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Abstract. Reasoner performance prediction of ontologies in OWL 2 lan-
guage has been studied so far from di↵erent dimensions. One key aspect
of these studies has been the prediction of how much time a particular
task for a given ontology will consume. Several approaches have adopted
di↵erent machine learning techniques to predict time consumption of
ontologies already. However, these studies focused on capturing general
aspects of the ontologies (i.e., mainly the complexity of their TBoxes),
while paying little attention to ABox intensive ontologies. To address
this issue, in this paper, we propose to improve the representativeness
of ontology metrics by developing new metrics which focus on the ABox
features of ontologies. Our experiments show that the proposed met-
rics contribute to overall prediction accuracy for all ontologies in general
without causing side-e↵ects.
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1 Introduction

Semantic technologies have been utilized in various application domains for as-
sisting knowledge management thus far, e.g., data management [13] and soft-
ware engineering [17]. The worst case complexity 2NEXPTIME-complete [6] of
OWL 2 DL, the most expressive profile of OWL 2, constitutes a bottleneck for
performance critical environments. Empirical studies show that even the EL pro-
file, with PTIME-complete complexity and less expressiveness, can become too
time-consuming [4, 11]. To have a scalable environment for implementing seman-
tic technologies, an accurate prediction of ontology time consumption which will
guide us about the feasibility of ontology reasoning is needed.

There have been several studies regarding the performance prediction of on-
tologies. Kang et al. [10] investigated the hardness category (categories according
to reasoning time) for reasoner-ontology pairs and used machine learning tech-
niques to make a prediction. Using FaCT++ [25], HermiT [5], Pellet [23], and
TrOWL [20, 24, 18, 16], they reached high accuracy in terms of hardness category,
but not reasoning time.
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In another study, Kang et al. [12] investigated regression techniques to pre-
dict reasoning time. They made experiments using reasoners FaCT++, HermiT,
JFact, MORe [21], Pellet and TrOWL with their syntactic metrics as features.
These metrics are generally e↵ective when there is a balance between TBox ax-
ioms and ABox axioms. Our experiments show that accuracy of these metrics
decreases as ABox axiom sizes increase. As ABox constitutes the data in an
ontology [1, 8, 27], where TBox constitutes the schema, an approach that can
capture the changes in the ABox in a more detailed way is needed to make ac-
curate overall predictions. As observed by Bobed et al. [2], there is an interest in
using semantic technologies in mobile devices. In such scenarios, TBox axioms
are expected to be more static and the ABox axioms (data) tend to be more
frequently changing which necessitates high accuracy in ABox performance pre-
diction. In this paper, we aim to investigate what metrics could help further
improve reasoner predictions of ABox intensive ontologies.

Our main contributions can be summarized as follows.

1. We propose an initial set of metrics which estimate the complexity of the
TBox concepts and propagates it into the estimated complexity of the ABox.

2. We show that our proposed new metrics for representing the structure of on-
tologies from the ABox perspective indicate a good research path to improve
the accuracy of predicting time consumption of ontology reasoning.

The rest of the paper is as follows. In Section 2, we present some related works
to place our proposal. In Section 3, we define the metrics that we propose in our
ongoing work. In Sections 4 and 5, we explain our experimental settings and the
achieved results, respectively. Finally, in Section 6, we make some conclusions
and draw some future work.

2 Related Work and Background

Ontology metrics, which are features of the ontology expressed numerically or
categorically to represent the structure of an ontology, have been e↵ectively
utilised in analysing the complexity [28], energy consumption on mobile de-
vices [7], cohesion [26], quality [3] and population task [15] of ontology reasoning.

Kang et al. [10] proposed a set of metrics in 2012 to classify raw reasoning
times of ontologies into five large categories: [0s.–100ms.], (100ms.–1s.], (1s.–
10s.], (10s.–100s.] and (100s.–1). Despite the high accuracy of prediction, over
an 80%, this approach does not provide actual reasoning time but time cate-
gories, which may become obsolete or meaningless according to needs of imple-
mentation.

In 2014, Kang et al. [12] extended their work and proposed a new set of
metrics to predict actual reasoning time by developing regression models. They
extended the previous 27 metrics [10, 28] and developed a set of 91 metrics that
include 24 ontology-level (ONT) metrics, 15 class-level (CLS) metrics, 22 anony-
mous class expression (ACE) metrics, and 30 property definition and axiom
(PRO) metrics.
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While a high number of metrics are usually proposed by researchers, Sazonau
et al. [22] proposed instead a local method which involved selecting a suitable,
small subset of the ontology, and making extrapolation to predict total time
consumption of ontology reasoning using the data coming from the processing of
such small subset. To do so, they used Principal Component Analysis (PCA) [9].
In their experiments, Sazonau et al. [22] observed that 57 of the studied features
can be replaced by just one or two features. Using a sample of size of a 10%
of the ontology for reasoning, they argue that they reached good predictions
with simple extrapolations. They list advantages of their method as: 1) more
accurate performance predictions, 2) not relying on an ontology corpus, 3) not
being biased by this corpus, and 4) being able to obtain information about rea-
soner’s behaviour of linear/nonlinear predictability on the corpus. A remarkable
contribution of this approach is that it saves researchers from the di�culty/risk
of selecting an unbiased corpus [14], which is very di�cult while checking the
validity of the prediction model and accuracy of the prediction. However, making
reasoning with the 10% of an ontology may not always be applicable especially
when the ontology requires high reasoning times.

3 Our Approach

Our claim is that increasing the expressivity of ontology metrics directly helps
increasing the accuracy of all the above studies, and enables new studies that
target a more feasible implementation environment for semantic technologies.

Part of 91 metrics proposed by Kang et al. [12] are obtained by transforming
an ontology into a graph which grasps the relationship between of ABox and
TBox axioms. However, their approach calculates the e↵ect of ABox axioms up
to a certain extent. It is apparent that connected ABox axioms are more prone
to cause more inferences than disconnected ABox axioms. These connections can
trigger reasoning time enormously when they come along with a complex TBox.
In our work, we have observed that the models trained with this set of 91 metrics
begin to lose accuracy in predicting time consumption of ontologies as the ratio
between the amount of ABox axioms and TBox axioms increases.

Thus, we propose to include the propagation of the complexity of the TBox
into the ABox. To do so, we extend this set of metrics with our 15 Class Complex-

ity Assertions (CCA) metrics, which can contribute to performance prediction
of ontologies especially when we deal with ontologies which are ABox intensive
(i.e., they exhibit a high ABox/TBox ratio). Experiment results and source codes
are accessible1.

3.1 Class Complexity Assertions Metrics

As above mentioned, to capture the interactions between the complexity of the
di↵erent elements of the TBox and the individuals asserted in the ABox, we have

1
http://sid.cps.unizar.es/projects/OWL2Predictions/JIST16/
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developed an initial set of features which aim at propagating the complexity of
each of the concept expressions in the ontology to the ABox, as well as improving
the richness of the TBox metrics.

Thus, let be NCE = {CEi | CEi 2 O} with CE any concept expression
appearing in any of the logical axioms of the ontology O. For each CE, we
estimate its complexity as follows:

comp(CEi) =
height(CEi) + sigSize(CEi) + const(CEi)

3

with height(CEi) being the height of the expression as a parsing tree, sigSize(CEi)
being the number of di↵erent atomic class names that appear in the expression,
and const(CEi) begin the number of class constructors participating in the class
expression.

With this estimation for each CEi, we calculate the following metrics:

– TBoxSize: The count of TBox axioms obtained from OWLAPI.
– ABoxSize: The count of ABox axioms obtained from OWLAPI.
– ABoxTBoxRatio: The ratio of ABox axioms to TBox axioms.
– TCCA: Total amount of estimated complexity of the ontology O (i.e., the

class expressions in NCE).

TCCA =
X

CEi2NCE

comp(CEi)

– AVG CCA: Mean estimated complexity of the class expressions in NCE .

AV G CCA =
TCCA

|NCE |

– MAX CCA: Maximum estimated complexity of the class expressions inNCE .
– MIN CCA: Minimum estimated complexity of the class expressions in NCE .
– STD CCA: Standard deviation of complexity of the class expressions inNCE .
– ENT CCA: Entropy of the complexity distribution of NCE .

To propagate the complexity of each concept expression to the ABox, we use
each of the class assertions as a witness of the complexity of a class expression
within the ontology. Then, we aggregate such values to capture what we name
the witnessed complexity of the ABox. So, let IndNCEi

= {a | a 2 Ind(O) ^
CEi(a) 2 O} the individuals that are explicitly asserted to belong to CEi.
Thus, we define:

– TWCCA: Total witnessed complexity of the ABox, which is calculated sum-
ming all the products of the estimated complexities of the concept expres-
sions with their witness individuals.

TWCCA =
X

CEi2NCE

comp(CEi) ⇤ |IndNCEi
|
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– AVG WCCA: Mean witnessed complexity of the ABox of the concept ex-
pressions in O.

AV G WCCA =
TWCCA

|NCE |
– MAX WCCA: Maximum witnessed complexity of a concept expression in O.
– MIN WCCA: Minimum witnessed complexity of a concept expression in O.
– STD WCCA: Standard deviation of witnessed complexity of the concept

expressions in O.
– ENT WCCA: Entropy of the witnessed complexity distribution of the con-

cept expressions in O.

Note that we apply a Laplace smoothing2 to include also into the metrics the
concept expressions which appear in the ontology but do not have any explicit
individual assertion.

4 Experimental Setup

4.1 Evaluation Metrics

R
2, MAPE and RMSE are referred to decide whether our regression model is

valid for describing the relation between our metrics and the predictions made by
the model. The coe�cient of determination (R2) is a crucial output of regression
analysis, indicating to what extent the dependent variable is predictable. For
example, a value 0.91 for R

2 means that 91 % percent of the variance in Y is
predictable from X. Let y(t) be the observed value of y in second t, ŷ(t) be the
predicted value for y in second t, and ȳ be the mean of the observed values, then:

R
2 =

P
t (ŷ(t)� ȳ)2P
t (y(t)� ȳ)2

(1)

The Mean Absolute Percentage Error (MAPE) is a measure of prediction
accuracy of a prediction method in statistics that is used to expresses accuracy
as a percentage. For calculating the MAPE of our prediction model, we will
divide the di↵erence of observed and predicted values, divide this by the observed
values, and get the average of all observations in the scope. Related to this
definition, we define the Mean Absolute Accuracy Percentage (MAAP) of our
prediction model which is given by (1 - MAPE ). In this paper, we will refer to
MAAP to explain the accuracy of a model.

MAPE = 100.

nP
t=1

|ŷ(t)�y(t)|
y(t)

n
(2)

MAAP = 1�MAPE (3)

2 Adapted from Natural Language Processing, basically, it consists in adding 1 to all
the witnessed values of the concept expressions in the ontology.
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Finally, the Root Mean Squared Error (RMSE) is the square root of the
mean/average of the square of all of the error. RMSE represents the sample
standard deviation of the di↵erences between observed and predicted values.

RMSE =

vuut
nP

t=1
(y(t)� ŷ)2

n
(4)

4.2 Data Collection

Reasoner: We have used TrOWL 1.5 for testing EL ontologies as the reasoner to
be tested. We deployed ABox Materialization Task with TrOWL as our exper-
imental task. In our experiments, we implemented ABox materialization with
one thread. We could benefit from parallelization in ABox materialization and it
would improve the performance [19] to some extent. As RAM I/O becomes the
bottleneck because of the limited bandwidth [19] of the RAM when many worker
threads compete for RAM access and this would cause some side-e↵ects in mea-
suring the execution time, we preferred to analyse the performance prediction
aspect parallel ABox materialization as future work.

Ontologies: We define an ontology as ABox-intensive if the count of ABox
axioms in such an ontology is at least 10 times the count of TBox axioms.
We made our experiments using ontologies in ORE2014 Reasoner Competition
Dataset3. From 16,555 ontologies, we have filtered 74 ontologies in EL profile
which have the ABox/TBox ratio of at least 10, and created artificial 2779 ABox-
intensive ontologies4 from these ABox-intensive ontologies randomly as follows:
our method uses the TBox of the original ontology and creates a new ontology
using di↵erent random subsets of the ABox axioms of the original ontology.

Prediction Model Construction: For predicting the time consumption of ontolo-
gies, a random forest based regression model is implemented, using the metrics
(predictor variables). Standard 10-fold cross-validation is performed to ensure
the generalizability of the model.

5 Results and Evaluation

In our study, we investigated the reasoning performance of a reasoner and ontol-
ogy characteristics represented by available metrics and our new metrics (CCA).
While developing our new metrics, we aimed at capturing the complexity of on-
tologies without losing accuracy when ABox sizes changed. Our claim is that de-
veloping high-quality metrics will increase the accuracy of the prediction model.
Our goal is to make prediction models that can perform on any ontology with

3
https://zenodo.org/record/10791

4 You can find the code of the OntologyChopper at http://sid.cps.unizar.es/

projects/OWL2Predictions/JIST16/
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high stability using metrics that can represent the ontology with high expressiv-
ity.

To ensure the quality of the dataset, we created 2779 artificial ontologies from
ORE2014 dataset. To avoid a biased corpus, which would result in misleading
generalizations, we generated ontologies with random selection of ABox axioms.
We did not put any threshold to cut the experiment, as we wanted to include
every result of the dataset without missing any point that could be expressed by
the dataset. We believe that wide range of ABox/TBox ratio will help increase
the diversity in ontologies.

While working with the quality of the dataset, quality of the feature selec-
tion should also be taken into consideration. Inspired from the consistent high
accuracy of the Random Forest based regression models in the study of Kang et
al. [12], we adopted the same approach. Instead of categorising the time periods,
we preferred metrics to give prediction results of time consumption in nanosec-
onds. We had specified R

2, MAPE, and RMSE values as our performance
criteria for prediction accuracy.

5.1 Combining 91 Metrics with CCA

In our first set of experiments, we combined 91 metrics with CCA metrics to train
the model. We were expecting new CCA metrics would increase the accuracy of
prediction, as it contained metrics that would better express the complexity of
ABox axioms with TBox axioms. The results obtained in the cross validation
procedure for the performance criteria can be seen in Table 1, and in Figure 1,
the MAPE values obtained are visualized.

When we look at the R
2 values, which is indicative to which extent the

dependent variable is predictable, we see that both available 91 metrics and
combined metrics of 91 metrics and CCA metrics have the values between 97%
and 98%. The di↵erence of RMSE values is ⇡ 2.5 seconds. The values ofMAPE

also show a di↵erence of ⇡ 2%.
Although this absolute value of a ⇡ 2 % accuracy increase seems very small,

it is a relative improvement of 11 % with the first version of our transference
metrics, which encourages us to continue to work in this direction improving and
extending the definition of such kind of metrics.

91 Metrics CCA + 91 Metrics

R2 0.97607 0.97856

MAPE 23.58 % 21.10 %

RMSE 41.4 sec. 39.1 sec.

Table 1: Contribution of CCA metrics to accuracy of prediction.
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Fig. 1. Change in MAPE when new metrics are added to the prediction model.

5.2 Using CCA Metrics instead of some ABox metrics in 91
Metrics v.1

We searched for the metrics in 91 metrics which are more sensitive to ABox
axiom changes. By randomly adding ABox axioms to ontologies, we observed
that the change in ABox axioms is highly correlated with some of 91 metrics,
i.e., “SOV, CYC, RHLC, IHR, IIR, ITR, IND, aCID, mCID, tCID” [10, 28].

In our second set of experiments, we removed the metrics “RHLC, IHR, IIR,
ITR, IND, aCID, mCID, tCID” from 91 metrics and replaced with CCA metrics
to train the model. The results obtained in the cross validation procedure for
the performance criteria can be seen in Table 2, and in Figure 2, the MAPE

values obtained are visualized.
When we look at the R

2 values, we see that both models have the values
between 97% and 98%. The di↵erence of RMSE values is ⇡ 1 second. The
values of MAPE show a di↵erence of ⇡ 4.5%.

The relative improvement in decreasing the average error rate of 91 metrics
is about 20 % by replacing some of ABox related metrics in 91 metrics with our
CCA metrics.

91 Metrics CCA + 91 Metrics (v.1)

R2 0.97607 0.97654

MAPE 23.58 % 19.03 %

RMSE 41.4 sec. 41.0 sec.

Table 2: Contribution of CCA metrics when replaced with some ABox related
metrics in 91 metrics (v.1).
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Fig. 2. Change in MAPE when some ABox related metrics in 91 metrics are replaced
with CCA metrics (v.1) to the prediction model.

5.3 Using CCA Metrics instead of some ABox metrics in 91
Metrics v.2

In our third case, we removed the metric “CYC” in addition to “RHLC, IHR,
IIR, ITR, IND, aCID, mCID, tCID” from 91 metrics and replaced with CCA
metrics to train the model. The results obtained in the cross validation procedure
for the performance criteria can be seen in Table 3, and in Figure 3, the MAPE

values obtained are visualized.

When we look at the R2 values, we see that both models have the values be-
tween 97% and 98%. The value of RMSE worsened here. The values of MAPE

show a di↵erence of ⇡ 4%, which is a general improvement but worst than the
previous case.

The relative improvement in decreasing the average error rate of 91 metrics
is about 18 % by replacing some of ABox related metrics in 91 metrics with our
CCA metrics.

91 Metrics CCA + 91 Metrics (v.2)

R2 0.97607 0.97449

MAPE 23.58 % 19.25 %

RMSE 41.4 sec. 42.7 sec.

Table 3: Contribution of CCA metrics when replaced with some ABox related
metrics in 91 metrics (v.2).



10 How can Performance of ABox Intensive Ontologies Be Predicted?

Fig. 3. Change in MAPE when some ABox related metrics in 91 metrics are replaced
with CCA metrics (v.2) to the prediction model.

5.4 Evaluation

In our work, we have analysed available metrics and investigated how to bring
expressivity of metrics further by developing new metrics to represent ABox
axioms (and its interaction with TBox axioms) aspect of ontologies.

According to initial experiments, which compare 91 metrics with combination
of 91 metrics and CCA metrics, we observe that adding CCA metrics increases
the accuracy of prediction ⇡ 2.5% and relatively decreasing average error rate
⇡ 11%.

When we replaced some of the metrics (RHLC, IHR, IIR, ITR, IND, aCID,
mCID, tCID) in 91 metrics with CCA metrics, we observe the accuracy of pre-
diction increase ⇡ 4.5% and relatively, average error rate decrease ⇡ 20%.

In our third case, we also removed the metric (CYC) in 91 metrics and saw
that there was again higher accuracy in prediction but it wasn’t as good as the
previous model.

Seeing the results above, we conclude that CCA metrics contributes to pre-
diction of ABox-intensive ontologies in our preliminary work. Available metrics
(91 metrics proposed by Kang et al. [12]) could grasp the complexity of ontologies
to some extent. ABox materialization necessitates new metrics that will repre-
sent the interaction of ABox axioms with TBox axioms taking its complexity
into account. The weight of ABox axioms in an ontology and their interactions
can cause consuming more execution time than expected if their complexity is
ignored. We propose our CCA metrics to measure the e↵ect of ABox complexity
in performance prediction of ontology reasoning and we want to improve these
metrics to measure this aspect of ontologies more e↵ectively. We believe that
our study will lead to metrics that are generalizable regardless of the weight of
TBox and ABox axioms.
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6 Conclusion

Performance prediction of ontology reasoning is a very interesting and challeng-
ing topic. In this work, we have started to focus on the performance prediction of
ABox-intensive ontologies. We proposed 15 new metrics by extending previous
work of Kang et al. [12]. Preliminary results with adding these 15 metrics show
slight increase (⇡4.5%) in the prediction accuracy. And, these results even at
the early stages of our research encourage us to continue in this direction. We
believe that awareness of the ABox axiom ratio in ontologies and bringing a so-
lution to this change will increase the e↵ectiveness and validity of a performance
prediction prediction model.

As future work, firstly, we plan to work on better representation of the in-
teractions between ABox axioms and TBox axioms by developing new metrics.
Secondly, we will make experiments with more reasoners on di↵erent ontologies
that will help understanding the interaction of ABox axioms with TBox ax-
ioms in a broader sense. Thirdly, we will use di↵erent prediction mechanisms to
leverage the contribution of these metrics.
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DGA-FSE project.
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