
Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

BOWL - Augmenting the Semantic Web with Beliefs

Jin Song Dong · Yuzhang Feng · Yuan-Fang Li · Colin Keng-Yan Tan ·
Bimlesh Wadhwa · Hai H. Wang

Received: date / Accepted: date

Abstract As the Semantic Web is an open, complex

and constantly evolving medium, it is the norm, but

not exception that information at different sites is in-

complete or inconsistent. This poses challenges for the

engineering and development of agent systems on the

Semantic Web since autonomous software agents need

to understand, process and aggregate this information.

Ontology language OWL provides core language con-

structs to semantically markup resources on the Seman-

tic Web, on which software agents interact and cooper-

ate to accomplish complex tasks. However, as OWL was

designed on top of (a subset of) classic predicate logic,

it lacks the ability to reason about inconsistent or in-

complete information. Belief Augmented Frames (BAF)

is a frame-based logic system that associates with each

frame a supporting and a refuting belief value. In this

Author for correspondence: Yuan-Fang Li.

Jin Song Dong, Colin Keng-Yan Tan and Bimlesh Wadhwa
School of Computing, National University of Singapore
Computing 1, 13 Computing Drive, Singapore 117417
Tel.: +65 6516 2727
Fax: +65 6779 4580
E-mail: {dongjs, ctank, bimlesh}@comp.nus.edu.sg

Yuzhang Feng
SAS Institute, Singapore
20 Anson Rd, Singapore 079912
E-mail: yuzhang.feng@sas.com

Yuan-Fang Li
Faculty of IT, Monash University
Wellington Road Clayton VIC 3800
Tel: +61 3 9905 9688
Fax: +61 3 9905 5159
E-mail: yuanfang.li@monash.edu

Hai H. Wang
School of Engineering and Applied Science, Aston University
Aston Triangle, Birmingham B4 7ET, United Kingdom, UK
E-mail: H.WANG10@aston.ac.uk

paper, we propose a new ontology language BOWL

(Belief-augmented OWL) by integrating OWL DL and

BAF to incorporate the notion of confidence. BOWL is

paraconsistent, hence it can perform useful reasoning

services in the presence of inconsistencies and incom-

pleteness. We define the abstract syntax and semantics

of BOWL by extending those of OWL. We have pro-

posed reasoning algorithms for various reasoning tasks

in the BOWL framework and we have implemented

the algorithms using the constraint logic programming

framework. One example in the sensor fusion domain is

presented to demonstrate the application of BOWL.

Keywords Semantic Web, OWL, Probabilistic

Ontology Language

1 Introduction

The Semantic Web [4] is a vision to make resources on

the web readily available not only to humans, but also

to software agents so that they can communicate and

cooperate to accomplish complex tasks autonomously.

As the web is an extremely complex, globally distributed

and constantly evolving medium, it is often the case

that information on different sites is incomplete or in-

consistent with respect to each other. Hence, software

agents need to cope with this situation.

The cornerstone language in the Semantic Web is

OWL [7], which provides core language constructs to

semantically markup Web resources. OWL is based on

description logic, a subset of first-order predicate logic.

This dictates that any formula can be inferred from an

inconsistent knowledge base (aggregate information).

This is neither practical nor desirable as no useful rea-

soning services are available even in the presence of very

2 J. S. Dong et al.

slight inconsistency. Hence, a mechanism of represent-

ing confidence and ignorance is very desirable.

The Belief-augmented Frames (BAF) [27] is an ex-

tension to the Minsky frame knowledge representation

system [18]. Its unique feature is that it adds a belief

and a disbelief value to each frame in a frame system. In

BAF, belief and disbelief values are independent from

each other, allowing for greater flexibility in modeling

arguments for and against a fact. Consequently, igno-

rance and confidence can be incorporated.

In this paper, we propose to integrate BAF with

OWL DL to form a new ontology language BOWL

(Belief-augmented OWL) that can easily express be-

liefs.

The rest of the paper is organized as follows. In Sec-

tion 2, we briefly present works related to this paper.

In Sections 3 and 4, we give a brief introduction to

BAF and OWL languages. In Section 5, we present the

Belief-augmented OWL, and its semantics for the var-

ious language constructs. Section 6 discusses how we

can reason about BOWL ontologies and how confidence

factors can be computed. In Section 7, we present an

example in the sensor fusion domain to demonstrate

the reasoning process in BOWL. Conclusion and future

work directions are discussed in Section 8.

2 Related Works

Expert systems are used to assist decision making in in-

dividual narrow application domains, such as the med-

ical domain. Historically, uncertainty has been an re-

search subject in expert systems. A comprehensive sur-

vey can be found at [19]. Probabilistic measures were

used in expert systems to deal with uncertainty. For ex-

ample, the Pathfinder project [11] uses subjective prob-

ability theory, belief networks, for decision-support sys-

tem for hematopathology diagnoses. It uses influence

diagrams to track dependencies among observed fea-

tures. Possibility theory was also incorporated in some

expert systems for dealing with uncertain information.

The Cadiag-2 [2] system was developed to diagnose

rheumatic, hepatic and pancreatic diseases. It is based

on fuzzy theory and fuzzy set [29] and uses fuzzy infer-

ence to propagate and track belief. In general, expert

systems are very limited in scope and specifically de-

signed for particular application domains. On the con-

trary, the Semantic Web is envisioned to be an open en-

vironment, encompassing more complex and more un-

reliable resources and data.

There have been many proposals [17, 25, 28] on

probabilistic/fuzzy extensions to description logics such

as ALC and Classic, which are less expressive than

the description logic (SHOIN (D)) on which is OWL

based. Ding and Peng proposed a Bayesian network-

based probabilistic extension to OWL [9]. The main

focus of their works is the modeling of a priori and con-

ditional probabilities of OWL classes and the reason-

ing tasks are concept satisfiability, overlapping and sub-

sumption, which is different from ours. Nottelmann and

Fuhr proposed a probabilistic Datalog-based extension

to DAML+OIL [20]. Their approach is less general than

ours in the sense that a fact with both true and false evi-

dence present is considered inconsistent, whereas in our

approach evidence for and against a fact are allowable

and ignorance is computed based on these values. Strac-

cia [25] proposed a fuzzy extension for the description

logic ALC, which is less expressive than SHOIN (D).

Based on this work, Straccia proposed a fuzzy exten-

sion for OWL [26]. Again, based on fuzzy set, each as-

sertion is associated with a single value representing

its fuzziness. Therefore, our approach is more flexibil-

ity as software agents may very possibly receive both

supporting and refuting values for a certain assertion.

BOWL enables agents to make use of these values at

their own discretion. The other approaches, however,

hide this step of processing and is hence more rigid and

less transparent.

3 The Web Ontology Language OWL

The Semantic Web [4] was originally proposed as an
extension to the current Web in which resources, in-

cluding static information and dynamic services, are

semantically marked up so that they can be under-

stood, processed and aggregated by software agents au-

tonomously. The usefulness of the Web is greatly ex-

panded by agents’ ability to perform tasks on human’s

behalf. Web resources are marked up by ontologies,

defining concepts of and relations between various re-

sources. Ontology languages provide core vocabularies

for expressing ontologies.

In 2003, based on DAML+OIL [10] and RDF Schema

[5], the Web Ontology Language (OWL) [7] was pub-

lished by W3C as a Recommendation. It contains three

sublanguages: OWL Lite, DL and Full, with increasing

expressiveness. The three sublanguages are designed for

user groups with different expressiveness requirements.

These constraints are relaxed in OWL Full to allow for

greater expressiveness. OWL Lite and DL are decidable

whereas OWL Full is generally not.

BOWL - Augmenting the Semantic Web with Beliefs 3

C ::= C

| >
| ⊥
| C t C
| C u C
| ¬ C
| ∀P .C
| ∃P .C
| P : o

| ≥ n P
| ≤ n P

| {a1, · · · , an}

[Class name]
[Top class]
[Bottom class]
[Class union]
[Class intersection]
[Class negation]
[Universal quantification]
[Existential quantification]
[Value restriction]
[At least number restriction]
[At most number restriction]
[Enumeration]

Fig. 1 OWL class expressions

3.1 Abstract Syntax

With its origin from description logics [3], OWL de-

scribes knowledge in a particular domain. In OWL, ab-

stract concepts are Classes, related by binary relations

called Properties and are populated (instantiated) by

concrete Individuals. In a compact form, OWL can be

presented in the Description Logics (DL) syntax [12].

Classes in OWL are first-class citizens. Existing classes

can be used in class expressions to define new complex

ones using class constructors. Class expressions in OWL

can be of the following form as shown below. Note that

in Fig. 1 below, C represents (possible complex) class

expressions; C is a class name; P stands for a prop-

erty; n is a natural number and ai ’s are individuals.

In OWL, datatype properties and object properties are

distinguished. Without loss of generality and for brevity

reasons, we omit the discussion related to datatypes.

They can be treated in a similar manner.

OWL also defines class axioms that inter-relate classes.

These class axioms, shown in Fig. 2 below, include class

subsumption, equivalence, disjointness, etc. Axioms are

also defined for describing properties. These include

property subsumption, equivalence, domain, range, etc.

Note that the symbol AX represents axioms.

AX ::= C v C
| C = C
| C u C = ⊥
| P v P

| P = P

| ≥ 1 P v C
| > v ∀P .C
| > v≤ 1 P

| P = (−P)

[Class subsumption]
[Class equivalence]
[Class disjointness]
[Property subsumption]
[Property equivalence]
[Property domain]
[Property range]
[Functional property]
[Inverse property]

Fig. 2 OWL class axioms

The following example helps to illustrate some of

the modeling ideas of OWL.

Example 1 Suppose that we want to model the animal

domain and we have identified the following names that

we want to model as classes: Animal and Carnivore,

where Carnivore is a sub class of Animal. We want to

define the concept (class) carnivores, which only eats

animals. For this reason, we need an object property

Eats. The above classes and properties can be modeled

as follows.

Animal v >
Carnivore v Animal

Carnivore v ∀Eats.Animal

Carnivore v ∃Eats.Animal

The above definitions define Animal as an OWL

class and Carnivore as its sub class. It also uses uni-

versal quantification restriction to model the fact that

a Carnivore only Eats, which is an object property,

Animal . The existential quantification restriction is used

to ensure that a Carnivore does Eats at least one Animal .

Assertions in OWL are used to model individuals.

An assertion can model the fact that an individual is a

instance of a class, or a pair of individuals is a member

of a property. In addition, assertions can be used to

state the (in)equality of two individuals. Fig. 3 shows

the assertions available in OWL. Note that the symbol

AS represents assertions.

AS ::= a ∈ C
| 〈a, b〉 ∈ P

| a = b
| a 6= b

[Class membership]
[Property membership]
[Individual equality]
[Individual inequality]

Fig. 3 OWL assertions

3.2 Semantics

OWL is based on formal logic, hence it has a formal

semantics, an abstract interpretation I [12], which es-

sentially is a pair (∆I , ·I), where ∆I is the domain of

interpretation and ·I is the interpretation function. The

interpretation function ·I maps an individual name into

a member of the domain ∆I ; a class name into a set

of elements in the domain and a property name (note

that we are talking about object properties) into a set

of pairs of domain elements (∆I ×∆I).

The class expressions, axioms, assertions and their

interpretation can be summarized in Table 1 below.

4 Belief-augmented Frames

In belief models the possibility of an event occurring

is modeled as a range of values rather than as a sin-

gle point probability. This range allows us to express

4 J. S. Dong et al.

Table 1 OWL class expressions/axioms/assertions & their
interpretations

OWL class expres-

sion

Interpretation

C CI ⊆ ∆I

> >I = ∆

⊥ ⊥I = ∅

C1 t C2 CI1 ∪ CI2
C1 u C2 CI1 ∩ CI2
¬ C ∆I \ CI

∀P .C {x | ∀ y.〈x , y〉 ∈ PI → y ∈ CI}

∃P .C {x | ∃ y.〈x , y〉 ∈ PI ∧ y ∈ CI}

P : o {x | 〈x , oI〉 ∈ PI}

≥ n P {x | #{y | 〈x , y〉 ∈ PI} ≥ n}

≤ n P {x | #{y | 〈x , y〉 ∈ PI} ≤ n}

{a1, · · · , an} {aI1 , · · · , aIn }

OWL axiom Interpretation

C1 v C2 CI1 ⊆ CI2

C1 = C2 CI1 = CI2

C1 u C2 = ⊥ CI1 ∩ CI2 = ∅

OWL assertion Interpretation

a ∈ C aI ∈ CI

〈a, b〉 ∈ P 〈aI , bI〉 ∈ PI

a = b aI = bI

a 6= b aI 6= bI

ignorance, which standard statistical measures do not

accommodate. Statistical measures only provide lim-

ited ability to express ignorance, e.g., as given in [1],

where doctors, who predicted with a certainty of x%

that a patient was suffering from a particular illness,

were reluctant to predict with a certainty of (100−x)%

that the patient was not suffering from that illness.

This apparent contradiction is a reflection of classical

statistics’ inability to cater to ignorance. Various mod-

els of beliefs have been proposed, including the seminal

Dempster-Shafer theory [8, 23]. Smets generalized the

model in [24] to form the Transferable Belief Model.

Picard [22] proposed the Probabilistic Argumentation

System, which combines propositional logic with prob-

ability measures to perform reasoning.

4.1 Belief Augmented Systems

In classical AI a frame represents an object in the world,

and slots within the frame indicate the possible rela-

tions that this object can have with other objects. A

value (or set of values) in a slot indicates the other ob-

jects that are related to this object through the relation

represented by the slot. The existence of a slot-value

pair indicates a relation.

• In BAFs each slot-value pair is augmented by a pair

of belief/disbelief masses. We define this pair as BAF,

with BAF range as the value range from 0 to 1, i.e.,

[0, 1]. Hence, a BAF b is a pair 〈at , af 〉, where at

and af are from BAF range.

• Furthermore, we define two functions φT and φF to

project out the belief/disbelief values of a BAF value

pair: φT(b) = at (the first element of the pair x .1)

and φF(b) = af (the second element x .2)1.

φT, φF : BAF→ BAF range, where
∀ x : BAF • φT(x) = x .1 ∧ φF(x) = x .2

Note that φT and φF of a particular BAF may not

necessarily sum to 1. This frees us from the classical

statistical assumption that φT(rel) = 1−φF(rel) and

it allows us to model ignorance. It is also possible

that φT(rel)+φF(rel) > 1. More information on this

can be found in [27] where ignorance is discussed in

detail. Both φT and φF may be derived from various

independent sources, or may be computed by using

a system of logic called ”BAF-Logic” which will be

presented in the next subsection. Effectively this al-

lows us to model the belief in a problem as a set

of arguments for the belief, and a set of arguments

against it.

• While φT and φF represent the degree of belief for

and against a claim, the overall truth is given by the

Degree of Inclination DI, a function from BAF, pairs

of BAF values, to DI range, an interval from -1 to

1 ([-1, 1]).

DI : BAF→ DI range, where
∀ x : BAF • DI(x) = φT(x)− φF(x)

DI(rel) measures the overall degree of truth of the

relationship rel , with -1 representing falsehood, 1

representing truth, and values in between represent-

ing various degrees of truth and falsehood. As an ex-

ample, we could take -0.25 to mean “possibly false”,

-0.5 to mean “probably false”, etc.

• The Utility Function U is defined as follows:

U : BAF→ BAF range,

such that∀ x : BAF • U(x) =
1 + DI(x)

2
U maps the Degree of Inclination to a [0, 1] range. If

we normalize the Utility Functions for all relations

so that they sum to 1, we can use these normal-

ized values as statistical measures representing the

probability of a relation being true.

It can be easily verified that for any BAF value b,

U(b) = 1 − U(¬Bb) and if U(b) ≥ n, then U(¬Bb) ≤
1−n, for n ∈ [0, 1]. Note that the BAF not operator

¬B will be introduced in the next subsection.

1 Note that the symbols • represents “such that”.

BOWL - Augmenting the Semantic Web with Beliefs 5

• The plausibility Pl is, in the ideal case, the upper

bound that φT can take, and it is defined by:

Pl : BAF→ BAF range,
such that ∀ x : BAF • Pl(x) = 1− φF(x)

For any given BAF value b, if φT(b) > Pl(b), then

either the data generating φT is overly optimistic

(φT is too large), or overly pessimistic (φF is too

large, resulting in Pl being too small). In either case

the condition φT(b) > Pl(b) indicates that the data

generating φT and φF is conflicting.

• The ignorance in our system is given by Ig, and is

defined as:

Ig : BAF→ DI range, such that Ig(x) = Pl(x)− φT(x)

Note that Ig(b) is a negative number when φT(b) >

Pl(b). As discussed earlier this is indicative that the

data supporting and refuting b is conflicting. In such

cases φT(b) + φF(b) > 1.

There are many other features of BAFs like inher-

itance of relationships, generalization of concepts and

daemons that are beyond the scope of this paper. In-

terested readers are referred to [27].

4.1.1 Predefined Beliefs

We define three predefined BAFs φdef, φone and φzero as
follows. They are convenient shorthand for frequently
used BAF values.

φdef, φone, φzero: BAF, such that
φdef = 〈0, 0〉 φone = 〈1, 0〉 φzero = 〈0, 1〉

For example, following φdef, we obtain:

DI(φdef) = 0.0, U(φdef) = 0.5,
Pl(φdef) = 1.0, Ig(φdef) = 1

Thus by choosing 0 for both supporting and refut-

ing belief values, we get a DI representing lack of knowl-

edge of evidence for and against the statement, a Utility

Function that is 50% true (and therefore 50% untrue), a

plausibility that represents that there is no reason why

the relationship cannot be true, and complete ignorance

about the truth of the relationship.

4.2 Belief Augmented Frames Logic

Belief Augmented Frame Logic (BAF-Logic) is a system

designed to reason over the φT and φF values in the

frame.

• We define the BAF conjunction ∩B as a function

from two BAFs to a BAF. Hence, given two BAFs P and

Q , their conjunction P ∩B Q is defined as follows.

∩B : BAF× BAF→ BAF, such that ∀P ,Q : BAF •
φT(P ∩B Q) = min(φT(P), φT(Q)) ∧
φF(P ∩B Q) = max(φF(P), φF(Q))

This definition is based on the intuitive idea that

the strength of P∩BQ being true rests on the strength

of the weakest proposition P or Q . Likewise, if ei-

ther P or Q were false, then P ∩B Q would be false,

and we can base our degree of belief in P∩BQ being

false on the strongest proposition that either P or

Q is false.

• Similarly we define the BAF disjunction ∪B between

P and Q as:

∪B : BAF× BAF→ BAF, such that ∀P ,Q : BAF •
φT(P ∪B Q) = max(φT(P), φT(Q)) ∧
φF(P ∪B Q) = min(φF(P), φF(Q))

• Finally, we define the BAF not operator ¬B as:

¬B : BAF→ BAF, such that ∀P : BAF •
φT(¬BP) = φF(P) ∧ φF(¬BP) = φT(P)

This means that the degree that we believe that our

data support ¬BP is equal to the degree that they

refute P . Likewise the degree that our data refute

¬BP is equal to the degree that they support P .

5 Belief-augmented OWL (BOWL)

The Belief-augmented OWL incorporates belief/disbelief

values defined in BAF into OWL to enable the rep-

resentation & reasoning of incomplete, subjective and

sometimes conflicting resources on the Semantic Web.

In this section, we introduce the BOWL and present

its semantics by defining interpretations of the various

language constructs of BOWL.

5.1 BAF

Each fact about individuals in OWL is augmented with

a BAF, a pair consisting of a belief and a disbelief mea-

sure of the type BAF range. Hence, a BAF value is of

the form 〈bt , bf 〉, where bt and bf are the belief/disbelief

values, respectively.

BAF ::= 〈BAF range, BAF range〉

BAF range can be viewed as a data type derived

from float defined in XML Schema.

In the following, we will use angle brackets “〈〉” to

denote the association of an OWL language construct

and its BAF value.

6 J. S. Dong et al.

AX ::= 〈C v C, BAF〉
| 〈C = C, BAF〉
| 〈C u C = ⊥, BAF〉
| 〈P v P , BAF〉
| 〈P = P , BAF〉
| 〈P = (−P), BAF〉

[Class subsumption]
[Class equivalence]
[Class disjunction]
[Property subsumption]
[Property equivalence]
[Inverse property]

Fig. 4 BOWL axioms

AS ::= 〈a ∈ C, BAF〉
| 〈〈a, b〉 ∈ P , BAF〉
| 〈a = b, φone〉
| 〈a 6= b, φone〉

[Class membership]
[Property membership]
[Individual equality]
[Individual inequality]

Fig. 5 BOWL assertions

5.2 BOWL Axioms & Assertions

As in OWL, BOWL axioms are about classes and prop-

erties and BOWL assertions are facts about ground

knowledge entities such as individuals and data val-

ues. BOWL augments OWL axioms and assertions with

BAF values, as follows. Both class and property mem-

bership assertions are treated alike. For any OWL ax-

iom/assertion, its BOWL extension is summarized in

Figs 4 and 5 below.

The second kind of facts asserts the relationship be-

tween individuals. BOWL attaches φone to each of these

assertions hence the (in)equality between individuals

will be treated in the same way as in OWL.

∀ x ∈ ∆Ib • >Ib (x) = φone

5.3 Semantics of BOWL

We construct the semantics of BOWL by extending the

model-theoretic semantics of OWL [21].

Firstly, we assume that the datatype map D (as

in OWL) is extended to include a mapping from the

(abbreviated) URI bowl:BAF to the datatype BAF, as

defined in Section 4. For brevity reasons and without

loss of generality, we leave out the discussion related to

data types, such as datatype properties, etc. They can

be treated similarly as object properties.

5.3.1 The BOWL Interpretation

A BAF extended interpretation Ib is a pair (∆Ib , ·Ib),

where ∆Ib is, as in the OWL case, the domain of in-

terpretation and ·Ib is the interpretation function. In

OWL, the interpretation function maps an individual

name into a member of the domain; a class name into a

set of elements in the domain and a property name into

a set of pairs of domain elements ∆I×∆I . The BOWL

interpretation still maps into members of the domain

∆Ib . However, it maps a class (resp. a property) into a

function from members of ∆Ib (resp. pairs of members

of ∆Ib) into a BAF value.

CIb :∆Ib → BAF

PIb :∆Ib ×∆Ib → BAF

As defined above, each of the BOWL classes and

properties is a function returning a BAF value. Intu-

itively, the BAF interpretation returns this value as the

belief/ disbelief value of an individual (resp. a pair of

individuals) being a member of the class (resp. prop-

erty).

In addition, the following conditions must be satis-

fied by the interpretation Ib . For any a:∆Ib ,

– >Ib (a) = φone. This condition states that any indi-

vidual of the domain is a member of the top class

with the highest possible belief.

– ⊥Ib (a) = φzero. This condition states that no indi-

vidual is a member of the bottom class.

The above two conditions reiterate the facts that

the top class is still the super class of all classes

and that the bottom class is still the sub class of all

classes.

– (C1 tC2)Ib (a) = C Ib
1 (a)∪B C Ib

2 (a). This condition

states that the interpretation of disjunction of two

BOWL class expressions is the BAF disjunction of

the BAF values associated with the two classes.

– (C1 u C2)Ib (a) = C Ib
1 (a) ∩B C Ib

2 (a). Similar to the

disjunction case, this condition states that the in-

terpretation of conjunction of two BOWL class ex-

pressions is the BAF conjunction of the BAF values

associated with the two classes.

– (¬ C)Ib (a) = ¬ BC Ib (a). The interpretation of a

class negation is the BAF negation of the BAF value

of the original class C .

– (∀P .C)Ib (a) =
⋂B

b∈∆Ib (¬BPIb (a, b) ∪B C Ib (b))
According to the semantics in Table 1, the restric-

tion ∀P .C (a) in OWL can be seen as an open first-

order formula ∀ b.〈a, b〉 ∈ PI → b ∈ C I , and con-

sequently, ∀ b.(¬ 〈a, b〉 ∈ PI ∨ b ∈ C I). Therefore,

the universal quantification restriction in BOWL is

interpreted as a distributed conjunction (universal

quantification) of the union (logical or) of the two

components.

– (∃P .C)Ib (a) =∪B

b∈∆Ib
(PI(a, b) ∩B C (b))

Similar to the universal quantification restriction

case above, the restriction ∃P .C (a) can be seen as

∃ b.(〈a, b〉 ∈ PI ∧ b ∈ C I).

– (P : o)Ib (a) = PIb (a, oIb).

– (≥ n P)Ib (a) =∪B
(∩B n

i=1
PI(a, bi)), for all

{b1, b2, · · · , bn} ⊆ ∆Ib and #{b1, · · · , bn} = n.

BOWL - Augmenting the Semantic Web with Beliefs 7

The interpretation of the maximum number restric-

tion is modeled by finding at least n distinct individ-

uals bis in the domain ∆Ib , taking the conjunction

of each of the BAF value PIb (a, bi), and taking the

distributed disjunction over all such sets of n indi-

viduals.

– (≤ n P)Ib (a) = ¬ B(∪B
(∩B n+1

i=1
PI(a, bi))), for

all {b1, · · · , bn+1} ⊆ ∆Ib .

The interpretation of the minimum number restric-

tion of n can be taken by that of the negation of

the maximum number restriction of n + 1, i.e., (≤
n P)I(a) = (¬ ≥ (n + 1)P)I(a).

The duality of the concept relationships in the BOWL

interpretation are worth discussing. In the following,

the symbol ∼= denotes concept equivalence. We have in

BOWL ¬ > ∼= ⊥, C u> ∼= C , C t> ∼= >, C u⊥ ∼= ⊥,

C t ⊥ ∼= C , ¬ ¬ C ∼= C , ¬ (C t D) ∼= (¬ C) u (¬ D),

¬ (C u D) ∼= (¬ C) t (¬ D), C1 u (C2 t C3) ∼= (C1 u
C2)t (C1uC3), C1t (C2uC3) ∼= (C1tC2)u (C1tC3).

For concepts involving roles, we have ¬ (∀P .C) ∼=
∃P .(¬ C), ∀P .> ∼= >, ∃P .⊥ ∼= ⊥ and (∀P .C) u
(∀P .D) ∼= ∀P .(C uD). The proof of these equivalence

relationships are obvious to see and omitted.

5.3.2 Semantics of BOWL Axioms

Subsumption and equivalence relationships among classes

and properties are the essential constructs in OWL.

They are considered in this subsection for the BOWL.

– Class subsumption.

(C v D)Ib ≡ ∩B
(¬ BC Ib (a) ∪B DIb (a)), for all

a:∆Ib

In OWL, class (and property) subsumption relation-

ships are crisp, meaning that two classes are either

of, or not of, subsumption relationship. In BOWL,

the subsumption relationships are interpreted as a

BAF value.

The above interpretation is made by viewing C v D

as a first-order logic formula ∀ c.c ∈ C → c ∈ D ≡
∀ c.(¬ c ∈ C) ∨ c ∈ D . Intuitively, the univer-

sal quantifier is translated to the distributed BAF

conjunction, the logical not is translated to a BAF

negation and the logical or is translated to a BAF

or.

– Class equivalence.

(C = D)Ib ≡ (C v D ∧ D v C)Ib ≡ (C v D)Ib ∩B
(D v C)Ib

As can be seen, a class equivalence is viewed as two

class subsumption relationships, which can subse-

quently interpreted by BOWL accordingly. As a re-

sult, class equivalence is also interpreted as a BAF

value.

– Property subsumption.

(P v Q)Ib ≡∩B
(¬BPIb (a, b)∪B QIb (a, b)), for all

a, b:∆Ib

For the same reason as class subsumption, a prop-

erty subsumption P v Q is viewed as the first-order

formula ∀ a1, a2.(a1, a2) ∈ P → (a1, a2) ∈ Q ≡
∀ a1, a2.(¬ (a1, a2) ∈ P) ∨ (a1, a2) ∈ Q .

– Property equivalence.

(P = Q)Ib ≡ (P v Q ∧ Q v P)Ib ≡ (P v Q)Ib ∩B
(Q v P)Ib

The interpretation of property equivalence in BOWL

can be obtained like that of class equivalence.

5.3.3 Semantics of BOWL Assertions

As shown in Section 5.2, the BOWL interpretation is of

the form 〈α, b〉, where α is an assertion in OWL and b is

a value in BAF. For assertion 〈α, b〉, its interpretation

is just the BAF value b.

5.4 Knowledge Base, Satisfiability and Entailment

As for the OWL case, the BOWL knowledge base con-

sists of a finite number of BOWL axioms and assertions.

We denote the knowledge base by Σ, the TBox by ΣT

and the ABox by ΣA.

A BOWL interpretation Ib satisfies a knowledge

base Σ iff it satisfies all of its elements (axioms and/or

assertions). Then the interpretation is a model of the

knowledge base.

The satisfiability of an axiom/assertion of the form

〈α, b〉 in Fig. 4 by a BOWL interpretation is denoted

by Ib � 〈α, b〉.
Since BAF is a pair of values in the range of [0, 1],

a single value needs to be derived from this pair of val-

ues to determine the satisfiability of the axiom by the

interpretation.

The Utility function U defined in BAF (Section 4) is

a normalized version of the Degree of Inclination, which

is the difference between the belief and disbelief values.

Given a BAF value, its utility gives the overall truth

value, ideally suited for the above purpose.

Therefore, Ib � 〈α, b〉 iff U(αIb) ≥ U(b), where α can

be an axiom, C1 v C2, C1 = C2 or C1 u C2 = ⊥; or an

assertion 〈a〉 ∈ C or 〈a1, a2〉 ∈ P , etc. The interpreta-

tion of α is, as given in the previous two subsections, a

BAF value. Hence, the utility function U gives a single

value for comparison. If the utility of the interpretation

of α is greater than or equal to that of b, then we con-

clude that the axiom is satisfied by the interpretation.

A knowledge baseΣ entails an axiom 〈α, b〉, denoted

by Σ � 〈α, b〉, iff it is satisfied by each of the models

8 J. S. Dong et al.

(interpretation) of Σ. Similarly, a knowledge base Σ

entails an assertion 〈α, b〉, denoted by Σ � 〈α, b〉, iff all

its models satisfies 〈α, b〉. A BOWL interpretation Ib
satisfies an assertion 〈a ∈ C , b〉 iff U(C Ib (aIb)) ≥ U(b).

The same applies to the case of property assertions of

the form 〈〈a1, a2〉 ∈ P , b〉, i.e., U(PIb (aIb
1 , aIb

2) ≥ U(b).

Modus ponens on classes and properties are sup-

ported in BOWL. Assume b, d are BAF values such

that U(b) > U(¬ Bd). For classes, {〈a ∈ C , b〉, 〈a ∈
¬ CtD , d〉} � 〈a ∈ D , d〉 holds. For properties, {〈〈a, b〉 ∈
P , b〉, 〈a ∈ ∀P .C 〉, d〉} � 〈a ∈ C , d〉 holds.

Other functions, such as the degree of inclination DI,

can also be used in the place of U according to the user’s

needs and the source of the belief/disbelief values.

6 Reasoning about BOWL

As we have discussed earlier, each fact in OWL is aug-

mented with a BAF, a pair consisting of a belief value

and a disbelief value. In this section, we present some

algorithms for BOWL class membership and property

membership entailment. More specifically, given an on-

tology and a BOWL class or property membership as-

sertion, the algorithm determines if the ontology entails

the BOWL assertion.

6.1 Class Membership

We explain the algorithm for class membership. Algo-

rithm 1 is simply the outer algorithm which calls Algo-

rithm 2 to compute the BAF values of a class member-

ship assertion in an ontology.

Data: Ontology O, and BOWL assertion 〈a ∈ C, β〉
where a is an individual, C is a class description
and β is a BAF

Result: Returns true if O � 〈a ∈ C, β〉 and false
otherwise

compute the belief values, γ, of a ∈ C in O by
Algorithm 2;
return γ ≥B β;

Algorithm 1: BOWL class membership assertion

entailment

Algorithm 2 works as follows. It first checks if the

requested BAF values are already given in the ontol-

ogy. If so, it halts and returns it directly. Otherwise

it computes the BAF values according to the types of

the class description. If it is the top or bottom class,

it simply returns φone and φzero respectively. If it is a

class name, it computes the BAF values by four axioms,

namely class subsumption, class equivalence, property

Data: Ontology O and OWL assertion a ∈ C where a
is an individual and C is a class description

Result: Computes the BAF values of a ∈ C in O, or
compute(O, a, C)

if 〈a ∈ C, β〉 is given in O then

return β;
else

if C is a class name then

β1 ← φzero;
for Di v C do

β1 ← β1∪B compute(O, a, Di);
end
β2 ← φzero;
for Di = C or C = Di do

β2 ← β2∪B compute(O, a, Di);
end

β3 ← φzero;
for ≥ 1 Pi v C do

γ ← φzero;
for (a, aj) ∈ P do

γ ← γ∪B compute(O, a, aj , Pi);
end

β3 ← β3 ∪B γ;

end
β4 ← φzero;
for > v ∀P .C do

γ ← φzero;
for (aj , a) ∈ P do

γ ← γ∪B compute(O, a, aj , Pi);
end
β4 ← β4 ∪B γ;

end

return β1 ∪B β2 ∪B β3 ∪B β4;

endif
else if C is > then

return φone;
endif
else if C is ⊥ then

return φzero;
endif

else if C is C1 t C2 then
return compute(O, a, C1) ∪B compute(O, a,
C2);

endif

else
omitted...

endif

endif

Algorithm 2: Computing class membership as-

sertion belief values

domain and property range, doing a BAF disjunction of

the four results which are obtained by recursively call-

ing Algorithm 2 and 4. If the class description is a class

union, we return the BAF union of the BAF values for

the individual to be the instance of the two classes. The

other cases are closely related to the semantics of class

descriptions introduced in Section 5.3 and are left out

for brevity.

BOWL - Augmenting the Semantic Web with Beliefs 9

6.2 Property Membership

The reasoning algorithm for property membership is

simpler than that for class membership, because nei-

ther OWL nor BOWL allows the notion of property

description; we can describe a property only by refer-

encing its name. Thus the reasoning algorithms are de-

scribed in Algorithm 3 and 4, where Algorithm 3 is the

outer algorithm for property membership entailment

and Algorithm 4 is for computing the belief values of a

given property membership assertion. In Algorithm 4,

we only consider sub property, equivalent property, in-

verse property and transitive property relationships and

take the BAF disjunction when computing the belief

values.

Data: Ontology O, and BOWL assertion
〈(a1, a2) ∈ P , β〉 where a1 and a2 are two
individual, P is a property name and β is a BAF

Result: Returns true if O � 〈(a1, a2) ∈ P , β〉 and false
otherwise

compute the belief values, γ, of (a1, a2) ∈ P in O by
Algorithm 4;
return γ ≥B β;

Algorithm 3: BOWL property membership as-

sertion entailment

6.3 Simple Implementation in CLP(R)

Following the reasoning algorithms above, we have im-

plemented a simple reasoner for BOWL in CLP(R). In

this section, we present some preliminary definitions of

CLP before we describe our implementation. Some CLP

programme fragments are illustrated in the appendix.

Constraint Logic Programming (CLP) [14] began

as a natural combination of two declarative paradigms:

constraint solving and logic programming. The CLP

scheme defines a class of languages based upon the

paradigm of rule-based constraint programming, where

CLP(R) [15] is an instance of this class with the special

support of real numbers.

A CLP atom is of the form p(tl , . . . , tn) where p

is a predicate symbol distinct from =, <, and ≤, and

tl , . . . , tn are terms which can be predicates, variables

or constants. A variable starts with a upper-case letter

whereas a constant starts with a lower-case letter.

A CLP rule is of the form A0 :- α1, . . . , αk where

each αi , is either a primitive constraint (such as an

arithmetic comparison) or an atom. The atom A0 is

called the head of the rule while the remaining atoms

and primitive constraints are known collectively as the

Data: Ontology O and OWL assertion (a1, a2) ∈ P

where a1, a2 are individuals and P is a property
name

Result: Computes the BAF values of (a1, a2) ∈ P in
O, or compute(O, a1, a2, P)

if 〈(a1, a2) ∈ P , β〉 is given in O then

return β;
else

β1 ← φzero;
for Qi v P do

β1 ← β1∪B compute(O, a1, a2, Qi);
end

β2 ← φzero;
for Qi = P or P = Qi do

β2 ← β2∪B compute(O, a1, a2, Qi);
end
β3 ← φzero;
for P = (−Qi) or (−Qi) = P do

β3 ← β3∪B compute(O, a1, a2, Qi);
end

β4 ← φzero;
if Tr(P) then

for (a1, bi), (bi , a2) ∈ P do
γ = compute(O, a1, bi , Qi) ∩B
compute(O, bi , a2, Qi) β4 ← β4 ∪B γ;

end

else

endif

return β1 ∪B β2 ∪B β3 ∪B β4;

endif

Algorithm 4: Computing property membership

assertion belief values

body of the rule. In case there are no atoms in the body,

we may call the rule a fact or a unit rule.

A CLP program is defined as a finite set of rules.

Rules in CLP have much the same format as those in

PROLOG except that primitive constraints may appear

with atoms in the body. The same applies to a CLP goal

which is of the form ? - α1, . . . , αk . where each αi , is

either a primitive constraint or an atom.

For class membership computations, we define a CLP

predicate computeClass(I,C,A,B) with I being an in-

dividual, C being a class (which can be both a class

name or a complicated class description), A being the

belief value and B being the disbelief value for the par-

ticular class membership assertion. For property mem-

bership computations, we similarly define a CLP predi-

cate computeClass(I1,P,I2,A,B) with I1 and I2 be-

ing individuals, P being a property name, A being the

belief value and B being the disbelief value for the par-

ticular property membership assertion. Then for the

entailment of class membership assertions, we define a

CLP predicate entails(instance(I,C),A,B) with I

being an individual, C being a class, and A and B being

the belief and disbelief values respectively. Similarly for

the entailment of property membership assertions, we

10 J. S. Dong et al.

define a predicate entails(sub_val(I1,P,I2),A,B)

with I1 and I2 being individuals, P being a property

name, A being the belief value and B being the disbelief

value for the particular property membership assertion.

Then the algorithms can be easily converted to CLP(R)

programmes. A partial code listing for Algorithm 2 can

be found in Appendix I. Because our CLP program is

highly recursive, we apply the coinductive tabling [16]

techniques to prevent infinite loops and reduce unnec-

essary invocations of the rules.

7 Case Study

In this section, we present an example in the sensor

fusion domain to demonstrate the derivation of belief

values using BAF-Logics. Sensor fusion [6] technologies

aim at fusing information from different sensors (possi-

bly of different types) to detect, recognize, identify or

track a target. Sensor fusion has important applications

in the defense domain where accurate sensor decisions

minimize casualty and improve strike efficiency.

Decision fusion [6] is a branch of sensor fusion tech-

nology where sensors are combined in various config-

urations (parallel, serial, etc.) and their decisions are

given confidence factors by the decision fusion proces-

sor, which calculates the final decision after a number

of iterations.

We believe that decision fusion can be a new appli-

cation domain for the Semantic Web as sensors may re-

side at different geographical sites and communications

between sensors and the decision fusion processor can
be expressed in terms of ontologies to maximize porta-

bility and inter-operability of the sensor networks.

7.1 The Sensor Ontology

We developed a BOWL ontology which defines tax-

onomies of sensors, environmental conditions, targets,

etc. It also defines an object-property isAffectedBy, cap-

turing the fact that sensors are affected by environmen-

tal conditions. Furthermore we define a class Current-

Condition as a sub class of Environment and a BAF

value is attached to every environment condition in-

stance to capture how certain we are about the pres-

ence of the condition in the working environment of the

sensors. Ontology fragments are presented in the DL

syntax as in Section 3. Note that whenever the BAF

value is omitted from the quadruple, it is assumed to

be φone, which is 〈1, 0〉.

Sensor v >
ActiveSensor v Sensor

PassiveSensor v Sensor
EMFrequencySensor v Sensor

OtherSensor v Sensor

≥ 1 is affected by v Sensor
> v ∀ is affected by.CurrentCondition

Environment v >
CurrentCondition v Environment
LightCondition v Environment

TerrainCondition v Environment

WeatherCondition v Environment
RainCondition vWeatherCondition

SmokeConditioin vWeatherCondition

WindCondition vWeatherCondition

Sensors and sensor networks identify targets. Thus

we define a class called Target and an object-property

called identifies as follows. The object property identi-

fies has as domain the union of the classes Sensor and

SensorNetwork and has as range Target.

Target v >
≥ 1 identifies v (Sensor t SensorNetwork)
(> v ∀ identifies.Target)

Certain kinds of sensors are more affected by certain

environmental conditions than others. To capture this

information in BOWL, we could have defined some sub

properties of isAffectedBy, such as isSlightlyAffectedBy

and isSeverelyAffectedBy. Unfortunately, such proper-

ties are by no means clear or meaningful to software

agents, decision fusion processors in this case. Linguis-

tic hedges like “very” and “quite” are impossible to rep-

resent in bi-valued logic systems such as classic descrip-

tion logics, but can be easily captured in belief systems

such as BAF-Logic. In our example, different sensors

are affected by various environmental conditions differ-

ently. We unify several properties into a single property

isAffectedBy. Then its fuzzy set [29] is

{completely , severely ,moderately , slightly ,not}

Now, we can assign a BAF supporting value to each

element in the fuzzy set to express the extent to which

a certain sensor is affected by an environmental condi-

tion. Following the conventions used in fuzzy sets, the

isAffectedBy set may be modeled as

{1/completely , 0.75/severely , 0.5/moderately ,

0.25/slightly , 0/not}

Here we assume complete knowledge (no ignorance)

of the sensors and compute the refuting masses by sub-

tracting the supporting masses from 1. Then we get the

BAF values 〈1, 0〉, 〈0.75, 0.25〉, 〈0.50, 0.50〉, 〈0.25, 0.75〉
and 〈0, 1〉 respectively.

BOWL - Augmenting the Semantic Web with Beliefs 11

The following shows how BAFs are added to ground

facts (instances). We know the existence of Speed7Wind1,

a wind instance and a chemical sensor ChmSensor1.

ChmSensor1 is affected by Speed7Wind1 with support-

ing and refuting measures of 0.75, 0.25 respectively.

〈Speed7Wind1 ∈WindCondition, 〈1.0, 0.0〉〉
〈Speed7Wind1 ∈ CurrentCondition, 〈0.8, 0.1〉〉
〈ChmSensor1 ∈ ChemicalSensor , 〈1.0, 0.0〉〉
〈(ChmSensor1,Speed7Wind1) ∈ isAffectedBy, 〈0.75, 0.25〉〉

7.2 Computing Confidence Values of Sensors

As stated in [6], initial sensor confidence values are im-

portant for the overall system performance. In our ex-

amples, the initial sensor confidence values are an effect

of the conjunction of several environment conditions.

We define a class TrustedSensor to denote the belief

that the decision fusion processor puts in a particular

sensor.

TrustedSensor ≡ Sensor u ∀ isAffectedBy.CurrentCondition

This axiom states that the degree of a sensor in-

stance is trusted depends on how it is affected by cur-

rent conditions. As defined in the semantics, if a cer-

tain sensor is affected by more than one environmen-

tal condition, the conjunction of all these conditions is

taken into account. For example, night vision devices

are severely affected by both rain conditions and smoke

conditions. We first define the class NightVisionDevice

as follows. All subsumption axioms have BAF value of

φone.

EMFrequencySensor v Sensor

ElectroOpticalSensor v EMFrequencySensor
NightVisionDevice v ElectroOpticalSensor

Suppose that a night-vision device nvd1 is currently

deployed in an area where both rain rain1 and smoke

smoke1 are present. The sensor fusion processor has cer-

tain belief value for each condition to be current. Since

night vision devices are severely affected by these con-

ditions, we associate a BAF value 〈0.75, 0.25〉 to each

of the property instances for isAffectedBy as follows.

〈nvd1 ∈ NightVisionDevice, 〈1.0, 0.0〉〉
〈rain1 ∈ RainCondition, 〈1.0, 0.0〉〉
〈smoke1 ∈ SmokeCondition, 〈1.0.0.0〉〉
〈rain1 ∈ CurrentCondition, 〈0.7, 0.3〉〉
〈smoke1 ∈ CurrentCondition, 〈0.5, 0.5〉〉
〈(nvd1, rain1) ∈ isAffectedBy, 〈0.75, 0.25〉〉
〈(nvd1, smoke1) ∈ isAffectedBy, 〈0.75, 0.25〉〉

Our goal is to see whether the knowledge entails

the assertion that nvd1 is a trusted sensor with belief

value 〈0.7, 0.3〉. So we formulate a CLP goal entails(

instance(nvd1,trustedSensor),0.7,0.3). The pro-

gramme terminates and returns a “No”. This means

that the BAF values of the assertion calculated from

the BOWL ontology gives a smaller utility value than

〈0.7, 0.3〉 does. If we are interested in finding the precise

BAF values of the specific assertion we can fire the CLP

goal computeClass(nvd1,trustedSensor,A,B). Then

the programme returns A = 0.5 and B = 0.5. Further

analysis shows U(〈0.5, 0.5〉) = 0.5 < 0.7 = U(〈0.7, 0.3〉).
Therefore, U(α) = 0.7 > U(〈0.5, 0.5〉) = 0.5. Hence, sen-

sor nvd1 cannot be inferred to be a trusted sensor with

that high confidence.

8 Conclusion

The Semantic Web has been designed as a ubiquitous

information medium where autonomous software agents

can carry out complex tasks. The ontology language

OWL is a core language as it semantically marks up

web resources. It is based on description logic, where

any formula can be inferred from fallacy. Hence, OWL

reasoning engines are not capable of performing use-

ful reasoning services in the presence of incomplete or

inconsistent information This presents a challenge for

engineering complex software agent systems on the Se-

mantic Web.

In this paper, we propose BOWL, Belief-augmented

OWL, as an ontology language enriched with belief

information. As an extension of OWL DL, the main

contribution of BOWL is the ability to associate be-

lief/disbelief factors directly with web resources, en-

abling software agents to perform more flexible and

accurate reasoning. We define the abstract syntax of

BOWL and augment the model-theoretic semantics of

OWL to incorporate belief values. We also define the

reasoning tasks and algorithms for BOWL and present

a prototype implementation using the constraint logic

programming technique. We also present an example in

the sensor fusion domain to demonstrate the reasoning

process in BOWL.

The Semantic Web Rules Language (SWRL) [13]

enhances the expressivity of the Semantic Web by aug-

menting OWL with Horn-style rules. We are investigat-

ing the effects of adding belief values to such rules.

References

1. Adams JB (1985) Probabilistic Reasoning and Cer-

tainty Factors. In: Buchanan BG, Shortliffe EH

12 J. S. Dong et al.

(eds) Rule Based Expert Systems, pp 263–271

2. Adlassnig KP, Kolarz G, Scheithauer W, Effen-

berger H, Grabner G (1985) CADIAG: Approaches

to Computer-assisted Medical Diagnosis. Comput-

ers in Biology and Medicine 15(5):315–335

3. Baader F, Calvanese D, McGuinness D, Nardi D,

Patel-Schneider PF (eds) (2003) The Description

Logic Handbook – Theory, Implementation and

Applications. Cambridge University Press

4. Berners-Lee T, Hendler J, Lassila O (2001) The

Semantic Web. Scientific American 284(5):35–43

5. Brickley D, (editors) RG (2004) Resource de-

scription framework (rdf) schema specification 1.0,

http://www.w3.org/TR/rdf-schema/

6. Dasarathy BV (1994) Decision Fusion. IEEE Com-

puter Society Press, Los Alamitos, CA, USA

7. Dean M, (editors) GS (2004) OWL Web Ontol-

ogy Language Reference, http://www.w3.org/TR/

2004/REC-owl-ref-20040210/

8. Dempster AP (1967) Upper and Lower Probabil-

ities Induced by Multivalued Mapping. Annals of

Mathematical Statistics 38

9. Ding Z, Peng Y (2004) A Probabilistic Extension

to Ontology Language OWL. In: Proceedings of the

37th Hawaii International Conference On System

Sciences (HICSS-37).

10. van Harmelen F, Patel-Schneider PF, (editors) IH

(2001) Reference description of the DAML+OIL

ontology markup language, http://www.daml.

org/2000/12/reference.html

11. Heckerman D, Horvitz E, Nathwani B, Hecker-

man DE, Horvitz EJ, Nathwani BN (1989) Update

on the Pathfinder Project. In: In Proceedings of

the 13th Symposium on Computer Applications in

Medical Care, pp 203–207

12. Horrocks I, Patel-Schneider PF, van Harmelen F

(2003) From SHIQ and RDF to OWL: The mak-

ing of a web ontology language. Journal of Web

Semantics 1(1):7–26

13. Horrocks I, Patel-Schneider PF, Boley H, Tabet

S, Grosof B, Dean M (2004) SWRL: A Seman-

tic Web Rule Language Combining OWL and

RuleML, http://www.w3.org/Submission/2004/

SUBM-SWRL-20040521/

14. Jaffar J, Lassez JL (1987) Constraint logic pro-

gramming. In: Proceedings of the 14th Annual

ACM Symposium on Principles of Programming

Languages, pp 111–119

15. Jaffar J, Michaylov S, Stuckey PJ, Yap R (1992)

The CLP(R) language and system. Transactions on

Programming Languages and Systems 14(3):339–

395

16. Jaffar J, Santosa A, Voicu R (2005) Modeling Sys-

tems in CLP. In: International Conference on Logic

Programming, pp 412–413

17. Koller D, Levy A, Pfeffer A (1997) P-Classic: A

Tractable Probabilistic Description Logic. In: Pro-

ceedings of the AAAI-97, pp 390–397

18. Minsky M (1981) A Framework for Representing

Knowledge. In: Mind Design: Philosophy, Psychol-

ogy, Artificial Intelligence, pp 95–128

19. Ng KC, Abramson B (1990) Uncertainty Manage-

ment in Expert Systems. IEEE Intelligent Systems

5:29–48

20. Nottelmann H, Fuhr N (2004) pDAML+OIL: A

probabilistic extension to DAML+OIL based on

probabilistic Datalog. In: Proceedings of the 10th

International Conference on Information Process-

ing and Management of Uncertainty in Knowledge-

based systems (IPMU’04)

21. Patel-Schneider PF, Hayes P, (editors) IH

(2004) OWL Web Ontology Semantics and Ab-

stract Syntax, http://www.w3.org/TR/2004/

REC-owl-semantics-20040210/

22. Picard J (2000) Probabilistic argumentation sys-

tems applied to information retrieval. PhD thesis,

Universite de Neuchatel, Suisse

23. Shafer G (1976) A Mathematical Theory of Evi-

dence. Princeton University Press

24. Smets P (2000) Belief functions and the trans-

ferrable belief model, http://ippserv.rug.ac.

be/documentation/belief/belief.pdf

25. Straccia U (2001) Reasoning within Fuzzy Descrip-

tion Logics. Journal of Artificial Intelligence Re-

search 14:137–166

26. Straccia U (2006) A fuzzy description logic for the

Semantic Web. In: Sanchez E (ed) Fuzzy Logic

and the Semantic Web, Capturing Intelligence,

vol 1, Elsevier, chap 4, pp 73 – 90, DOI http:

//dx.doi.org/10.1016/S1574-9576(06)80006-7,

URL http://www.sciencedirect.com/science/

article/pii/S1574957606800067

27. Tan CKY (2003) Belief Augmented Frames. PhD

thesis, National University of Singapore

28. Tresp C, Molitor R (1998) A Description Logic for

Vague Knowledge. In: Proceedings of the 13th Bi-

ennial European Conference on Artificial Intelli-

gence (ECAI’98), pp 361–365

29. Zadeh LA (1965) Fuzzy Sets. Information and Con-

trol 8:338–353

Appendix I: Partial CLP implementation for Al-

gorithm 2

computeClass(_, top, 1, 0).

BOWL - Augmenting the Semantic Web with Beliefs 13

computeClass(_, bottom, 0, 1).

computeClass(I, oneOf(L), A, B) :-

member(I, L) -> (A = 1, B = 0); (A = 0, B = 1).

computeClass(I, union(C1, C2), A, B) :-

computeClass(I, C1, A1, B1),

computeClass(I, C2, A2, B2),

bafUnion([[A1, B1], [A2, B2]], [A, B]).

computeClass(I, intersection(C1,C2), A, B) :-

computeClass(I, C1, A1, B1),

computeClass(I, C2, A2, B2),

bafIntersection([[A1, B1], [A2, B2]], [A, B]).

computeClass(I, negation(C), A, B) :-

computeClass(I, C, A1, B1),

bafNegation([A1, B1], [A, B]).

computeClass(I, allValuesFrom(P, C), A, B) :-

getAllInstances(L),

computeAVF(I, L, P, C, A, B).

computeClass(I, someValuesFrom(P, C), A, B) :-

getAllInstances(L),

computeSVF(I, L, P, C, A, B).

computeClass(I, hasValue(P, V), A, B) :-

computeProperty(I, P, V, A, B).

computeClass(I, C, A, B) :-

getAllSubclasses(C, CL1),

computeSubclasses(I, CL1, A1, B1),

getAllEquivalentClasses(C, CL2),

computeEquivalentClasses(I, CL2, A2, B2),

getAllDomains(C, PL1),

computeDomains(I, PL1, A3, B3),

getAllRanges(C, PL2),

computeRanges(I, PL2, A4, B4),

bafUnion([[A1, B1], [A2, B2], [A3, B3], [A4, B4]], [A, B]).

computeSubclasses(_, [], 0, 1).

computeSubclasses(I, [H|T], A, B) :-

computeClass(I, H, A1, B1),

computeSubsclasses(I, T, A2, B2),

bafUnion([[A1, B1], [A2, B2]], [A, B]).

computeEquivalentClasses(_, [], 0, 1).

computeEquivalentClasses(I, [H|T], A, B) :-

computeClass(I, H, A1, B1),

computeEquivalentClasses(I, T, A2, B2),

bafUnion([[A1, B1], [A2, B2]], [A, B]).

computeDomains(_, [], 0, 1).

computeDomains(I, [H|T], A, B) :-

getAllImages(I, H, IL),

computeImages(I, H, IL, A1, B1),

computeDomains(I, T, A2, B2),

bafUnion([[A1, B1], [A2, B2]], [A, B]).

computeImages(_, _, [], 0, 1).

computeImages(I, P, [H|T], A, B) :-

computeProperty(I, P, H, A1, B1),

computeImages(I, P, T, A2, B2),

bafUnion([[A1, B1], [A2, B2]], [A, B]).

computeRanges(_, [], 0, 1).

computeRanges(I, [H|T], A, B) :-

getAllSources(I, H, IL),

computeSources(I, H, IL, A1, B1),

computeRanges(I, T, A2, B2),

bafUnion([[A1, B1], [A2, B2]], [A, B]).

computeSources(_, _, [], 0, 1).

computeSources(I, P, [H|T], A, B) :-

computeProperty(H, P, I, A1, B1),

computeSources(I, P, T, A2, B2),

bafUnion([[A1, B1], [A2, B2]], [A, B]).

computeAVF(_, [], _, _, 1, 0).

computeAVF(I, [H|T], P, C, A, B) :-

computeProperty(I, P, H, A1, B1),

bafNegation([A1, B1], [A2, B2])

computeClass(H, C, A3, B3),

bafUnion([[A2, B2], [A3, B3]], [A4, B4]),

computeAVF(I, T, P, C, A5, B5),

bafIntersection([[A4, B4], [A5, B5]], [A, B]).

computeSVF(_, [], _, _, 1, 0).

computeSVF(I, [H|T], P, C, A, B) :-

computeProperty(I, P, H, A1, B1),

computeClass(H, C, A2, B2),

bafIntersection([[A1, B1], [A2, B2]], [A3, B3]),

computeSVF(I, T, P, C, A4, B4),

bafUnion([[A3, B3], [A4, B4]], [A, B]).

