some
spurious action sequences. When training the model with such
action sequences, the model may be misled and produce incor-
rect actions.

Example:. “Which musical ensembles were formed at
Belfast?”

Our model transforms the above question into the following
action sequence:

Select(Belfast, location, musical ensemble)
Inter(Belfast, location, musical ensemble)
EOQ

The second action ‘Inter’ is unnecessary to this question.
Rule-based constraints could be incorporated to restrict the
search process to meaningful actions.

5.2.4. Order of Arguments
To decide the order of the entities/types in the actions is a dif-

ficult problem. For actions ‘Select’, ‘Inter’, ‘Diff’, and ‘Union’,
the order of the arguments is decided by the following rule: the
first argument in a triple pattern is related to the entity, and the
last argument is associated with the type. In most cases, a se-
quence of entities/types in actions follows the order they appear
in the question. Though our model is also trained to handle
the situation that the sequence of entities/types does not appear
in the same order, in some cases, the model is confused about
which order to follow.

Example:. “Is Bernhard II, Duke of Saxe-Jena a child of
William, Duke of Saxe-Weimar?”

Our model transforms the above question into the following
action sequence:

Select (Bernhard II. Duke of Saxe-Jena, child, common
name)
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Bool (William. Duke of Saxe-Weimar)
EOQ

However, the correct action sequence should be the follow-
ing. As can be seen, the order of the two entities is wrong in the
predicted sequence.

Select (William. Duke of Saxe-Weimar, child, common
name)
Bool (Bernhard II. Duke of Saxe-Jena)
EOQ

In future work, we will investigate whether incorporating
more positional information can help alleviate this problem.

5.2.5. Approximation-related Problem
The action ‘Almost’ is used to find the set of entities whose

number is approximately the same as a given value, and such
operation appears in the following four categories of questions:
Quantitative Reasoning, Quantitative Count, Comparative Rea-
soning, and Comparative Count. The questions involving the
‘Almost’ action account for 4% of the total test dataset. When
solving such questions, the range of the approximate interval
is naturally vague. We define the following ad-hoc rule to
address this vagueness: suppose we are required to find the
value around N, when N is no larger than 5, the interval is
[N − 1,N + 1]; when N is more significant than 5, the range
is [N − 5,N + 5]. In some cases, this rule works, but in others
not.

Example:. “Which political territories have diplomatic rela-
tions with approximately 14 administrative territories?”

The following action sequence could be produced to solve
such questions:

SelectAll (political territorial entity, diplomatic relation,
administrative territorial entity)
Almost (14)
EOQ

Following our rule, the approximate interval here should be
[9, 19]. However, the correct answer (political territorial en-
tities) may have several administrative territories outside this
range. Thus, the unfixed approximate interval may impair the
performance of our model. We can manually tweak the rule of
deciding the approximate interval. However, we emphasize that
our model aims to show a robust framework to solve complex
questions, but not to guess rules for approximation.

6. Conclusion

Answering complex questions on KBs is a challenging prob-
lem as it requires a model to perform discrete operations over
KBs. State-of-the-art techniques combine neural networks and
symbolic execution to address this problem. While practical,
the challenges of these techniques reside in data-inefficiency,
reward sparsity, and ample search space.

In this paper, we propose a data-efficient neural-symbolic
model for complex KBQA that combines simple yet effective
techniques, addressing some of the above deficiencies.

Firstly, we augment the model with a memory buffer. When
the memory buffer maintains the generated successful trials for
each training question, it will guide the model to replay and re-
sample the promising trials more frequently, thus mitigating the
data-inefficiency problem.

Secondly, by comparing the generated trials with the trials
stored in the memory, we assign a bonus to the reward, which
is the combination of proximity and novelty. Also, we pro-
pose an adaptive reward function. The reward bonus and the
adaptive reward reshape the sparse reward into dense feedback
that can efficiently guide policy optimization. Employing the
curriculum-learning scheme, we gradually increase the propor-
tion of proximity while decreasing the weight of novelty. By
doing this, we encourage the model to find new trials while re-
membering the past successful trials.

Thirdly, we incorporate the copy and masking mechanisms
in the model, and carefully design a set of primitive actions, to
drastically reduce the size of the decoder output vocabulary by
orders of magnitude. This significant reduction improves not
only training efficiency but also model generalizability. Also,
our actions free the model from the need to maintain complex
intermediate memory modules, thus simplifies network design.

We conduct experiments on two challenging datasets on
complex question answering. In comparison with three state-
of-the-art techniques, our model achieves the best performance
and significantly outperforming them in both the datasets.
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[12] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledge-
base, Communications of the ACM 57 (10) (2014) 78–85.

[13] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a
collaboratively created graph database for structuring human knowledge,
in: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, 1247–1250, 2008.

[14] J. Gu, Z. Lu, H. Li, V. O. Li, Incorporating Copying Mechanism in
Sequence-to-Sequence Learning, in: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, 1631–1640, 2016.

[15] Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum learning,
in: Proceedings of the 26th annual international conference on machine
learning (ICML’09), 41–48, 2009.

[16] M. Fang, T. Zhou, Y. Du, L. Han, Z. Zhang, Curriculum-guided Hind-
sight Experience Replay, in: Advances in Neural Information Processing
Systems, 12602–12613, 2019.

[17] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, J. Suh, The value of
semantic parse labeling for knowledge base question answering, in: Pro-
ceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), vol. 2, 201–206, 2016.

[18] J. Lehmann, T. Furche, G. Grasso, A.-C. N. Ngomo, C. Schallhart,
A. Sellers, C. Unger, L. Buhmann, D. Gerber, K. Hoffner, et al., DEQA:
deep web extraction for question answering, in: International Semantic
Web Conference, Springer, 131–147, 2012.

[19] J. Bao, N. Duan, M. Zhou, T. Zhao, Knowledge-based question answering
as machine translation, in: Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 967–976, 2014.

[20] S. Hu, L. Zou, X. Zhang, A State-transition Framework to Answer Com-
plex Questions over Knowledge Base, in: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, 2098–
2108, 2018.

[21] L. Dong, F. Wei, M. Zhou, K. Xu, Question answering over freebase with
multi-column convolutional neural networks, in: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), vol. 1, 260–269, 2015.

[22] X. He, D. Golub, Character-Level Question Answering with Attention,
in: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, 1598–1607, 2016.

[23] D. Lukovnikov, A. Fischer, J. Lehmann, S. Auer, Neural network-based
question answering over knowledge graphs on word and character level,
in: Proceedings of the 26th international conference on World Wide Web,
International World Wide Web Conferences Steering Committee, 1211–
1220, 2017.

[24] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, R. Socher, Ask me anything: Dynamic memory
networks for natural language processing, in: International Conference
on Machine Learning, 1378–1387, 2016.

[25] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, J. Weston, Key-

Value Memory Networks for Directly Reading Documents, in: Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language
Processing, 1400–1409, 2016.

[26] K. Xu, Y. Lai, Y. Feng, Z. Wang, Enhancing Key-Value Memory Neural
Networks for Knowledge Based Question Answering, in: Proceedings of
the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), 2937–2947, 2019.

[27] K. Luo, F. Lin, X. Luo, K. Zhu, Knowledge Base Question Answering via
Encoding of Complex Query Graphs, in: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, 2185–2194,
2018.

[28] D. Guo, D. Tang, N. Duan, M. Zhou, J. Yin, Dialog-to-Action: Conver-
sational Question Answering Over a Large-Scale Knowledge Base, in:
Advances in Neural Information Processing Systems, 2946–2955, 2018.

[29] S. Reddy, M. Lapata, M. Steedman, Large-scale semantic parsing without
question-answer pairs, Transactions of the Association for Computational
Linguistics 2 (2014) 377–392.

[30] A. Bordes, J. Weston, N. Usunier, Open question answering with weakly
supervised embedding models, in: Joint European conference on machine
learning and knowledge discovery in databases, Springer, 165–180, 2014.

[31] A. Graves, G. Wayne, I. Danihelka, Neural turing machines, arXiv
preprint arXiv:1410.5401 .

[32] W. Zaremba, I. Sutskever, Reinforcement learning neural turing
machines-revised, arXiv preprint arXiv:1505.00521 .

[33] A. Neelakantan, Q. V. Le, I. Sutskever, Neural programmer: Inducing
latent programs with gradient descent, arXiv preprint arXiv:1511.04834 .

[34] P. Pasupat, P. Liang, Compositional Semantic Parsing on Semi-Structured
Tables, in: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), vol. 1, 1470–
1480, 2015.

[35] K. Guu, P. Pasupat, E. Liu, P. Liang, From Language to Programs: Bridg-
ing Reinforcement Learning and Maximum Marginal Likelihood, in: Pro-
ceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol. 1, 1051–1062, 2017.

[36] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, J. Tenenbaum, Neural-
symbolic vqa: Disentangling reasoning from vision and language under-
standing, in: Advances in Neural Information Processing Systems, 1039–
1050, 2018.

[37] A. Saha, G. A. Ansari, A. Laddha, K. Sankaranarayanan, S. Chakrabarti,
Complex Program Induction for Querying Knowledge Bases in the Ab-
sence of Gold Programs, Transactions of the Association for Computa-
tional Linguistics 7 (2019) 185–200.

[38] Z. Huang, W. Xu, K. Yu, Bidirectional LSTM-CRF models for sequence
tagging, arXiv preprint arXiv:1508.01991 .

[39] W. Yin, M. Yu, B. Xiang, B. Zhou, H. Schütze, Simple Question An-
swering by Attentive Convolutional Neural Network, in: Proceedings of
COLING 2016, the 26th International Conference on Computational Lin-
guistics: Technical Papers, 1746–1756, 2016.

[40] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y. N. Dauphin, Convolutional
sequence to sequence learning, in: Proceedings of the 34th International
Conference on Machine Learning-Volume 70, JMLR. org, 1243–1252,
2017.

[41] R. J. Williams, Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning, Machine learning 8 (3-4) (1992) 229–
256.

[42] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, V. Goel, Self-critical se-
quence training for image captioning, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 7008–7024, 2017.

[43] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
M. Auli, fairseq: A Fast, Extensible Toolkit for Sequence Modeling, in:
Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

18

https://openreview.net/forum?id=SkeK3s0qKQ
https://openreview.net/forum?id=SkeK3s0qKQ

	Introduction
	Related work
	NS-CQA: A Complex Question Answering Approach
	Primitive Actions
	Semantic Parser
	Neural Generator
	Symbolic Executor
	Training Paradigm

	Experiments
	Model Description
	Training
	Results on CQA
	Results on WebQuestionsSP
	Model Analysis
	Sample Size Analysis

	Qualitative Analysis
	Sample Cases
	Error Analysis
	Linking Problem
	Infeasible Action
	Spurious Problem
	Order of Arguments
	Approximation-related Problem


	Conclusion

