
Explicit Query Interpretation and Diversification for
Context-driven Concept Search across Ontologies

Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

(1) IITB-Monash Research Academy, Mumbai, India
(2) IIT Bombay, Mumbai, India

(3) Monash University, Melbourne, Australia

Abstract. Finding relevant concepts from a corpus of ontologies is useful in
many scenarios, such as document classification, web page annotation, and
automatic ontology population. Many millions of concepts are contained in a
large number of ontologies across diverse domains. A SPARQL-based query
demands the knowledge of the structure of ontologies and the query language,
whereas user-friendlier and, simpler keyword-based approaches suffer from
false positives. This is because concept descriptions in ontologies may be
ambiguous and may overlap. In this paper, we propose a keyword-based
concept search framework, which (1) exploits the structure and semantics
in ontologies, by constructing contexts for each concept; (2) generates the
interpretations of a query; and (3) balances the relevance and diversity of
search results. A comprehensive evaluation against the domain-specific Bio-
Portal and the general-purpose Falcons on widely-used performance metrics
demonstrates that our system outperforms both.

Keywords: Ontology Concept Search, Query Interpretation, Diversification

1 Introduction

The current breed of Semantic Web search engines can be broadly grouped into
three categories: (1) those that search for ontologies [15, 12], (2) those that search
for individual resources [20, 15], and (3) those that search for concepts that represent
a group of individuals [27, 17].1 Searching concepts across ontologies represents an
ideal granularity middle ground and has applicability in ontology mapping, ontology
merging, bootstrapping ontology population, entity annotation, web page classifica-
tion, and link prediction, all real world applications. With structured content (e.g.,
knowledge graph) increasing on the web, searching concepts across these is a challenge.
In certain domains such as life sciences, there are many overlapping domain ontologies
that contain concepts and properties that describe and link concepts. In such a
scenario, concept search in itself is a very important task.

To the best of our knowledge, existing concept search approaches can be divided
into two types on basis of the nature of the input queries: (1) SPARQL queries [23],
which as precise input queries, lead to exact results. However, it requires knowledge

1 Throughout this paper we use the terms concept and class interchangeably.

2 Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

of writing SPARQL queries and knowledge of the structure of the ontologies that are
to be queried. In reality, learning SPARQL may be an additional burden, and often
the structure might not be known to the user. (2) Keyword-based approaches [27, 15],
typically use the standard information retrieval techniques such as tf-idf-based and
PageRank-inspired algorithms. However, these approaches do not make use of the
structure and semantics in ontologies to capture the intents of queries with multiple
keywords. In our preliminary work [17] we proposed a concept search framework that
only considers relevance. Extending it, in this work, we incorporate diversification
of search results and propose a context-based diversification framework that auto-
matically captures fine-grained query intents in the top-k results. We incorporated
inferred knowledge using reasoners and refined context further to include annotation
properties of widely used vocabularies such as SKOS.

In this paper, we propose a novel keyword-based concept search framework that
optimizes both the relevance and diversity of search results. In order to improve search
relevance, our framework interprets a query by constructing contexts for concepts from
ontology axioms.We exploit the rich and inherent structure and semantics of ontologies
and adopt an explicit query interpretation approach [14] in our concept search problem.
A keyword query can be ambiguous with multiple intents. Our framework returns the
subset of relevant results that contain the most relevant as well as the most diverse
results that cover these intents. Our diversification approach achieves the goal of cap-
turing fine-grained intents in the top-k results by using the structure of the ontology.

The technical contributions of our concept search framework are three-fold: (1)
the proposal and design of contexts of concepts for their retrieval, (2) explicit, context-
based query interpretation based on co-occurrences among keywords in a query, and,
(3) explicit, context-based diversification of top-k results using fine-grained search
intents.

We have conducted extensive experiments that compare our framework against
two concept search systems: the domain-specific BioPortal and the general-purpose
Falcons. Our evaluation shows that our framework outperforms both systems by a
large margin for both relevance and diversity.

2 Related Work

We relate our work with the broad areas of search approaches and systems.

Semantic Search Approaches. Semantic search engines such as Sindice [32], Swoogle [15,
12], andWatson [11], enable keyword-based search for the ontologies and entities within
them. Sindice [32] provides a search interface by using keywords, URI’s and inverse
functional properties. Swoogle [15, 12] has developed algorithms to rank the importance
of documents, individuals and RDF graphs. The existing semantic search approaches
do not leverage the structure and semantics in ontologies to capture the intents of
queries with multiple keywords. BioPortal [26] and Falcons [27] are state-of-the-art
concept search engines. The Falcons system retrieves concepts, the textual descriptions
of which match the keyword query. The system then ranks the results according to
the relevance and popularity of the concepts. The BioPortal system provides multiple

Concept Search across Ontologies 3

search functions across ontologies, individuals, and concepts. The BioPortal concept
search system is based on the precise or partial matching of the preferred name with
the search string. BioPortal use ontology popularity to rank concept search results.
We differ in our approach from both these concept search systems in the aspect of
searching by using query interpretation and search result diversification techniques.

Indexing and Ranking. SchemEX [24] is an indexing approach for search across the
linked open data (LOD) using structured queries. SchemEX consists of three schema
layers of RDF classes, RDF types, and equivalence classes with each layer supporting
different types of structured queries. However, our framework supports keyword queries
and makes use of contexts based on a richer set of ontology constructs. Blanco et al. [5]
propose r-vertical index (reduced version of their vertical index) for the RDF entity
search problem. The r-vertical index is built by manually categorizing RDF properties
in three fields (important, unimportant and neutral). In comparison, our index is
built using context information of concepts in the ontologies suitable for our concept
search problem. Recent work in the area of Semantic Web resources ranking has
largely focused on adapting and modifying the PageRank algorithm. ReConRank [19]
is PageRank-inspired [22] algorithm for Semantic Web data. It uses node degree to
rank Semantic Web resources in a manner analogous to the PageRank algorithm.
ReConRank combines ranks from the RDF graph data sources and their linkage.
AKTiveRank [3] ranks ontologies on the basis of how well they cover the specified
search terms. The Linked open vocabularies (LOV) [4] search system ranks results on
the basis of the popularity of the term in the LOD datasets and in the LOV ecosystem.
Butt et al. [7, 6], use offline ranking with the popularity of the concept within the
ontology and the popularity of the ontology that contains the concept as the ranking
features. Blanco et al. [5] propose instance/entity search using BM25F ranking function.
Their ranking function does not exploit proximity information or term dependencies.
The existing approaches do not directly exploit the structure in ontologies for indexing
and ranking. Dali et al. [9], propose the learning to rank (LTR) [25] approach by
using query-independent frequency-based features to rank the results of structured
queries. We build the context-based inverted index to interpret the queries, and rank
the results of keyword queries using query-based features in the LTR algorithm.

Query Processing and Interpretation. There has been work on structured query
processing over LOD and related ontologies. The work on Top-k exploration of query
candidates on the (RDF) graph data[31] proposes an intermediate step of converting
keyword queries to structured queries. The user needs to select the correct SPARQL
query interpretation to retrieve search results. However, our method internally in-
terprets the keyword query without needing to explicitly generate the candidate
SPARQL query. Fu et al. [16] generate query interpretations using the query history
as contextual information. However, the queries may not always be iterative and
extensive query logs of similar queries may not be available for interpretations. In
our approach, we use the context information around a concept across ontologies to
interpret the query. We also discuss query interpretation work in the context of im-
plicit and explicit query interpretation. Sawant et al. [29] propose implicit generative
and discriminative formulations for joint query interpretation and response ranking
in keyword-based searches across web documents. Agarwal et al. [1] use probabilistic

4 Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

modeling techniques to mine query templates from query logs for query interpretation.
While these approaches may work well for large-scale unstructured data, they may
not work in our problem of searching over structured ontologies with low number of
redundancies. Our technique of interpreting relations among keywords in the query
by using a rich ontology structure is different from the rest of the approaches.

Search result diversification. There are two main approaches to diversification: (1)
implicit ones that assume that similar documents that cover similar intent/aspects of
the query should be demoted to achieve diversified ranking (maximum marginal rele-
vance, or MMR [8]); and (2) those that explicitly model query aspects by sub-queries
and maximize the coverage of selected documents with respect to these aspects [28,
10, 21]. These approaches are applied to the unstructured text document search. We
believe the diversification techniques have not been designed for the structured data
setting of ontologies. Herzig et al. [18] propose language model (LM) approach for
consolidating entity search results to reduce redundancy by grouping similar entities.
However, their approach does not consider diversity of intent capture in the top-k
results. While in our explicit diversification approach, we eliminate redundancy and
also capture the fine-grained intents in the top-k search results.

3 Overall Approach

Given a multi-word query Q that consists of m keywords, Q={k1,k2,...,km} on a
search space of diverse web ontologies O= {O1,O2,...,On}, the goal is to retrieve
relevant (named) concepts R={R1,R2,...,Rp} across these ontologies. We retrieve
concept results R by interpreting relations among keywords in the query via the
context of a concept (class). Given an ontology, Og (g=1,2,...,n), the entities of
Og include named concepts and named (object-, datatype-, or annotation) prop-
erties that are declared in Og. Given an axiom a∈Og (logical or annotation), let
sig(a) represent the signature (the set of entities) in a. sig(·) is extended naturally
to apply to sets of axioms also. For an entity e, let annotations(e) represent the
values of annotation axioms on e. These annotation axioms include rdfs:label,
rdfs:comments, rdfs:isDefinedBy, rdfs:seeAlso as well as those defined in other
widely-used vocabularies such as SKOS.

A keyword query is interpreted using the context of each concept. The context
of a given concept Cj across ontologies O is defined as the set of annotation values of
the concept and of the entities that co-occur with Cj in some axioms in an ontology.

AxCj
={a| a∈O∧ Cj∈sig(a)} ∪
{a| a is AvB ∧ {A,B}⊆sig(O) ∧ o�a ∧ (Cj=A∨Cj=B)} ∪
{a| a is A≡B ∧ {A,B}⊆sig(O) ∧ o�a ∧ (Cj=A∨Cj=B}

PxCj
={a | a∈O ∧ Cj∈sig(a) where a is an object-, datatype-

or annotation property axiom}
Context(Cj)={annotations(Cj)} ∪

{annotations(e) | e∈sig(AxCj
∪PxCj

)}

Concept Search across Ontologies 5

where AxCj and PxCj are sets of class-axioms and property-axioms that are relevant
to Cj, respectively. Note that AxCj

includes subClassOf and EquivalentClasses

axioms a that are entailed by an ontology (i.e., O � a), where both concepts are
named concepts (i.e., A and B), and one of them is Cj. These additional, inferred
axioms are obtained through reasoning. Context(Cj) consist of its annotation values
(annotations(Cj)) and the annotation values of the set of entities that are relevant
to Cj (annotations(e)|e∈sig(AxCj∪PxCj)).

We further employ search result diversification to cover maximum user intents
in the top-k search results. We pose our search result diversification problem as a
an optimization problem, in which the objective is to maximize the relevance of a
result, while minimizing the redundancy among the results. Given a ranked set R of
relevant concepts for Q, the goal is to select the subset of concepts Cs⊆R that are
most relevant to the query and diverse among Cs. Along the lines of the MMR [8]
framework, our diversification optimization model is:

C∗=arg max
Ci∈R\Cs

((1−λ)×S(Ci)+λ×D(Ci,Cs)) (1)

where S(Ci) is the relevance score of concept Ci, and D(Ci,Cs) is the diversification
score of Ci. S(Ci) is obtained by using LTR algorithms. D(Ci,Cs) is estimated using
the diversity function in which Ci is compared with each of the concepts in Cs. The
diversity parameter, λ∈ [0,1], is the tuning parameter that draws a balance between
the relevance and the diversity of a concept.

4 The Concept Search Framework

Figure 1 depicts the high-level architecture of our search framework. The components
at the bottom are constructed offline, whereas the computations at the top are
performed online for each new query. The concept inverted index I is built offline
using Context(Cj), that is relevant to each Cj as defined in equation 1 (Sec. 3).
Each class and property axiom in AxCj

and PxCj
, which is relevant to each Cj

in the ontology corpus is indexed as a field such as rdfs:label, rdfs:comments,
rdfs:isDefinedBy. Since the probability of having more than two words together
in the ontology corpus is small, we set the shingle size (number of co-occurring words
used in co-occurrence computation) to two. In addition, we store the term-vectors
for performing co-occurrence computation. We perform natural language processing
(NLP) techniques such as tokenization and stemming using the Lucene standard
analyzer in order to store the context information in the inverted index.

4.1 The Concept Search Procedure

Given a query Q, the search proceeds by finding concepts with human-readable label
L(Cj) or class-name(Cj) (fragment of the URI) that match exactly with the query
Q terms as a phrase (line 3 in Procedure CS). We define L(Cj):

L(Cj)={l | l∈rdfs :label(Cj)∨l∈skos:prefLabel(Cj)} (2)

6 Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

Rank 1

•Concept

•definition

•....

Rank 2

•Concept

•definition
•....

Ranking

Model

model

Explicit Query

Interpretation

Query
Token

Association

Q = {k1, k2… kn}

Query Log

Ontologies

Co-occurrence

Information

Concept Inverted

Index

Relevance

Score

Computation

Top-k Search

Result

Diversification

Fig. 1: The high-level architecture of our concept search framework.

The lexical co-occurrence LC among keywords in a query is evaluated using Pearson’s
Chi-squared test (line 6). A Chi-squared value that is greater than 3.841 implies that
the keywords co-occur with 95% confidence. The Pearson’s Chi-squared test returns
a set of all co-occurring terms, Cterms in the query. We use Cterms for explicit query
interpretation in procedure QI (line 7, further described in Sec. 4.2). QI generates
direct and inferred parses for the query using context of concepts. The parses return
a set of concepts as search results. Feature vectors (fv’s) are then built for these
results to obtain relevance by using LTR model (line 8). An LTR ranking model
that is trained offline is applied in order to obtain the relevance score of each search
result (line 9, further described in Sec. 4.3). Finally, the search results are diversified
to capture fine-grained user intents (line 10, further described in Sec. 4.4).

Procedure CS(Q,C)
Data: Query Q={k1,k2,...,km}
Data: Number of results to be returned, k
Data: Concepts across ontologies, C={C1,C2,...,Cl}
Data: An LTR ranking model trained offline, rankingModel
Result: SearchResults

1 SearchResults←∅
2 foreach Cj∈C do
3 if IsExactMatch(L(Cj),Q) or IsExactMatch(class-name(Cj,Q)) then
4 SearchResults←SearchResults ∪ {Cj}

5 if |Q|≥2 then
6 Cterms={Ct | Ct⊆Q ∧ Ct={ki,ki+1} ∧ LC(ki,ki+1)>3.841}
7 SearchResults←SearchResults ∪ QI(Cterms,Q)

8 fv←BuildFV (Q,SearchResults)
9 SearchResults←relevance(fv,SearchResults,rankingModel)

10 SearchResults←diversify(SearchResults,k)
11 return SearchResults

Concept Search across Ontologies 7

4.2 Explicit Query Interpretation

Our explicit query interpretation approach generates interpretations by analyzing the
interrelationships among the keywords along with the inherently rich structure and
semantics of ontologies. Our explicit approach embeds a precise understanding of how
each search result is obtained. In the procedure QI, we use the set of co-occurring
terms Cterms and all the individual keywords in the query. For each co-occurring
terms pair Ct ∈Cterms, we search for the set of classes CtermClasses for which
IsExactMatch(L(Cj),C

t) is true (line 5). We implement the direct and inferred parse
on each of the concepts Cj in CtermClasses. The direct and inferred parse returns
the set of relevant concept results (SearchResults) for the query (line 6- 7). If the
SearchResults found using direct and inferred parse for co-occurring tokens are less
than the threshold (set to 50), we search for a set of classes StermClasses in order to
match each keyword St∈Q, for which IsExactMatch(L(Cj),S

t) is true (line 10). We
implement the direct and inferred parse on each of the classes Cj in StermClasses to
obtain relevant concept results (SearchResults) for the query (line 11- 12). In addition
we also return the set of classes CtermClasses and StermClasses as SearchResults
if the SearchResults found using direct and inferred parse are less than the threshold
(line 14- 15).

Procedure QI(Cterms,Q)

Data: Co-occurring terms Cterms, Q
Result: SearchResults

1 SearchResults←∅
2 CtermClasses←∅
3 StermClasses←∅
4 foreach Ct∈Cterms do
5 CtermClasses←CtermClasses ∪ {Cj|IsExactMatch(L(Cj),C

t))}
6 SearchResults←SearchResults ∪ DP(CtermClasses,Q\Ct)
7 SearchResults←SearchResults ∪ IP(CtermClasses,Q\Ct)

8 if |SearchResults|≤th then
9 foreach St∈Q do

10 StermClasses=StermClasses ∪ {Cj|IsExactMatch(L(Cj)),S
t)}

11 SearchResults←SearchResults ∪ DP(StermClasses,Q\St)
12 SearchResults←SearchResults ∪ IP(StermClasses,Q\St)

13 if |SearchResults|≤th then
14 SearchResults←SearchResults ∪ CtermClasses
15 SearchResults←SearchResults ∪ StermClasses

16 return SearchResults

Direct Parse: The direct parse (DP) returns sets of concepts (SearchResults).
DP analyzes the relation among the query keywords by using the context of a concept
and is defined as:

DP(tC,S) = {Cj | Cj∈tC ∧ sim(Context(Cj),S)>0} (3)

8 Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

where tC is either CtermClasses or StermClasses, and sim(Context(Cj),S) is
calculated using the Jaccard similarity measure.

We explain DP with an example for a query “Myocardial infarction causes”
in Figure 2. The query contains the co-occurring terms pair Ct, “Myocardial in-

farction”. The keywords “Myocardial infarction” appear as the label of some
concept Cj in our concept index i.e., IsExactMatch(L(Cj),C

t)=true. If the context
of the same concept Cj contains “causes” (hence sim(Context(Cj),S)>0 is satisfied),
then Cj with label ‘Myocardial infarction” will be returned as a search result.

Query = [Myocardial Infarction] Causes
 k1 k2 k3

L (Cj)

Def (Cj)

"Necrosis of the

myocardium

caused by an

obstruction of

the blood supply

to the heart ……"
rdfLabel: Myocardial Infarction

LC (k1, k2) = TRUE

Cj

Class Cj with label “Myocardial
Infarction” and definition
containing “causes” as a result
for query Q = {k1 k2 k3}

 Fig. 2: Direct Parse

 Query = [Heart attack] Causes
 k1_ k2 k3

L (Cj)

Def (Ck)

"Necrosis of the

myocardium caused

…."

rdfLabel: Heart attack

LC (k1, k2) = TRUE

Cj
Class Ck with label
“Myocardial Infarction”
(not appearing in
keyword query) and
definition containing
“causes” as a result for
query Q = {k1 k2 k3}

Ck

EquivalentClass:

Fig. 3: Inferred Parse

Inferred Parse: The inferred parse (IP) returns a set of other concepts that
do not directly appear in the query, but rather indirectly through SubClassOf or
EquivalentClasses axioms. The IP is defined as:

OC(Cj) = {Ck | SubClassOf(Cj,Ck)} ∪ (4)

{Ck | EquivalentClasses(Cj,Ck)}

IP(tC,S) =
⋃

Cj∈tC
{Ck | Ck∈OC(Cj) ∧sim(Context(Ck),S)>0} (5)

where OC(Cj) is a collection of all other classes that are indirectly related to
Cj through either SubClassOf or EquivalentClasses axioms, and IP is similarly
constructed from classes in OC(Cj). Here tC, sim are defined in the same way as
explained in equation 4 of the definition of direct parse.

An example of IP is shown in Figure 3. Consider the query “Heart attack

causes”. The keywords “Heart attack” co-occur and appear as a label of some
concept, Cj, in our concept index that is, IsExactMatch(L(Cj),C

t)=true. However,
the keyword “causes” is not present in the context of Cj. An equivalent class of Ck,
Myocardial infarction, has the context that contains “causes”. This is interpreted
as an inferred relation between “Heart attack” (co-occurring terms) and “causes”
(single term) and the class Myocardial infarction with causes as its relevant
property will be returned as a search result.

4.3 Relevance Score Computation

The relevance score for the search results are computed by the ranking model that
is built using learning to rank (LTR) algorithms [25]. LTR algorithms are supervised

Concept Search across Ontologies 9

machine learning algorithms. Training data for the ranking model is generated from a
query log, in which feature vectors (FV’s) are generated for each combination of query
and a result. Components of such FV’s are ranking features, which are obtained using
ISUB [30] (12 features) and Jaccard (12 features) similarity, between query terms
and concept context fields in the index. The twelve features are computed as the
ISUB similarity of query with rdfs:label, rdfs:isDefinedBy, skos:prefLabel,
rdfs:comments, rdfs:seeAlso, synonym, dataproperty, objectpropertydomain,
objectpropertyrange, SuperClassOf, SubClassOf, EquivalentClasses, respec-
tively. Similar features are obtained using the Jaccard similarity measure.

The training data of FV’s are used to build LTR models, by employing the
RankLib implementation2. We use the pairwise RankNet algorithm because the
highest normalized distributive cumulative gain (NDCG) value was obtained from
this algorithm among the pairwise algorithms by using the query log test data. The
RankNet parameters that are used are: the number of epochs to train =100; the
number of hidden layers =1; number of hidden nodes per layer=10; and the learning
rate =0.00005. The LTR model is trained using 70% of the log queries in order to
learn the weights of the features and 30% of the queries are used for testing (excluding
training queries). The model is then applied to search results in order to obtain the
relevance scores for all the concept search results.

4.4 Search Result Diversification

A keyword query may have diverse possible search intents. Search result diversification
aims to retrieve k items that are the subset of all relevant results that contain the most
relevant and the most diverse intent results. We use the relevance score that is obtained
by the LTR algorithm for search result diversification. Search results are diversified
by capturing fine-grained query intents explicitly, using the context of concepts.

Baseline Approach. The baseline Implicit approach assumes that similar search re-
sults map to the same query intent. Such results should be demoted in order to achieve
diversified ranking. Maximum marginal relevance MMR [8] is a canonical technique
from the implicit approach. The implicit diversity function is defined as follows:

D(Ci,Cs)=
∑

Cj∈Cs

(1−SC(Ci,Cj)) (6)

We calculate the similarity SC(Ci,Cj) among two concepts by comparing their
respective context similarity. For example, the context information that is captured
in sig(a), in which a is a SubClassOf axiom of the concept Ci is compared with
similar information of the other Cj. We use the greedy algorithm [13] by substituting
equation 6 in equation 1 of Section 3 in order to implement the implicit diversification.

C∗=arg max
Ci∈R\Cs

((1−λ)×S(Ci)+λ×(
∑

Cj∈Cs

(1−SC(Ci,Cj))) (7)

We iteratively select the best concept result with the highest LTR score (S(Ci)) from
R which can maximize the diversity of the selected concepts Cs. The iterative process
is repeated until top-k results (|Cs|=k) are obtained.
2 http://people.cs.umass.edu/~vdang/ranklib.html

10 Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

Fine-grained Explicit Diversification. Explicit approaches [28, 10] directly map
search results to query intents. Diversified ranking is achieved by selecting results
that maximize coverage with respect to query intents. Existing explicit diversification
approaches obtain query intents from commercial search engines such as Google, which
may not be useful in our setting because they are independent of the ontology corpus.
Our explicit diversification is based on fine-grained intents that are captured by the
contextual information around a concept. We make use of super-class and subclass
relations of the returned concepts to generate search intents. Super-classes of concepts
cover more generic intents, while subclasses of concepts generate more specific intents.

More specifically, for a query, Q, and the set of most relevant concepts R returned
by the LTR model, two levels of intents are generated. Firstly, the top-level intents
consists of all of the super-classes of concepts in R. Secondly, the sub-level intents
consists of all the subclasses of the super-classes of R.

Top-level intent diversity: The top-level intents are represented as I. Along
the lines of the work by Hu et al [21], we define diversity of the top-level intents as
follows:

D(Ci,Cs,I)=
∑
x∈I

[
p(Ci|x)×p(x|Q)×

∏
Cj∈Cs

(1−p(Cj|x))
]

(8)

p(Ci|x), is the probability that Ci satisfies the top-level intent x, and I represents
the set of the top-level intents of Q. p(Ci|x)=sim(L(Ci),L(x)) is estimated as the
Jaccard similarity between the labels L(Ci) of a concept and the intent L(x), in
which L(Ci) and L(x) are defined by equation 3 in Sec. 4.1.

p(x|Q), which is the probability of x for the given query Q, is estimated by
assuming uniform probability distribution p(x|Q)= 1

|I| . Uniform intent distribution

has been demonstrated to be the most useful [28].

(1−p(Cj|x)) is the probability that Cj does not satisfy intent x, which indicates
that x is less substantially covered and should have higher “priority” in getting more
results. The product

∏
Cj∈Cs

(1−p(Cj|x)) estimates the probability that all concepts
Cs, that are selected by the LTR model fail to satisfy intent x.

After summing over all query intents, and after being weighted by p(x|Q), the
diversity measure in equation 8 is the probability that Ci covers the search intents
I while the existing list Cs, fails to satisfy them.

Sub-level intent diversity: Each of the top-level intents x∈ I is subdivided
into sub-level intents S. The sub-level intents are represented as Sx in which x is a
top-level intent.

D(Ci,Cs,S)=
∑
x∈I

∑
y∈Sx

[
p(Ci|y)×p(y|Q)×

∏
Cj∈Cs

(1−p(Cj|y))
]

(9)

where p(Ci|y) estimates the probabilities that concept Ci satisfies the sub-level intent
y, and p(y|Q) is the probability of each of the subclass level intents y for the given
query Q. The probability of each of the sub-level intents, y, for query, Q, p(y|Q), is
estimated by assuming uniform probability for sub-level intents, p(y|Q)= 1∣∣I∣∣×∣∣Sx

∣∣ .

Concept Search across Ontologies 11

By combining the diversity of the top-level and sub-level intents, our fine-grained
explicit diversification is estimated as follows

D(Ci,Cs)=γ×D(Ci,Cs,I)+(1−γ)×D(Ci,Cs,S) (10)

where γ is the tuning parameter for the top-level and the sub-level depending on the
granularity of the diversification.

By plugging equation 10 into equation 1, our diversification optimization model is

C∗=arg max
Ci∈R\Cs

((1−λ)×S(Ci)+λ(γ×D(Ci,Cs,I)+(1−γ)×D(Ci,Cs,S))) (11)

where λ is the diversity parameter and γ is the intent parameter for the top-level
and sub-level intents.

The model considers the relevance between the concept results Cs and query Q
and the diversity among concepts in Cs. Using a greedy algorithm [13], it iteratively
selects the next best concept that is relevant to query Q which maximizes the diversity
of selected concepts Cs.

5 Evaluation
We compare our system with the search function of two large, widely-used, and openly
available ontology repositories, the Bio-medical domain BioPortal,3 and the generic
Falcons4. A summary of the two repositories can be found in Table 1. A separate
inverted index was built for each of the BioPortal and Falcons repositories respectively.

We evaluate our system’s performance in terms of relevance only (query interpre-
tation, Sec. 5.1), as well as relevance and diversity (search diversification, Sec. 5.2).
Standard information retrieval (IR) ranking measures [25], mean reciprocal rank
(MRR) and normalized distributive cumulative gain (NDCG) are used to evaluate
our query interpretation approach. The standard search diversification metric of
normalized cumulative gain-intent aware (NDCG-IA) [2] is used for evaluation of our
diversification technique. Our evaluation dataset is publicly available.5

Table 1: A summary of the BioPortal and Falcons repositories.

Repository Type # ontologies # concepts # axioms

BioPortal Domain-specific 296 2,062,080 9,221,087

Falcons Generic 294,504 804,380 2,566,921

5.1 Query Interpretation Evaluation

Comparison with BioPortal. The BioPortal query log (July 2012 to July 2014)
contains more than 2,000 real-world queries as well as click-through data. Among
these queries, more than 50% are multiple-token queries.
3 http://bioportal.bioontology.org/
4 http://ws.nju.edu.cn/falcons/conceptsearch/
5 https://dx.doi.org/10.4225/03/57218DB2399B9

12 Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

Comparison with BioPortal average values. We present average NDCG and MRR for
our approach vis-a-vis BioPortal for multi-token and single-token queries in Table 2.
Our system significantly outperforms BioPortal for multi-token queries, and both
systems demonstrate comparable performances in single-token queries.

Table 2: Comparison with BioPortal.

Measure Multi-token Single-token

BioPortal Ours BioPortal Ours

NDCG 0.61 0.72 0.62 0.63
MRR 0.42 0.60 0.49 0.51

Query-wise comparison with BioPortal. For each query, we calculated the difference
between the NDCG values obtained by our system and BioPortal. Of the 2,000
queries, the NDCG values for 1,000 queries (>50%) are better in our system, and
more than 700 queries (> 35%) have the same level of performance. The number
of queries in which BioPortal performs better is 300 (<15%). Our system performs
better (>50%) due to effective use of context information in query interpretation. The
level of performance is the same for the queries (>35%) in which the keywords match
the class label exactly. The lower performance (<15%) may be due to unavailability
of context information in the ontologies. The better performance of BioPortal in
these (<15%) queries can be attributed to their statistical consideration of ontology
popularity in ranking search results.

Comparison with implicit query interpretation. We evaluated explicit and implicit
implementations of query interpretation on the BioPortal dataset. The feature-based
implicit model was trained using query logs. Explicit techniques can be more useful in
searches over structured data with a low number of redundancies due to the structured-
ness of the corpora; we also confirm this experimentally. A comparison of the implicit,
explicit query interpretation approaches and BioPortal can be found in the Table 3.

Table 3: Comparison of implicit and explicit with BioPortal for multi-token queries.

Measure BioPortal Ours

Implicit Explicit

NDCG 0.61 0.69 0.72

MRR 0.42 0.52 0.60

Comparison with Falcons. We compared our system vis-a-vis the Falcons search
engine [27] in order to explore the generic applicability of our approach. We performed
a human-based evaluation in this experiment for better evaluation accuracy and to
eliminate noise in automatic clicks. We performed an evaluation on 102 queries that
were obtained from two years of TREC web track competitions.6 This TREC dataset

6 http://trec.nist.gov/data/webmain.html

Concept Search across Ontologies 13

does not contain single token queries. Our system was evaluated by 30 human users
who were undergraduate, graduate, and postgraduate students and had a high level of
Web search experiences. Each of the 102 queries was evaluated by at least three of the
users. We recorded the binary relevance judgment for the same set of queries for each
result on both systems. The performance was evaluated using standard information
retrieval measures of NDCG and MRR. Again, our system outperforms Falcons.

Comparison with average values of Falcons. We present average NDCG and MRR
for our approach vis-a-vis Falcons for multi-token queries in Table 4

Table 4: Comparison with Falcons for multi-token queries.

Measure Falcons Ours

NDCG 0.54 0.79

MRR 0.49 0.78

Query-wise comparison with Falcons. We calculated the difference of the NDCG and
P@k (precision at k) values of our system (with QI) in comparison with Falcons, for
the same set of queries. Our NDCG performance was better for >66% of the queries.
It was at par in > 25% and lower in < 8% of the queries. We recorded the top-k
(k=1,3,5) P@k (precision at kth position) results of our system and Falcons. Of all
the queries, the performance of our system in P@1, P@3, and P@5 respectively was
better than Falcons in >50%, >60%, and >70% respectively, the same as Falcons
in >40%, >30%, and >20% respectively, and lower than Falcons for <10% for all
P@k. The average precision (AP) was calculated by taking an average of P@1, P@3,
and P@5 for each query. The positive difference for AP for >70% queries indicates
the better overall performance of our approach.

The subsequent indicative queries give a fair idea of our performance. A query,
standard axioms of set theory, has co-occurring keywords set theory and the keywords
standard axioms appears in the context of the set theory class. The same query failed
to return any results in the Falcons system. For another query, machine learning
algorithms, Falcons failed to return relevant results while our system returned relevant
result such as machine learning program, and machine learning topic.

5.2 Evaluation of Diversification

Search result diversification was evaluated using a variation of NDCG which is known
as the intent-aware normalized cumulative gain measure (NDCG-IA) [2] on the
BioPortal and Falcons dataset. We have implemented the implicit diversification
approach as defined in equation 7 as a baseline, and the explicit diversification
approach as defined in the equation 11. We set the diversity parameter λ to 0.5, and
assigned equal probability to diversity and relevance. Similarly, we set the intent level
parameter γ to 0.5, assigning equal priority to top-level and sub-level intents. Table 5
compares the NDCG-IA values produced by our explicit fine-grained diversification
method with the implicit diversification baseline, as well as BioPortal and Falcons. Note
that separate indices are constructed for the comparison with BioPortal and Falcons.

14 Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

Comparison with BioPortal. We conducted experiments with 52 queries ran-
domly selected from the BioPortal query log in order to evaluate the effectiveness of
intent-capture in our concept search results. Each query was evaluated by three users
with a basic level of bio domain expertise and a high level of web search experience.
We designed an interface for evaluating our diversification approach. The evaluation
interface provided the users with list of intents for search results. The users selected
intent for each search result that was used for computing NDCG-IA values.

Comparison of NDCG-IA values. We report the average NDCG-IA values for the top-
10 results of baseline implicit diversification and explicit diversification vis-a-vis Bio-
Portal for multi-token queries in the left part of Table 5. Of the total queries, 70% fared
well with diversification, 25% were the same as the baseline and 5% performed lower.
The better results for diversification are due to the use to explicit intent capture in our
approach. For example, a query Myocardial infarction captures the following intents-
myocardial infarction definition, myocardial infarction symptoms, myocardial infarction
types, and myocardial infarction causes in the top-k results. On the other hand, the
implicit approach removes redundancy but may not address the specific user intents,
whereas, the BioPortal captures the intents in their results but not in the top-k.

Table 5: Comparison of our implicit and explicit diversification techniques with BioPortal
and Falcons on two separate indices. The best NDCG-IA value in each comparison is
highlighted in bold.

Measure BioPortal Ours Falcons Ours

Implicit Explicit Implicit Explicit

NDCG-IA 0.66 0.75 0.83 0.47 0.73 0.77

Comparison with Falcons. We conducted experiments with 50 queries that were
randomly selected from the TREC competitions on the Falcons dataset in order to
evaluate the effectiveness of intent-capture in our results. Each query was evaluated by
three users. The users were graduate students and had a high level of search experience.
NDCG-IA was computed for the intents assigned by the user during evaluation.

Comparison of NDCG-IA values. We present the average NDCG-IA values of baseline
implicit diversification and explicit diversification vis-a-vis Falcons, in the right part
of Table 5. Of the total queries, 75% fared well with diversification, 10% were the
same as the baseline and 15% performed lower. Our explicit diversification techniques
effectively captures the fine grained intents. For example, natural language processing
applications captures diverse intents such as the linguistic translation process, linguistic
topic, and artificial intelligence in our approach, while Falcons returns search results
that repeat the single intent in the top-k results.

5.3 Discussion

Our comprehensive log-based and human-based evaluation includes domain-specific
and generic ontologies. Our system demonstrated better performance in both settings

Concept Search across Ontologies 15

using standard information retrieval measures, indicating the effectiveness of our
framework, especially in multi-token queries. Relation among the keywords in the
multi-token queries is effectively captured in our approach. All of our experiments
presented in this section (for both multi-token and single-token queries) were found to
be statistically significant using the Wilcoxon signed-rank test with p-value <0.0001.
Our system’s effectiveness can be attributed to the following factors: (1) Co-occurrence
is prevalent among multi-token queries (>50% queries). (2) Contexts of concepts
facilitate effective query interpretation. (3) Our search result diversification methods
effectively captures fine-grained intents in top-k results for multi-token queries. As
a result, our system seldom returns null or irrelevant results.

6 Conclusion

In this paper we present a novel and effective concept search framework that balances
relevance and diversity. We propose to construct contexts for concepts, and use these
contexts to (1) interpret user queries and (2) capture fine-grained search intents. The
effectiveness of our context-based query interpretation and search result diversification
techniques is demonstrated through a comprehensive evaluation against two concept
search systems, BioPortal and Falcons. Our evaluation shows that our concept search
framework significantly outperforms both systems on widely-used IR metrics.

Our work opens up several directions for further research. Our approach of explicit
query interpretation can be improved by incorporating user involvement in the cus-
tomization of the search. Our explicit diversification formulation can be improved by
using proportionality-based optimization techniques. Finally, implementing the appli-
cability of concept search in applications such as ontology population may be useful.

Acknowledgments. We thank Prof. Mark Musen and Prof. Paul Alexander of
Stanford University for sharing the BioPortal query log. We would like to thank Prof.
Gong Cheng for his advice and guidance on working with Falcons.

References

1. Agarwal, G., Kabra, G., Chang, K.C.C.: Towards rich query interpretation: Walking
back and forth for mining query templates. In: WWW ’10 (2010)

2. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In:
WSDM ’09. pp. 5–14. ACM, New York, NY, USA (2009)

3. Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with AKTiveRank. In: In Proc.
of the International Semantic Web Conference, ISWC. pp. 5–9. Springer-Verlag (2006)

4. Atemezing, G.A., Troncy, R.: Information content based ranking metric for linked open
vocabularies. In: SEMANTICS 2014. pp. 53–56 (2014)

5. Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data. In:
International Semantic Web Conference (1). pp. 83–97 (2011)

6. Butt, A.S., Haller, A., Xie, L.: Ontology search: An empirical evaluation. In: The
Semantic Web–ISWC 2014, pp. 130–147. Springer (2014)

7. Butt, A.S., Haller, A., Xie, L.: Relationship-based top-k concept retrieval for ontology
search. In: EKAW 2014 (2014)

8. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering
documents and producing summaries. In: SIGIR ’98 (1998)

16 Chetana Gavankar1,2,3, Yuan-Fang Li3, and Ganesh Ramakrishnan2

9. Dali, L., Fortuna, B., Tran, D.T., Mladenic, D.: Query-independent learning to rank
for RDF entity search. In: ESWC. LNCS, vol. 7295, pp. 484–498. Springer (2012)

10. Dang, V., Croft, W.B.: Diversity by proportionality: An election-based approach to
search result diversification. In: SIGIR ’12. pp. 65–74. ACM, New York, NY, USA (2012)

11. d’Aquin, M., Motta, E.: Watson, more than a semantic web search engine. Semantic
Web 2(1), 55–63 (2011)

12. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: ISWC 2005 (2005)

13. Drosou, M., Pitoura, E.: Search result diversification. SIGMOD Rec. 39, 41–47 (2010)
14. Fagin, R., Kimelfeld, B., Li, Y., Raghavan, S., Vaithyanathan, S.: Understanding queries

in a search database system. In: PODS ’10. pp. 273–284 (2010)
15. Finin, T., Peng, Y., Scott, R., Joel, C., Joshi, S.A., Reddivari, P., Pan, R., Doshi, V., Ding,

L.: Swoogle: A search and metadata engine for the semantic web. In: CIKM’14 (2004)
16. Fu, H., Anyanwu, K.: Effectively interpreting keyword queries on rdf databases with

a rear view. In: ISWC’11. pp. 193–208. Springer-Verlag, Berlin, Heidelberg (2011)
17. Gavankar, C., Li, Y.F., Ramakrishnan, G.: Context-driven concept search across web

ontologies using keyword queries. In: K-CAP 2015. pp. 20:1–20:4. ACM (2015)
18. Herzig, D.M., Mika, P., Blanco, R., Tran, T.: Federated entity search using on-the-fly

consolidation. In: International Semantic Web Conference (1). Lecture Notes in
Computer Science, vol. 8218, pp. 167–183. Springer (2013)

19. Hogan, A., Harth, A., Decker, S.: Reconrank: A scalable ranking method for semantic
web data with context. In: 2nd Workshop on Scalable Semantic Web Knowledge Base
Systems (2006)

20. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching and
browsing Linked Data with SWSE: The semantic web search engine. Journal of Web
Semantics 9(4), 365 – 401 (2011)

21. Hu, S., Dou, Z., Wang, X., Sakai, T., Wen, J.R.: Search result diversification based
on hierarchical intents. In: CIKM ’15. pp. 63–72. ACM (2015)

22. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of The
ACM 46 (1999)

23. Kollia, I., Glimm, B., Horrocks, I.: SPARQL query answering over OWL ontologies.
In: ESWC’11 (2011)

24. Konrath, M., Gottron, T., Staab, S., Scherp, A.: Schemex - efficient construction of
a data catalogue by stream-based indexing of Linked Data. J. Web Sem. 16 (2012)

25. Liu, T.Y.: Learning to Rank for Information Retrieval. Springer (2011)
26. Noy, N.F., Alexander, P.R., Harpaz, R., Whetzel, P.L., Fergerson, R.W., Musen, M.A.:

Getting lucky in ontology search: A data-driven evaluation framework for ontology
ranking. In: ISWC 2013 (2013)

27. Qu, Y., Cheng, G.: Falcons concept search: A practical search engine for web ontologies.
IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(4), 810–816 (2011)

28. Santos, R.L., Macdonald, C., Ounis, I.: Exploiting query reformulations for web search
result diversification. In: WWW ’10. pp. 881–890. ACM, New York, NY, USA (2010)

29. Sawant, U., Chakrabarti, S.: Learning joint query interpretation and response ranking.
In: Proceedings of the 22nd International Conference on World Wide Web (2013)

30. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In:
Proceedings of the International Semantic Web Conference (ISWC 05) (2005)

31. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for
efficient keyword search on graph-shaped (RDF) data. In: ICDE ’09. pp. 405–416 (2009)

32. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open Linked Data.
In: ISWC/ASWC (2007)

