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ABSTRACT 
 
Reasoner performance prediction for ontologies in the OWL 2 language has been studied so far from 

different dimensions. One key aspect of these studies has been the prediction of how much time a 

particular reasoning task for a given ontology will consume. Several approaches have adopted machine-

learning techniques to predict time consumption of different reasoning tasks depending on features of the 

input ontologies. However, these studies have focused on capturing general aspects of the ontologies 

(i.e., mainly the complexity of their TBoxes), while paying little attention to ABox details. ABox 

information is particularly important in real-world scenarios, where data volumes are much larger than 

data-describing schema information. In this paper, we introduce the notion of ABox intensity in the 

context of predicting reasoner performance and to improve the representativeness of ontology metrics by 

developing new metrics that focus on ABox features of OWL 2 EL ontologies. Our experiments show 

that taking into account the intensity through our proposed metrics contributes to overall prediction 

accuracy for ABox intensive ontologies. 
 

 
 

INTRODUCTION 
 

The language OWL 2 DL (Cuenca-Grau et al. (2008)), the most expressive profile of OWL 2, has a worst-

case complexity that is 2NEXPTIME-complete (Kazakov (2008)), which constitutes a bottleneck for 

performance critical applications. Empirical studies show that even the EL profile, with PTIME-complete 

complexity and less expressiveness, can become too time-consuming (Dentler et al. (2011), Kang et al. 

(2012b)). 

There have been several studies regarding performance prediction of ontologies. Kang et al. (2012a) 

investigated the hardness category (categories according to reasoning time) for reasoner-ontology pairs 

and used machine-learning techniques to make a prediction. Using the reasoners FaCT++ (Tsarkov & 

Horrocks (2006)), HermiT (Glimm et al. (2014)), Pellet (Sirin et al. (2007)), and TrOWL (Pan et al. 

(2016, 2012), Ren et al. (2010), Thomas et al. (2010)), their prediction had high accuracy in terms of 

hardness category, but not in terms of reasoning time. In a subsequent study, Kang et al. (2014) 

                                                           
1 This paper is an extended version of our previous work. Particularly, the work presented here is based on our JIST2016 paper 

(Guclu, Bobed, Pan, Kollingbaum & Li (2016)) but revised and extended with new metrics to increase the prediction accuracy 

of the approach. 
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investigated regression techniques to predict reasoning time. They made experiments, based on their 

syntactic metrics, using the reasoners FaCT++, HermiT, JFact, MORe (Armas-Romero et al. (2012)), 

Pellet, and TrOWL. These metrics are generally effective when there is a balance between TBox axioms 

and ABox axioms. However, our preliminary experiments in Guclu, Bobed, Pan, Kollingbaum & Li 

(2016) showed that the accuracy of these metrics decreases when the relative size of the ABox with 

respect to the TBox increases. 

We regard this observation important as there are many real-world scenarios where the amount of data 

exceeds by far the size of the schema associated with them (e.g., Linked Data repositories (Bizer et al. 

(2009))). Besides, as observed in Yus & Pappachan (2015), there is an increasing interest in using 

semantic technologies on mobile devices (Bobed et al. (2015)). Given that the ABox constitutes the data 

of an ontology (Fokoue et al. (2012), Hogan et al. (2011), Ren et al. (2012)), whereas TBox constitutes the 

schema, on mobile devices, with  their restricted resources, TBox axioms are expected to be rather static, 

whereas the ABox axioms (data) tend to change more frequently.  Thus, due to volume and dynamism, an 

approach that can capture the influence of the ABox in reasoning performance in a more accurate way is 

needed to make accurate overall predictions. Plenty of applications can benefit from this prediction 

mechanism, both in resource-limited scenarios as well as in non-limited ones. For example, on the one 

hand, having an accurate processing time prediction can be combined with battery consumption prediction 

(Guclu, Li, Pan & Kollingbaum (2016)) to devise new adaptive methods for reasoning in mobile devices. 

On the other hand, semantic applications dealing with highly volatile data can also benefit from these 

predictions to decide whether or not to update the materialization of their knowledge (Bobed et al. 

(2014)). 

In this paper, we aim to investigate which metrics could help to further improve reasoner performance 

predictions in the presence of ABoxes that are significantly different in size than the TBoxes. Thus, we 

propose a framework to devise ontology metrics where the estimated complexity of the TBox is 

propagated to the ABox. First of all, we introduce the notion of ABox intensity, which is defined as the 

ratio between the size of the TBox and the ABox of an ontology, and we use it to determine so-called 

ABox intensive ontologies, i.e., those ontologies whose ABox intensity is above a domain dependent 

threshold (in our particular experiments, we set such a ratio threshold to 5). 

Our main contributions can be summarized as follows: 

 We introduce the notion of ABox Intensity to be taken into account in the prediction and analysis 

of ontology reasoning performance. 

 We propose to extend the previously available metrics proposed by Kang et al. (2014) with a set of 

metrics (51) that are designed to: 1) capture the complexity introduced by the ABox Intensity of 

the ontology, and 2) capture the combined structural complexity of TBox and ABox. In this work, 

structural complexity means a numerical value that tries to estimate the influence of structures of 

some given TBox and ABox on reasoning time. 

 We show that our proposed new metrics increase the accuracy in predicting time consumption of 

ABox intensive ontology reasoning. Besides, we also validate their contribution by applying a 

feature selection algorithm, which express that our metrics are effectively selected in these 

scenarios. 
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The rest of the paper is organised as follows. In the next section, we present the background knowledge 

for our work. Then, we present some related works to contextualize our proposal, and explain our research 

objectives with the core motivation of this research. Next, the newly proposed metrics are detailed. We 

continue by outlining experimental settings and presenting some results. Finally, we draw conclusions and 

outline future work. 

 
BACKGROUND KNOWLEDGE 
 

In this section, we will briefly introduce basics about ontology reasoning. Our work is focussed on 

reasoning over OWL 2 EL ontologies, both for processing terminological closure (TBox) and for full 

materialization (as it considers both TBox and ABox). 

An ontology consists of a set of axioms that are statements describing (1) relations between class 

(property) descriptions, (2) characteristics of properties, such as asserting that a property is transitive, or 

(3) instance-of relations between individuals and classes, or between pairs of individuals and properties, 

as described by Pan (2004). For example, an axiom can be of the following form: 

DisjointClasses(:Animal : Plant)        (1) 

It can be interpreted (Cuenca-Grau et al. (2008)) as “Nothing can be both an :Animal and a :Plant”. These 

axioms encode knowledge about the concepts (classes) mentioned above – we can state that an ontology 

comprises knowledge or represents a “knowledge base”.   

Ontologies expressed in Description Logic (Baader et al. (2003)) are comprised of two parts: the TBox 

and the ABox. Whereas the TBox provides the “terminological component” of the ontology, the ABox 

constitutes the “assertion component” – facts associated with concepts in this knowledge base. Within the 

set of TBox axioms, we want to highlight General Concept Inclusion axioms (GCIs), and Role Inclusion 

axioms (RIAs): A GCI axiom states that a concept C1 is a subclass of another concept C2 or, in other 

words, that C2 subsumes C1. Similarly, a RIA axiom encodes the fact that a chain of properties OP1..OPn is 

a subproperty of another property OPj. 

In our study, we have chosen the OWL 2 EL profile due to its polynomial-time complexity for basic 

reasoning problems. This complexity characteristics proves advantageous in applications that are dealing 

with ontologies containing very large numbers of properties and/or classes, as recommended by W3C 

(2009). The supported concepts in OWL 2 EL are atomic A, conjunction C1⊓ C2 , (concrete and abstract) 

existential restriction ∃OP.C and ∃DP.d, value restriction ∃OP.{a}, singleton nominal {a}, and local 

reflexivity  ∃OP.self , where DP is a datatype property and d is a data range. In OWL 2 EL, it is common 

to distinguish some specific types of GCIs and RIAs that are commonly used in practice, namely disjoint 

concepts Disj(CE1, CE2), domain Dom(OP, CE) or Dom(DP, d), range Rng(OP, CE) or Rng(DP, d), 

reflexivity ref (OP), transitivity trans(OP), and, only in the case of data properties, functionality 

funct(DP). Further characteristics of the EL profile can be analysed online (W3C (2009)). 

Finally, we introduce some reasoning tasks which are important for our study: 
 

 Classification of an ontology: This reasoning task consists of computing a hierarchy of concepts 
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(resp. roles) based on their subsumption relations, that is, by deciding for every pair of atomic 

concepts (resp. atomic properties) A1 , A2 whether A1 is a subclass (resp. subproperty) of A2 or not. 

 Materialization: This reasoning task consists of computing all entailed instances of every atomic 

concept over both TBox and ABox. As a result, the performance of full materialization tasks is 

affected by the features describing the TBox aspect and ABox aspect of the ontology. 

ABox Intensity According to our recent research (Guclu, Bobed, Pan, Kollingbaum & Li (2016)), an 

important dimension of ontologies has not been analysed yet, i.e., the intensity of a set of ABox axioms. 

We define ABox intensity of ontology as the ratio of the count of ABox axioms to TBox axioms. 

Accordingly, we define ontology as being ABox intensive when its ABox intensity is above a domain-

dependent threshold.  In this paper, we are going to define ontology as ABox intensive when it has ABox 

intensity above 5.02. Bear in mind that we do not claim a particular fixed value (5, 10, etc.) as a 

right/optimum intensity ratio.  However, we believe that different ABox intensities with different profiles 

and contexts will show different behaviours that deserve to be investigated. As observed by Hu et al. 

(2011), ontologies from different domains can have different features that can cause different behaviours 

in terms of performance. In this paper we question whether ontology sets with different ABox intensities 

show the same behaviour. We assume that the dimension of ABox intensity of ontology is as important as 

other crucial features, such as the domain and the profile. Disregarding this dimension may produce 

misleading results and wrong conclusions about complexity issues in reasoning. 

Ontology Size Hu et al. (2008) considers an ontology as large, if it contains more than 1000 entities, and 

proposes an approach how to efficiently process them. In the ORE 20133 Workshop, ontologies were 

categorized according to their size as small ((0-499]), medium ([500-4999]), large ([5000-∞) by counting 

the logical axioms in the original ontology (that is, before doing any reasoning) (Gonçalves et al. (2013)). 

We will follow the ontology categorizing methods according to their size proposed in ORE 2013. 

 

RELATED WORK AND TECHNICAL MOTIVATION 
 

Ontology metrics have been developed to capture particular features of ontologies that impact on the 

complexity of ontology reasoning, such as cohesion (Yao et al. (2005)), quality (Burton-Jones et al. 

(2005)), or population task (Maynard et al. (2006)). These metrics have been used to analyse ontology 

reasoning in terms of complexity by Zhang et al. (2010), and energy consumption on mobile devices by 

Guclu, Li, Pan & Kollingbaum (2016). 

Kang et al. (2012a) proposed a set of metrics to classify raw reasoning times of ontologies into five large 

categories: [0s.–100ms.], (100ms.–1s.], (1s.–10s.], (10s.–100s.] and (100s.–∞). Despite a high accuracy of 

prediction of over 80%, this approach does not provide actual reasoning time, but time categories (which 

might need to be adapted for different scenarios and, therefore, might require to retrain the model). 

However, predicting actual reasoning times may be essential for particular systems and scenarios. 

In 2014, Kang et al. (2014) extended their work and proposed a new set of metrics to predict actual 

reasoning time by developing regression models. They extended the previous 27 metrics developed by 

                                                           
2 In our previous work (Guclu, Bobed, Pan, Kollingbaum & Li (2016)), we had generated a dataset with an ABox intensity of 10. 
3 http://curation.cs.manchester.ac.uk/ore2013 
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Kang et al. (2012a) and Zhang et al. (2010) and developed a set of 92 metrics that include 24 ontology-

level (ONT) metrics, 15 class-level (CLS) metrics, 22 anonymous class expression (ACE) metrics, 30 

property definition and axiom (PRO) metrics, and ontology size4. 

While a high number of metrics are usually proposed by researchers, Sazonau et al. (2014) proposed 

instead a local method that involves selecting a suitable small subset of the ontology and use extrapolation 

to predict total time consumption of ontology reasoning using the data generated by the processing of such 

a small subset. To do so, they used Principal Component Analysis (PCA) (Jolliffe (2002)). In their 

experiments, Sazonau et al. (2014) observed that 57 of the studied features could be replaced by just one 

or two features. Using a sample size of 10% of the ontology for reasoning, they argue that they reached 

good predictions with simple extrapolations. They list advantages of their method as: 1) more accurate 

performance predictions, 2) not relying on an ontology corpus, 3) not being biased by this corpus, and 4) 

being able to obtain information about a reasoner ’s behaviour of resource consumption using such a small 

set of ontologies. A remarkable contribution of this approach is that it reduces the difficulty of selecting 

an unbiased corpus (Matentzoglu et al. (2013)), which is needed for checking the validity of the prediction 

model and the accuracy of the prediction.  However, predicting reasoning with 10% of ontology may not 

always be applicable, especially when the ontology requires high reasoning times. 

Technical Motivation As denoted by Della Valle et al. (2013), semantic processing of massive sets of 

complex and highly dynamic data necessitates performance metrics and a systematic roadmap about how 

to process this massive and dynamic data. Furthermore, many smart applications, such as those that 

process data sets captured by sensors and that are growing fast in terms of size, mainly have to deal with 

ABox information. The TBox of ontologies tends not to change as frequently as the ABox (Bobed et al. 

(2014)). This fact necessitates applications to be able to manage the changes in an ABox and be able to 

predict the performance of ABox reasoning accordingly. 

Urbani et al. (2011) observed in their experiment, which compared the computational cost of reasoning 

just with the TBox with that of complete ontological closure (TBox and ABox), that computing the full 

closure is 1–2 orders “larger” than computing just the TBox (see Table 1). In this experiment, they 

processed two real (LLD5 , LDSR6), and one artificial (LUBM (Guo et al. (2005))) ontologies on WebPIE 

(Urbani et al. (2010)). The computational cost of processing the ABox, in addition to the TBox, leads us 

to think that the ABox constitutes the main challenging and resource consuming part (Urbani et al. 

(2011)). Besides, we have to take into account that the real size of the terminological knowledge (i.e., the 

number of TBox axioms) can be huge with respect to the size of the factual knowledge (i.e., the number of 

ABox axioms), as pointed out by van Harmelen (2011). 

To see whether available metrics can be used to predict time consumption of ontology reasoning, we 

implemented the 92 metrics proposed by Kang et al. (2014), and ran their experiments using the 1941 

OWL 2 EL ontologies in the ORE 2014 dataset, instead of the 451 real-world ontologies that were used in 

the original experiments. The result was interesting insofar as the coefficient of determination R2 

decreased sharply from 93.40% to 61.45%, which can be seen in Figure 1. According to our experiments 

                                                           
4 While Guclu, Bobed, Pan, Kollingbaum & Li (2016) and Kang et al. (2014) do not include ontology size as one of the 91 metrics, actually they also use such 

a parameter in their experiments, so they consider a total of 92 metrics. 
5 LinkedLifeData, available at http://linkedlifedata.com/ 
6 Also known as FactForge, available at http://factforge.net/ 
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(detailed in Results and Evaluation Section), available metrics capture the complexity of the ontologies to 

some extent, mainly the TBox complexity aspect, and are appropriate for ontologies with non-intensive 

ABoxes. However, when ABox/TBox ratio increases, which is the inevitable real-world situation, 

available metrics start to lose their accuracy when it comes to predicting the time consumption of 

ontology reasoning. 

  Classification Materialization 

Input Time (sec.)  # axioms Time (sec.)  # axioms 

LDSR (862M) 89 0.62M 10036  927M 

LLD (694M) 332 7.06M 3931 330M 

LUBM (1101M) 8 22 4526  495M 

 

Table 1. Comparison of classification against materialization 

 

Currently, there is no general approach for predicting how reasoners will perform with ontologies of 

arbitrary characteristics, such as size, ABox / TBox ratio, context, etc. However, in this paper we make a 

first step towards it by proposing a new approach for predicting resource requirements of ontology 

reasoning. In particular, we propose a detailed analysis of ontology characteristics that provides a deeper 

insight into the nature of ontologies, and its impact on reasoning performance and resource requirements. 

Our aim is to increase the predictability of ontology reasoning performance by developing metrics that 

will increase the accuracy of prediction in the presence of high ABox/TBox ratios. We believe that this 

research will support a more feasible implementation environment for semantic technologies. 

 
EXTENDING THE ONTOLOGY METRICS SET 
 

As mentioned above, our research investigates ABox intensive ontologies, which we define as those 

whose ratio of ABox/TBox axioms is above a given threshold (in our current work, we have set it to 5). 

Some of the 92 metrics proposed by Kang et al. (2014) are obtained by transforming ontology into a 

graph in order to capture the relationship between ABox and TBox axioms. However, their approach 

calculates the effect of ABox axioms only up to a certain extent. It is apparent that connected ABox 

axioms potentially cause more inferences than disconnected ABox axioms. These connections can 

increase the reasoning time substantially if the TBox is complex.  This is coherent with the results 

obtained in our previous work (Guclu, Bobed, Pan, Kollingbaum & Li (2016)), where we already 

observed that the models trained with this set of 92 metrics began to lose accuracy in predicting time 

consumption of ontology reasoning when the ABox/TBox ratio increased. 
 
Thus, apart from using the already 92 proposed metrics, we propose to include the propagation of the 

complexity of the TBox into the ABox, and to treat each of the instance axioms in the ABox as witnesses 

of such complexities in the ontology. For this purpose, we started with extending this set of metrics with 

our 15 Class Complexity Assertions (CCA) metrics in Guclu, Bobed, Pan, Kollingbaum & Li (2016), 

which contributed to performance prediction of ontologies that are ABox intensive (i.e., they exhibit a 

high ABox/TBox ratio). In this current work, we have revisited the definition of CCA metrics to include 

the complexity of the involved roles and datatype properties, as well as to add the effects of the General 

Concept Inclusions (GCIs). The result is five sets of metrics: Intensity Metrics (IM), Concept Complexity 
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Assertions with GCIs applied (CCA’)7, Concept Complexity Assertions without GCIs applied 

(CCA_WO), Object Property Complexity Assertions (OPCA), and Datatype Property Complexity 

Assertions (DPCA).8 

 

 

Figure 1. Comparison of R2 values between 451 ontologies and ORE 2014 dataset 

 

The first set (IM) is composed by the following metrics: 

 TBoxSize:  The number of TBox axioms obtained from OWLAPI. 

 ABoxSize:  The number of ABox axioms obtained from OWLAPI. 

 ABoxTBoxRatio:  The ratio of ABox axioms to TBox axioms. 

 

For each of the rest of the sets of metrics (CCA’, CCA_WO, OPCA, and DPCA), we can distinguish two 

different subsets: the inner complexity values, and the witnessed complexities.  In brief, the first set is an 

aggregated estimation of the complexity of each of the considered ontology elements (i.e., concept 

expressions, object properties, and datatype properties); the second one is obtained by considering each 

instance axiom (i.e., class or role assertion) as a witness of the associated ontology element, and 

aggregating the weighted values. 

In the rest of the section, we firstly present how the estimations of the complexity of each of the single 

considered ontology elements and their number of witnesses are obtained, and then, we move onto how 

these values are aggregated to obtain the final sets of metrics for each type of ontology elements. 

 
Complexity Estimation of the Considered Ontology Elements 
 

First of all, to calculate the metrics, we estimate the complexities of the different elements in the ontology. 

We gather such values following the three steps shown in Figure 2: 

1. Role Complexity Estimations:  We estimate the complexity of the roles (object and datatype 

properties) in the signature of the ontology. In a second step, we use the RIAs to adjust such 

                                                           
7 We add the apostrophe in order to avoid confusing them with the ones presented in Guclu, Bobed, Pan, Kollingbaum & Li (2016). 
8 7The source codes of all the metrics presented in this paper are accessible online at http://sid.cps.unizar.es/projects/OWL2Predictions/ 

IJSWIS17/ 
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complexity values. 

 

 
 

Figure 2. Information taken into account and steps performed to calculate the metrics. 
 
 

2. Concept Complexity Estimations:  We gather all the concept expressions that are present in the 

ontology, and build an initial table with the inner complexity estimations. This table is built taking 

into account the estimated role complexities. Using these initial complexity values, we apply the 

GCIs (all the expressions in the GCIs have been previously gathered) to adjust the actual estimated 

complexity. As we will see, this is done in a non-reentrant way (i.e., all the GCIs affecting a 

concept expression are considered at once to avoid having to recalculate them until they 

converge). As a result, we have an adjusted estimation of all the concept complexities of the 

concept expressions appearing in the axioms of the ontology. 

3. ABox Assertions: Finally, we use the ABox assertions to compute the witnesses of the estimated 

complexity captured in the previous tables. 

 

The values of the different metrics will be obtained from the estimated complexity values of the different 

elements and the counts of witnesses. The rationale behind all the estimations of the different elements is 

to take into account the number of individuals/assertions that each of them is going to introduce in the 

ABox materialized graph. In the following, we detail the estimation of the complexity of the different 

elements, presented in the same order as they are calculated. 

 

OPCA and DPCA Metrics - Complexity Estimation 
For each of the object properties 𝑂𝑃𝑖 in the signature of the ontology 𝑂, we compute the inner complexity 

as follows: 

𝑐𝑜𝑚𝑝(𝑂𝑃𝑖) =  𝑖𝑛𝑛𝑒𝑟𝐶𝑜𝑚𝑝(𝑂𝑃𝑖) + 𝑅𝐼𝐴𝑠𝐶𝑜𝑚𝑝(𝑂𝑃𝑖) 

where:  

𝑖𝑛𝑛𝑒𝑟𝐶𝑜𝑚𝑝(𝑂𝑃𝑖) =  1.0 + 𝑡𝑟𝑎𝑛𝑠(𝑂𝑃𝑖) + 𝑟𝑒𝑓(𝑂𝑃𝑖) 

with 
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𝑡𝑟𝑎𝑛𝑠(𝑂𝑃𝑖) = {
2.0 𝑖𝑓 𝑂𝑃𝑖  𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒

0.0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

𝑟𝑒𝑓(𝑂𝑃𝑖) = {
1.0 𝑖𝑓 𝑂𝑃𝑖 𝑖𝑠 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒

0.0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

and 

𝑅𝐼𝐴𝑠𝐶𝑜𝑚𝑝(𝑂𝑃𝑖) =  𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝐶𝑜𝑚𝑝(𝑂𝑃𝑖) + 𝑠𝑢𝑏𝐶ℎ𝑎𝑖𝑛𝑃𝑟𝑜𝑝𝐶𝑜𝑚𝑝(𝑂𝑃𝑖) 

with 

𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝐶𝑜𝑚𝑝(𝑂𝑃𝑖) =  |{𝑂𝑃𝑖 ⊑ 𝑂𝑃𝑗 | 𝑂𝑃𝑖 ≠ 𝑂𝑃𝑗 }| 

𝑠𝑢𝑏𝐶ℎ𝑎𝑖𝑛𝑃𝑟𝑜𝑝𝐶𝑜𝑚𝑝(𝑂𝑃𝑖)

=  |{𝑂𝑃1. . 𝑂𝑃𝑛 ⊑ 𝑂𝑃𝑗 | 𝑖 ∈ {1. . 𝑛} ∧ (¬𝑇𝑟𝑎𝑛𝑠)}| + 2 ∗ |{𝑂𝑃1. . 𝑂𝑃𝑛 ⊑ 𝑂𝑃𝑖|𝑇𝑟𝑎𝑛𝑠}| 

where 𝑇𝑟𝑎𝑛𝑠 evaluates to true if the subChainProperty axiom 𝑂𝑃1. . 𝑂𝑃𝑛 ⊑ 𝑂𝑃𝑗  codifies transitivity.  

Similarly, for each of the datatype properties 𝐷𝑃𝑖 in the signature of the ontology 𝑂, we compute their 

inner complexity as follows: 

𝑐𝑜𝑚𝑝(𝐷𝑃𝑖) =  𝑖𝑛𝑛𝑒𝑟𝐶𝑜𝑚𝑝(𝐷𝑃𝑖) + 𝑠𝑢𝑏𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑝𝐶𝑜𝑚𝑝(𝐷𝑃𝑖) 

where: 

𝑖𝑛𝑛𝑒𝑟𝐶𝑜𝑚𝑝(𝐷𝑃𝑖) =  1.0 + 𝑓𝑢𝑛𝑐(𝐷𝑃𝑖) 

with 

𝑓𝑢𝑛𝑐𝑡(𝐷𝑃𝑖) = {
1.0 𝑖𝑓 𝐷𝑃𝑖  𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙

0.0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

and: 

𝑠𝑢𝑏𝐷𝑎𝑡𝑎𝐶𝑜𝑚𝑝(𝐷𝑃𝑖) = |{𝐷𝑃𝑖 ⊑ 𝐷𝑃𝑗 | 𝐷𝑃𝑖 ≠ 𝐷𝑃𝑗 }| 

 

Note that the object properties cannot be transitive and functional at the same time due to decidability 

problems (Cuenca-Grau et al. (2008)), and datatype properties, by definition, cannot be transitive. 

 
CCA’ and CCA WO Metrics - Complexity Estimation 

Once we have calculated the inner complexity of all the object and datatype properties in the signature of 

the ontology, we can estimate the complexity of the concept expressions. The CCA_WO and CCA’ sets 

of metrics just differ in whether GCIs are applied or not to the concept expression estimation, so in the 

following, we will focus on explaining the CCA’ calculation. 

Thus, let be 𝑁𝐶𝐸 = {𝐶𝐸𝑖|𝜏 ∈ 𝑂} where 𝜏 𝜖 {𝑎: 𝐶𝐸𝑖, 𝐶𝐸1 ⊑ 𝐶𝐸2, 𝐷𝑖𝑠𝑗(𝐶𝐸1, 𝐶𝐸2), 𝐷𝑜𝑚(𝑅, 𝐶𝐸𝑖), 𝑅𝑛𝑔(𝑅, 𝐶𝐸𝑖)} 

is a logical axiom of the ontology 𝑂. For each 𝐶𝐸𝑖 ∈ 𝑁𝐶𝐸, we estimate its complexity as follows: 
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𝑐𝑜𝑚𝑝(𝐶𝐸𝑖) =
ℎ𝑒𝑖𝑔ℎ𝑡(𝐶𝐸𝑖) + 𝑠𝑖𝑔𝑆𝑖𝑧𝑒(𝐶𝐸𝑖) + 𝑐𝑜𝑠𝑡(𝐶𝐸𝑖)

3
 

With:  

 ℎ𝑒𝑖𝑔ℎ𝑡(𝐶𝐸𝑖) being the height of the expression as a parsing tree. In Table 2, its recursive 

definition can be found (𝐻𝑒𝑖𝑔ℎ𝑡 column). 

 𝑠𝑖𝑔𝑆𝑖𝑧𝑒(𝐶𝐸𝑖) being the number of different ontology terms (i.e., atomic concept names, object 

and datatype properties, and instances) that appear in the expression. 

 𝑐𝑜𝑠𝑡(𝐶𝐸𝑖) being the estimated cost of the concept expression taking into account the different 

constructors. It is calculated by recursively applying the costs presented in Table 2 (𝐶𝑜𝑠𝑡 column). 

 

Concept Expression 

Atom 

Cost Height 

𝐴 

𝐶 ⊓ 𝐷 

∃𝑅. 𝐶 

∃𝑅. {𝑎} 

∃𝑆. 𝑠𝑒𝑙𝑓 

{𝑎} 

∃𝑇. 𝒅 

∃𝑅. {𝑣} 

1 

𝑐𝑜𝑠𝑡(𝐶) + 𝑐𝑜𝑠𝑡(𝐷) 

𝑐𝑜𝑠𝑡(𝑅) + 𝑐𝑜𝑠𝑡(𝐶) 

𝑐𝑜𝑠𝑡(𝑅) 

𝑐𝑜𝑠𝑡(𝑆) 

1 

𝑐𝑜𝑠𝑡(𝑇) 

𝑐𝑜𝑠𝑡(𝑇) 

1 

𝑚𝑎𝑥(ℎ𝑒𝑖𝑔ℎ𝑡(𝐶), ℎ𝑒𝑖𝑔ℎ𝑡(𝐷)) + 1 

ℎ𝑒𝑖𝑔ℎ𝑡(𝐶) + 1 

1 

1 

1 

1 

1 

Table 2. Estimated costs of the different basic concept expressions in OWL EL profile. 

 
At this point, we have obtained a table of isolated estimation values (i.e., they do not take into account the 

possible interactions due to GCIs), which are the values, which will be used to calculate the CCA_WO 

metrics. 

To include GCIs in the estimation, we had to device a way which were independent of the axiom 

processing order and which did not implied to reason (otherwise, why should we want to predict the cost 

of the reasoning?)9. Thus, to obtain an estimation of the complexity introduced by the GCIs in a 

deterministic way for the different concept expressions in NCE, we focus only on the axioms where they 

appear in the left-hand side of the axiom. So, let be 

𝐺𝐶𝐼𝑆𝑢𝑝𝑒𝑟𝐸𝑙𝑒𝑚𝑠(𝐶𝐸𝑖) = {𝐶𝐸𝑗 | {𝐶𝐸𝑖 ⊑ 𝐶𝐸𝑗 } ∈ 𝑂 ∧ 𝐶𝐸𝑖 ≠ 𝐶𝐸𝑗} 

and 

𝐺𝐶𝐼𝑆𝑢𝑝𝑒𝑟(𝐶𝐸𝑖) = {𝐶𝐸𝑗 | 𝐶𝐸𝑖 ∈ 𝐺𝐶𝐼𝑆𝑢𝑝𝑒𝑟𝐸𝑙𝑒𝑚𝑠(𝐶𝐸𝑖)} 

Then, we calculate the final estimated complexity of a given concept expression as: 

𝑐𝑜𝑚𝑝𝑊𝐺𝐶𝐼(𝐶𝐸𝑖) = 𝑐𝑜𝑚𝑝(𝐶𝐸𝑖) + 𝑐𝑜𝑚𝑝(𝐺𝐶𝐼𝑆𝑢𝑝𝑒𝑟(𝐶𝐸𝑖)) 

The intuition is that, focusing on the ABox interactions, if we assert any individual to belong to CEi, the 

                                                           
9 We could process all the axioms C ⊑ D one by one, propagating the complexity from left to right, but the results would depend on the order 

that the axioms were processed as we are not working with the materialized taxonomy. 



11/30  

reasoning algorithm will have to assert at least that it also belongs to the concept expressions that 

explicitly subsume CEi. 

 
Counting Witnesses 
As mentioned above, in order to propagate the complexity of the TBox to the ABox, we consider each of 

the ABox assertions as a witness of the complexity of the asserted element within the ontology. Thus, 

apart from estimating the complexity of the elements in the ontology, we count how many ABox 

assertions affect each of them. 

For each of the concept expressions 𝐶𝐸𝑖 ∈ 𝑁𝐶𝐸, we account their witnesses as: 

𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝐶𝑜𝑢𝑛𝑡(𝐶𝐸𝑖) = |𝐼𝑛𝑑𝐶𝐸𝑖 
| + |𝐷𝑜𝑚𝑂𝑃𝐶𝐸𝑖 

| + |𝑅𝑛𝑔𝑂𝑃𝐶𝐸𝑖 
| + |𝐷𝑜𝑚𝐷𝑃𝐶𝐸𝑖 

| 

with 

𝐼𝑛𝑑𝐶𝐸𝑖 
= {𝑎| 𝑎 ∈ 𝐼𝑛𝑑(𝑂) ∧  𝐶𝐸𝑖(𝑎) ∈ 𝑂} 

𝐷𝑜𝑚𝑂𝑃𝐶𝐸𝑖 
= {𝑅(𝑎, 𝑏)| 𝑅(𝑎, 𝑏) ∈ 𝑂 ∧  𝐷𝑜𝑚(𝑅) = 𝐶𝐸𝑖} 

𝑅𝑛𝑔𝑂𝑃𝐶𝐸𝑖 
= {𝑅(𝑎, 𝑏)| 𝑅(𝑎, 𝑏) ∈ 𝑂 ∧  𝑅𝑛𝑔(𝑅) = 𝐶𝐸𝑖} 

𝐷𝑜𝑚𝐷𝑃𝐶𝐸𝑖 
= {𝑇(𝑎, 𝑣)| 𝑇(𝑎, 𝑣) ∈ 𝑂 ∧  𝐷𝑜𝑚(𝑇) = 𝐶𝐸𝑖} 

Note that Dom(R) and Rng(R) here refer to the domain and ranges explicitly asserted (that is, they only are 

counted if 𝐷𝑜𝑚𝑎𝑖𝑛(𝑅 𝑇⁄ , 𝐶𝐸𝑖 ) or 𝑅𝑎𝑛𝑔𝑒(𝑅, 𝐶𝐸𝑖 ) axioms are included in the ontology 𝑂. 

For the witnessed complexity of object and datatype properties, we use the cardinality of 

𝑅𝐴𝑂𝑃𝑖 
= {𝑂𝑃𝑖 (𝑎, 𝑏)|𝑎 ∈ 𝐼𝑛𝑑(𝑂) ∧ 𝑏 ∈ 𝐼𝑛𝑑(𝑂) ∧ 𝑂𝑃𝑖 (𝑎, 𝑏) ∈ 𝑂} 

for the object properties, and the cardinality of 

𝐷𝐴𝑂𝑃𝑖 
= {𝐷𝑃𝑖 (𝑎, 𝑣)|𝑎 ∈ 𝐼𝑛𝑑(𝑂) ∧ 𝐷𝑃𝑖 (𝑎, 𝑣) ∈ 𝑂} 

for the datatype properties, respectively. 

Finally, we apply a Laplace smoothing10 to include also into the metrics the ontology elements which 

appear in the ontology signature but do not have any explicit individual assertion. 

 
Computing the Metrics 
 
Once we have all the estimated values and the witnesses for each concept expression and role (object and 

datatype properties) in the ontology, we aggregate their values to obtain the final values of the metrics. 

Firstly, for each of the different sets of estimations, we calculate its total sum, average value, maximum 

and minimum values, standard deviation, and entropy of the complexity distribution. Secondly, we 

                                                           
10 Taken from Natural Language Processing, basically, it consists in adding 1 to all the witnessed values of the considered ontology elements in 

the ontology. 
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introduce the witnesses into the equations, and we obtain the same aggregated values, but weighted using 

the witnesses counts of each considered ontology element. 

For illustrative purposes, let us consider CCA’ metrics. Thus, firstly, we would obtain a set of inner 

complexity metrics: 

 
 𝑇𝐶𝐶𝐴′: Total amount of estimated complexity of the ontology O (i.e., the concept expressions in 

𝑁𝐶𝐸). 

𝑇𝐶𝐶𝐴′ = ∑ 𝑐𝑜𝑚𝑝𝑊𝐺𝐶𝐼(𝐶𝐸𝑖)

𝐶𝐸𝑖∈𝑁𝐶𝐸

 

 𝐴𝑉𝐺_𝐶𝐶𝐴′: Mean estimated complexity of the concept expressions in 𝑁𝐶𝐸. 

𝐴𝑉𝐺_𝐶𝐶𝐴′ =
𝑇𝐶𝐶𝐴′

|𝑁𝐶𝐸|
 

 𝑀𝐴𝑋_𝐶𝐶𝐴′: Maximum estimated complexity of the concept expressions in 𝑁𝐶𝐸. 

 𝑀𝐼𝑁_𝐶𝐶𝐴′: Minimum estimated complexity of the concept expressions in 𝑁𝐶𝐸. 

 𝑆𝑇𝐷_𝐶𝐶𝐴′: Standard deviation of complexity of the concept expressions in 𝑁𝐶𝐸. 

 𝐸𝑁𝑇_𝐶𝐶𝐴′: Entropy of the complexity distribution of the concept expressions in 𝑁𝐶𝐸.  

 

𝐸𝑁𝑇_𝐶𝐶𝐴′ = ∑ (
𝑐𝑜𝑚𝑝(𝐶𝐸𝑖)

∑ 𝑐𝑜𝑚𝑝(𝐶𝐸𝑗)𝐶𝐸𝑖∈𝑁𝐶𝐸

∙ log2 (
𝑐𝑜𝑚𝑝(𝐶𝐸𝑖)

∑ 𝑐𝑜𝑚𝑝(𝐶𝐸𝑗)𝐶𝐸𝑖∈𝑁𝐶𝐸

))

𝐶𝐸𝑖∈𝑁𝐶𝐸

 

Then, we would obtain a set of witnessed metrics: 

 𝑇𝑊𝐶𝐶𝐴′: Total witnessed complexity of the ABox, which is calculated summing all the products 

of the estimated complexities of the concept expressions with their witness individuals. 

 

𝑇𝑊𝐶𝐶𝐴′ = ∑ 𝑐𝑜𝑚𝑝𝑊𝐺𝐶𝐼(𝐶𝐸𝑖)

𝐶𝐸𝑖∈𝑁𝐶𝐸

∗ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝐶𝑜𝑢𝑛𝑡(𝐶𝐸𝑖) 

 

 𝐴𝑉𝐺_𝑊𝐶𝐶𝐴′: Mean witnessed complexity of the ABox of the concept expressions in 𝑂. 

 

𝐴𝑉𝐺_𝑊𝐶𝐶𝐴′ =
𝑇𝑊𝐶𝐶𝐴′

|𝑁𝐶𝐸|
 

 𝑀𝐴𝑋_𝑊𝐶𝐶𝐴′: Maximum witnessed complexity of a concept expression in 𝑂. 

 𝑀𝐼𝑁_𝑊𝐶𝐶𝐴′:  Minimum witnessed complexity of a concept expression in 𝑂. 

 𝑆𝑇𝐷_𝑊𝐶𝐶𝐴′:  Standard deviation of witnessed complexity of the concept expressions in 𝑂. 

 𝐸𝑁𝑇_𝑊𝐶𝐶𝐴′: Entropy of the witnessed complexity distribution of the concept expressions in 𝑂. It 

is calculated in a similar way to 𝐸𝑁𝑇_𝐶𝐶𝐴′, but in this case, the cardinality associated to each 

concept expression is its witnessed complexity (i.e., its estimated complexity multiplied by its 

count of witnesses). 

 

In the case of CCA_WO, OPCA, and DPCA metrics, we substitute compWGCI function by the 

appropriate comp function. Finally, note that in the case of CCA_WO metrics, the witnesses counts will 

be the same as for the CCA’ metrics, but the estimated complexity values of the concept expressions will 
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differ as, in this case, the GCIs were not taken into account. 

 

EXPERIMENTAL SETUP 

 

We empirically validated our hypothesis about the ABox intensity dimension of ontologies and 

contribution of new metrics. All our experimental setup, scripts and results are available online11. 

Evaluation metrics for assessing the prediction accuracy of models generated with available (92) metrics 

and combined (143) metrics are listed in Evaluation Metrics Subsection. All steps regarding data 

collection and techniques used in generating/improving models are explained in Data Collection and 

Techniques Used Subsection. 

 
Evaluation Metrics 

 
𝑅2 and 𝑀𝐴𝑃𝐸 are used to decide whether our regression model is valid for describing the relation 

between our metrics and the predictions made by the model. The coefficient of determination (𝑅2) is a 

crucial output of regression analysis, indicating to what extent the dependent variable is predictable. For 

example, a value 0.91 for 𝑅2 means that 91% percent of the variance in 𝑌 is predictable from 𝑋. Let 𝑦(𝑡) 

be the observed value of 𝑦 in second 𝑡, �̂�(𝑡) be the predicted value for 𝑦 in second 𝑡, and �̅� be the mean of 

the observed values, then: 

𝑅2 =
∑ (�̂�(𝑡)−�̅� )2

𝑡

∑ (𝑦(𝑡)−�̅� )2
𝑡

          (2) 

The Mean Absolute Percentage Error (MAPE) is a measure of prediction accuracy of a prediction method 

in statistics that is used to expresses accuracy as a percentage. For calculating the MAPE of our prediction 

model, we will divide the difference of observed and predicted values, divide this by the observed values, 

and get the average of all observations in the scope. 

𝑀𝐴𝑃𝐸 = 100 ∗
∑

|�̂�(𝑡)−𝑦(𝑡)|

𝑦(𝑡)
𝑛
𝑡=1

𝑛
         (3)

                                                           
11 https://github.com/IsaGuclu/ReasoningABoxIntensiveOntologies 
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Data Collection and Techniques Used 
 
Reasoners  We have used ELK 0.4.3, TrOWL 1.5. and JFaCT 1.2.4 for testing experimental ontologies, 

and we have selected ABox Materialization with all three as our experimental task. Note that 

materialization starts by classifying the ontology, so TBox reasoning is also performed. 

In our experiments, we implemented ABox materialization with one thread (i.e., no parallelization is 

applied). We are aware that we could benefit from parallelization in ABox materialization, and it would 

improve the performance (Ren et al. (2012)) to some extent. However, as RAM I/O becomes the 

bottleneck because of the limited bandwidth (Ren et al. (2012)) of the RAM when many worker threads 

compete for RAM access and this would cause some side effects in measuring the execution time, we 

preferred to leave the performance prediction of parallel ABox materialization as future work. Finally, we 

set a timeout of 30 minutes to each ontology processing to limit the amount of time required to gather all 

the data. 

 

 Dataset-1 Dataset-2 

ELK 1909 3858 

JFact 1858 3774 

TrOWL 1905 3839 
 

Table 3. Number of correctly processed ontologies in our experiments. 
 

 

 Small 

ontologies 

Medium 

ontologies 

Big 

ontologies  0 <= Ratio < 

5.00 

308 468  810 

 5 <= Ratio < 

10.0 

62 80  13 

10 <= Ratio 30 109  61 

Total 400 657  884 
 

Table 4. Distribution of ontologies in dataset-1. 

 

Ontologies   We have used 2 datasets for training our model: 

1. Dataset-1 (1941 Instantiation OWL 2 EL Ontologies in ORE 201412): This dataset contains 1941 

ontologies in EL instantiation experiment set from 16,555 ontologies in ORE 2014 dataset. This 

dataset will be abbreviated as “DS1” in figures and tables. 

2. Dataset-2 (3858 ABox-intensive Ontologies obtained via Data Augmentation): Plentiful high-

quality data is a key factor in training machine learning models to expect good prediction 

accuracy. Unfortunately, normal real-world datasets may contain abnormal or interesting samples 

that will misguide your models in training and produce unexpected wrong predictions.  Thus, to 

avoid that sort of misleading training scenarios, we preferred augmenting our dataset according to 

our target scope, i.e. ABox intensive ontologies. Recall that, in this experimental setup, we are 

                                                           
12 https://zenodo.org/record/10791 
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defining ontology as ABox intensive, if the count of ABox axioms in such ontology is at least 5 

times the count of TBox axioms. So, we filtered 356 ABox-intensive ontologies in Dataset-1, and 

we produced up to 10 new ontologies from each of them using the TBox of the original ontology 

and randomly selecting subsets of the ABox axioms of the original ontology. The result is our 

Dataset-2 (“DS2” in figures and tables), which contains 3858 ABox-intensive ontologies. Source 

code of the data augmentation procedure and an implementation with executable files as used in 

the experiments are accessible online13. When gathering the execution times, we came across with 

inconsistent ontology exceptions, as well as with ontologies that could not be processed before the 

timeout. Table 3 shows how much ontology from each dataset each reasoner correctly processes. 

Tables 4 and 5 show the distribution of ontologies in datasets 1 and 2, respectively. 

 

 Small 

ontologies 

Medium 

ontologies 

Big 

ontologies 0 <= Ratio < 5 0 0 0 

5 <= Ratio < 

10 

976 1033 182 

10 <= Ratio 392 858 417 

Total 1368 1891 599 
 

Table 5. Distribution of ontologies in dataset-2. 
 
 
Prediction Model Construction The importance of a correct selection of the model and its outcome is 

widely documented in various areas (Kohavi (1995), Sleeman et al. (1995), Burnham & Anderson (2002), 

Ozkan (2016)). Inspired by the consistent high accuracy of the Random Forest based regression models in 

the study in Kang et al. (2014), we adopted the same approach using the metrics as predictor variables. 

Regular 10-fold cross-validation is performed to ensure the generalizability of the model. To see the 

validity of the model, we also randomly separated the datasets into 80% training set and 20% test set and 

measured the evaluation metrics. 

Feature Selection Feature selection is an important step in machine learning methods as large feature sets 

may become inconvenient in terms of: 1) high performance requirements, and 2) decrease in accuracy due 

to the noise introduced by unrelated features.  Besides, in our setting, feature selection is also important as 

it provides an objective measure of how important metrics are in a prediction model, and we wanted to see 

how many of our new metrics contributed actively to the model generated by the machine learning 

algorithm. 

In our experiments, we have used the Boruta Algorithm, proposed by Kursa & Rudnicki (2010). It is 

“based on the same idea that forms the foundation of the random forest classifier, namely, that by adding 

randomness to the system and collecting results from the ensemble of randomized samples one can reduce 

the misleading impact of random fluctuations and correlations”(Kursa & Rudnicki (2010)). 

 

 

                                                           
13 https://github.com/IsaGuclu/ReasoningABoxIntensiveOntologies 
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RESULTS AND EVALUATION 

 

In our study, we investigated the reasoning performance of a reasoner and ontology characteristics 

represented by the already available metrics (92 metrics by Kang et al. Kang et al. (2014)), and our 51 

new metrics (CCA’, CCA WO, OPCA, DPCA). While developing our new metrics, we aimed at capturing 

the complexity of ontologies without losing accuracy when ABox intensity increased. Our goal is to make 

prediction models that can be applied to ABox intensive ontologies with high stability, using metrics that 

can represent the complexity of the ontology as accurately as possible. 

In order to assess the quality of our metrics, we ran two different sets of experiments evaluating the 

accuracy of the prediction in two different ways: 1) using 10-fold Cross Validation, and 2) validating 

them by splitting the datasets into 80%/20% training/test data. This allowed us to avoid a biased corpus, 

which might result in misleading generalizations. 

For each of the experiments, we combined the available 92 metrics with ours to grasp the TBox aspect of 

ontologies, which is already achieved to some extent by Kang et al. (2014). Thus, we prepared two sets of 

metrics to train the models: 1) the originally available 92 metrics, and 2) 143 combined metrics (the 

previous set plus our newly proposed 51 metrics). Before training the models, we removed the metrics 

that had zero standard deviation. 

After having analysed the results, we saw that the contribution of the metrics for the different datasets 

differed. This made us analyse the inner details of the used datasets to gain further insight on their 

distribution according to their size and ABox Intensivity.  Finally, quality of the feature selection had also 

to be taken into consideration. Thus, we ran each of the experiments using the complete sets of metrics 

(std in the figures and tables), as well as using only the variables selected by the feature selection 

algorithm on each considered set (SFA in the figures and tables). This allowed us to see whether the 

feature selection algorithm was effective in our settings, and whether our newly proposed features were 

really contributing to the model while achieving the same or more prediction accuracy. 

The R script code of all the experiments run (Random Forests based regression with 10-fold Cross 

Validation and 80%/20% validation, and feature selection algorithms), as well the results and the data 

analysis are available at14. 

 
 
Assessing the contribution of 51 ABox Metrics via 10-fold Cross Validation 
 

Considering all the combinations datasets and sets of ontology metrics, we firstly trained our models and 

measured their prediction accuracy using 10-fold Cross Validation. The numeric results obtained are 

shown in Table 6, where the rows named std (standard) are the results produced without using feature 

selection; and the rows named SFA are the results obtained by only using the features that Boruta 

algorithm recommended. 

 

                                                           
14 https://github.com/IsaGuclu/ReasoningABoxIntensiveOntologies 
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  92 Metrics 51 ABox + 92 Metrics 

ELK 

DS1 

std 7.62% 7.17% 

SFA 7.51% 7.42% 

ELK 

DS2 

std 5.32% 5.32% 

SFA 5.34% 5.30% 

JFaCT 

DS1 

std 46.94% 62.27% 

SFA 43.84% 53.48% 

JFaCT 

DS2 

std 6.38% 5.93% 

SFA 7.01% 6.10% 

TrOWL 

DS1 

std 131.76% 203.25% 

SFA 131.75% 140.09% 

TrOWL 

DS2 

std 37.25% 23.13% 

SFA 33.86% 23.02% 

Table 6. 10-fold Cross Validated MAPE values  

The graphs comparing R2 and MAPE values are included in Figures 3 and 4, respectively (for the sake of 

clarity, values of Table 6 higher than 100 % have been truncated) 

First, we will focus on std results, that is, those obtained using all metrics without feature selection: 

 In the experiments with ELK using dataset-1, the changes in R2 and MAPE between 92 metrics 

and combined metrics were very small, less than 1%. Using dataset-2, the changes in R2 and 

MAPE between 92 metrics and combined metrics were even smaller than the ones with dataset-1, 

which was not a significant change. 

 In the experiments with JFaCT using dataset-1, we observed an improvement in R2 of ≈3% with 

the introduction of the new metrics, but it came along a ≈15% decrease in MAPE. Using dataset-2, 

R2 improved ≈1% and MAPE improved less than 1% with combined metrics. 

 

 
 

Figure 3. Comparison of R2 values in 10-fold Cross Validation procedure. 
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Figure 4. Comparison of MAPE values in 10-fold Cross Validation procedure. 
 
 

 Finally, in the experiments with TrOWL using dataset-1, we observed a decrease in R2 of ≈5% 

when using the combined metrics. Although the MAPE obtained with 92 metrics was better than 

the one obtained with 143 metrics, MAPE value for both were more than 100%, which is an 

undesirable for a prediction.  Using dataset-2, we observed very similar R2 with both metrics, but 

there was ≈14% improvement in MAPE (a relative improvement of ≈40%). This increase in 

prediction accuracy with the augmented dataset will be analysed later in the paper when we 

analyse the dataset distribution. 

 

After getting this first set of results, we ran Boruta algorithm and obtained the metrics recommended in 

both cases (original and combined metrics). The details about the features selected by Boruta algorithm 

can be found in the Appendix, listed in Tables 8 and 9. 

After having filtered the metrics sets selecting the features suggested by Boruta algorithm, we ran a new 

batch of the experiments which result are labelled as SFA in Table 6, and Figures 3 and 4: 

 

 In the experiments with ELK using dataset-1, comparing with the std results, we observed an 

increase in R2 of ≈5% and ≈12% for the original and combined metrics, respectively. Although 

there seemed not to be a significant difference at first when std metrics sets where considered, a 

difference emerged when feature selection algorithm was applied. Feature selection increased the 

accuracy of both metric sets, but in the case of combined metrics it showed ≈7% higher 

performance in terms of R2. The difference in MAPE value was less than 1%. Using dataset-2, 

there was no notable change in R2and MAPE between 92 metrics and combined metrics (the 

results for both sets are remarkable). 

 In the experiments with JFaCT using dataset-1, comparing with the std results, we observed an 

increase in R2of ≈ 4%, and an improvement in MAPE of ≈3% for the original metrics. For the 

combined metrics, there was no notable change in R2, but an improvement in MAPE of ≈9%. 

Using dataset-2, comparing with the std results, we can see how the results got slightly worse 

(about a 1% in every dimension); however, they were still good accuracy values. When we 

compared the results the original and the combined metrics taking std and SFA methods into 
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consideration, we observe that combined metrics did not contribute to the prediction accuracy with 

dataset-1, but it showed a little contribution in dataset-2 with combined metrics. This made us 

search for the explanation of the change in the prediction accuracy on dataset-1 and dataset-2, 

which is analysed later along with the dataset distribution. 

 Finally, in the experiments with TrOWL using dataset-1 (SFA row), we observed a decrease in R2 

of ≈2% when combined metrics were considered. Although the MAPE obtained with 92 metrics 

was better than the one obtained with 143 metrics, MAPE value for both were more than 100%, 

which is undesirable for a prediction model. Using dataset-2 (SFA row), we observed that the 

models obtained similar R2values with both metrics, but there was an improvement in MAPE of 

≈10% (a relative improvement of ≈30%). This increase in prediction accuracy with the augmented 

dataset will be analysed later along with the dataset distribution. 

 
In general, the results we obtained by using feature selected showed a better (or similar in the worst case) 

prediction accuracy on the different datasets and reasoners considered in the experiments. From the 

perspective of datasets, we observed that combined metrics showed a contribution at different levels on 

dataset-2, but they did not so for dataset-1. As above mentioned, this will be analysed along with the 

dataset distribution. 

 

Assessing the contribution of 51 ABox Metrics via 80%/20% separation 
 

After we validated our models with 10-fold Cross Validation, we wanted to further test the prediction 

models in a more general scenario. To do so, we ran again the experiments randomly separating each of 

the datasets into a 80% training set, and a 20% testing set. We ran this experimental scenario 3 times and 

got the average of the values, which are shown in Table 7, and in Figures 5 and 6. 

As we have done in the previous section, we used all available metrics in model generation and validation 

in the first batch of experiments (std in the table and figures). Then, we ran Boruta algorithm, selected the 

recommended metrics, and ran again the experiments in a second batch (SFA in the table and figures). 

We can see how, using dataset-1, the combined metrics did not improve the precision of the results but for 

ELK reasoner, where they improved the R2 for the std setting. For dataset-2, if we focus on the 

contribution of the combined metrics, we see similar results as the analysis performed with 10-fold CV. 

The only remarkable situation is the increase of MAPE for TrOWL reasoner when using the std metric 

set; however, we have to bear in mind that the models in this schema were trained with less data (80% vs. 

90% used in the 10-CV), and the number of repetitions is also lower (3 times vs. 10 times in the 10-CV), 

which indeed influenced the results. 

Overall, these results in both 10-fold cross validation and 80%/20% separated validation support our 

previous observations. 
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92 Metrics 
51 ABox + 92 

Metrics 

R-Squared MAPE R-Squared MAPE 

ELK 

DS1 

std 39.52% 9.10% 64.26% 6.58% 

SFA 53.15% 8.02% 55.77% 6.39% 

ELK 

DS2 

std 99.32% 5.23% 98.52% 5.28% 

SFA 98.94% 5.32% 98.55% 5.58% 

JFaCT 

DS1 

std 68.39% 44.73% 54.77% 23.35% 

SFA 82.68% 56.67% 78.14% 26.45% 

JFaCT 

DS2 

std 96.09% 7.12% 95.32% 6.63% 

SFA 95.99% 8.63% 96.13% 6.25% 

TrOWL 

DS1 

std 68.00% 86.31% 36.99% 167.59% 

SFA 94.10% 70.90% 81.15% 151.38% 

TrOWL 

DS2 

std 96.93% 21.00% 98.23% 35.64% 

SFA 98.18% 32.02% 98.09% 30.38% 
 

Table 7. 80%/20% separated validation results 
 

 
 

Figure 5. Comparison of R2 values in the 80%/20% separated validation procedure. 
 
 
 

 
 

Figure 6. Comparison of MAPE values in the 80%/20% separated validation procedure 
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ABox Intensity and Prediction Accuracy of Metrics 
 

 

Although we were getting better results with the combined metrics than with the original ones on dataset-

2, we could not get the same result on dataset-1. This made us question the difference between these two 

datasets. We analysed these datasets from the perspective of ABox/TBox ratio and ontology size. We 

grouped the ontologies into three levels of ABox intensity ([0 − 5), [5 − 10), [10 − ∞)); and into three 

different sizes: small (having up to 500 logical axioms), medium (having more than or equal to 500 logical 

axioms but less than 5000), and big ones (having more than or equal to 5000 logical axioms). 

In Tables 4 and 5, we can see the distribution of the ontologies of dataset-1 and dataset-2, respectively.  

We can see how dataset-1 is clearly biased to ontologies with low ABox intensities, while dataset-2 

(obtained by data augmentation) is not so biased to it. As a result of our observation and the results 

obtained in our experiments, we can claim that the metrics presented in this paper will improve the 

prediction accuracy when used on ABox intensive ontology sets. 

 

Figure 7. Metrics contributing to ALL (100%) of the models as selected by Boruta. 
 
 

Assessing the Selection of Features by Boruta 
 

Finally, we have to analyse the results we obtained by applying the Boruta feature selection algorithm to 

both the original metrics and the combined metrics sets15 : 

 When we searched for the metrics that are selected by Boruta algorithm in all models (, we saw 

that it selected 11 of the original 92 metrics, and 11 of the 51 newly proposed metrics were 

selected, as visualized in Figure 7. This implies that, on the one hand, there are original metrics 

                                                           
15 The interested reader can find the details about the results of the selected metrics in the Appendix. 
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which are strongly relevant for the prediction task, but, on the other, that the newly included 

metrics are also contributing heavily to the model construction. 

 When we search for the metrics that are selected as a related metric by Boruta in at least 50% of 

the models, we see that 34 of of 51 metrics and 27 of 92 metrics are selected. 

 As a final note, the ABox intensivity16 was selected as relevant for the three reasoners when facing 

an ABox intensive dataset (dataset-2). 

This supports our hypothesis that the newly proposed metrics contribute to the prediction model as much 

as the available metrics. 

DISCUSSION 

 

Related Work 
 

In our work, we have analyzed available metrics and investigated how to improve the capture of the 

complexity of ontologies by developing new metrics, which represent ABox axiom (and its interaction 

with TBox axioms) aspects of ontologies. According to our experiments comparing the original 92 

metrics with our combined 143 metrics, we observe that adding the newly proposed metrics increases the 

accuracy of prediction in ABox intensive ontology sets. 

From the results derived in our experiments, we can conclude that the previously available metrics (Kang 

et al. (2014)) could capture the complexity of ontologies to some extent. However, materialization needed 

new metrics that represented the interaction of ABox axioms with TBox axioms, and took their combined 

complexity into account. The amount of ABox axioms in ontology and their interactions can cause the 

consumption of more execution time than expected if their complexity is ignored. To fill such gap, we 

have proposed 51 new metrics to include the effect of ABox complexity in performance prediction of 

ontology reasoning, and we plan to improve these metrics further for more effectiveness. 

 
Prediction Accuracy Change According to ABox Intensity 
 

At the beginning of our research, we were wondering whether we could develop metrics that are 

generalizable regardless the characteristics of ontologies used in a particular scenario. After making our 

experiments, detailed in the previous section, we observed that it is very difficult to develop metrics that 

can show high prediction accuracy on all ontology sets. 

In this work, we have observed and introduced the ABox intensity aspect of ontology sets. From our 

experiments, we have seen that this characteristic of the ontologies has an important influence on the 

prediction capabilities of the trained models. This observation along with the contribution of the newly 

proposed metrics developed according to this observation motivates us to look for deeper analysis on 

performance of ontology reasoning. 

Feature selection 
 
Apart from the increase in the accuracy of prediction, the identification of the metrics that actually 

                                                           
16 Ratio metric in Table 8. 
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contribute to such improvement is also important. We have implemented the Boruta algorithm to select 

related features in model generation, and have seen observed that the models generated by the selected 

features either increase the accuracy of prediction  or achieve similar results. Following this line of 

research, we plan to make further analysis with different feature selection algorithms in our future work. 

We have analysed the features selected in the models generated for the considered reasoners (ELK, JFaCT 

and TrOWL) and datasets (dataset-1 and dataset-2). Every reasoner shows different reasoning behaviors 

according to the algorithms they are built on, and the optimization techniques they are using. Likewise, 

every ontology shows different reasoning requirements according to the domain of the knowledge 

modelled, expressivity of the selected language family, etc. This variability makes feature selection more 

and more important as new metrics will be introduced to grasp the complexity of ontology reasoning and 

make performance predictions with higher accuracy. Besides, decreasing the number metrics for 

prediction not only increases prediction accuracy, but also decrease resource consumption when 

calculating the metric values, which makes some computing tasks more applicable on resource bounded 

environments, such as mobile devices (Bobed et al. (2015), Krishnaswamy & Li (2014)). 

 
CONCLUSION & FUTURE WORK 

 

Performance prediction of ontology reasoning is a very interesting and challenging topic.   In this work, 

we have introduced the concept of ABox intensity, showing that it has a strong influence on the 

predictability of the performance of ontology reasoning. Thus, we have focused our work on the 

performance prediction of ABox intensive OWL 2 EL ontologies, and proposed 51 new metrics which 

extend the previous work of Kang et al. (2014). The results obtained by adding these new metrics show an 

increase in the prediction accuracy of the trained model when dealing with ABox intensive ontology sets. 

Apart from the accuracy improvement, to see the contribution of the new metrics to the generation of 

prediction models, we also implemented a feature selection method, and saw that our new metrics 

contribute to the prediction model as much as the previously available metrics. 

We believe that awareness of the ABox intensity in ontologies, and bringing a solution to propagate the 

complexity of the TBox to the ABox will increase the effectiveness and validity of prediction models on 

performance of ontology reasoning. 

As for future work, firstly, we plan to work on better representations of the interactions between ABox 

axioms and TBox axioms by improving available metrics and extending them to the OWL 2 DL profile. 

Secondly, we will make experiments with more reasoners on different ontologies that will help understand 

the interaction of ABox axioms with TBox axioms in a broader sense. Finally, we will use different 

prediction mechanisms and feature selection algorithms to leverage the contribution of these metrics. 
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APPENDIX A. FEATURES SELECTED BY BORUTA 
Tables 8 and 9 present the selected features in each for each of the datasets, reasoners, and metrics sets. 

We have excluded the metrics that have never been selected by the algorithm. 
 ELK DS1 ELK DS2 JFaCT DS1 JFaCT DS2 TrOWL DS1 TrOWL DS2 #Sel 

51 New Metrics Comb. Comb. Comb. Comb. Comb. Comb.  

TBoxAxioms X X X X X X 6 

ABoxAxioms X X X X X X 6 

Ratio  X X X  X 4 

TCCA X X X X X X 6 

AVG CCA  X X X   3 

MAX CCA  X  X  X 3 

STD CCA  X  X  X 3 

ENT CCA X X X X X X 6 

TWCCA X X X X X X 6 

AVG WCCA  X  X  X 3 

MAX WCCA  X  X X X 4 

STD WCCA  X  X X X 4 

ENT WCCA X X X X X X 6 

TCCA WO X X X X X X 6 

AVG CCA WO X X  X  X 4 

MAX CCA WO  X X X  X 4 

STD CCA WO  X X X  X 4 

ENT CCA WO X X X X X X 6 

TWCCA WO X X X X X X 6 

AVG WCCA WO  X X X  X 4 

MAX WCCA WO  X X X X X 5 

STD WCCA WO  X  X X X 4 

ENT WCCA WO  X X X X X 5 

TOPCA X X X X X X 6 

AVG OPCA  X  X X X 4 

MAX OPCA  X X X X X 5 

MIN OPCA X      1 

STD OPCA  X  X X X 4 

ENT OPCA X X X X X X 6 

TWOPCA  X X X X X 5 

AVG WOPCA  X  X X X 4 

MAX WOPCA  X X X X X 5 

MIN WOPCA X X     2 

STD WOPCA  X  X X X 4 

ENT WOPCA  X X X  X 4 

ENT DPCA   X    1 

TWDPCA  X     1 

AVG WDPCA  X     1 

MAX WDPCA  X     1 

ENT WDPCA  X X X   3 

Table 8. Selection of Proposed Metrics by Boruta in Model Generation. 

https://docs.google.com/document/d/1sKnalqycdOP-4C7gPlTW5XfPJZZbPEWxo31FvYIrY9A/edit#heading=h.kgcv8k
https://docs.google.com/document/d/1sKnalqycdOP-4C7gPlTW5XfPJZZbPEWxo31FvYIrY9A/edit#heading=h.34g0dwd
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 ELK 

DS1 
ELK 

DS2 
JFaCT 

DS1 
JFaCT 

DS2 
TrOWL 

DS1 
TrOWL 

DS2 
 ELK 

DS1 
ELK 

DS2 
JFaCT 

DS1 
JFaCT 

DS2 
TrOWL 

DS1 
TrOWL 

DS2 
 

      #Sel.       #Sel. 
92 Metrics Mtr92 Mtr92 Mtr92 Mtr92 Mtr92 Mtr92  Comb. Comb. Comb. Comb. Comb. Comb.  

SIZEKB X X X X X X 6 X X X X X X 6 
SOV X X X X X X 6 X X X X X X 6 
ENR  X X X X X 5  X  X  X 3 
TIP X X X X X X 6 X X X X X X 6 

EOG  X X X X X 5  X  X X X 4 
RCH  X X X X X 5  X  X   2 
CYC X X X X X X 6 X X X X X X 6 
GCI X X X X X X 6  X X X X  4 

HGCI  X  X  X 3      X 1 
ESUB  X X X X X 5  X     1 
CSUB   X X   2   X X   2 

SUPECHN X X X X X X 6 X X X X  X 5 
SUBECHN X X X X X X 6 X X X X  X 5 
SUBCCHN   X    1   X    1 

DSUPECHN X X X X X X 6 X X  X X X 5 
DSUBECHN X X X  X X 5 X X  X X X 5 
DSUBCCHN   X    1   X    1 
ELCLSPRT X X  X   3 X X  X  X 4 
ELAXPRT X X X X   4 X X     2 

HLC X X   X X 4 X X  X X X 5 
RHLC  X  X  X 3  X  X  X 3 
IHR X X X X X X 6 X X X X X X 6 
IND X X X X X X 6  X X X X X 5 

aNOC  X X X X X 5  X X X   3 
mNOC  X X X X X 5  X X X  X 4 
tNOC X X X X X X 6 X X X X X X 6 
aCID  X X X X X 5  X  X  X 3 
mCID  X X X X X 5  X X X X X 5 
tCID X X X X X X 6 X X X X X X 6 

aCOD X X X X X X 6  X  X X X 4 
mCOD  X X X X X 5  X    X 2 
tCOD X X X X X X 6 X X X X X X 6 
aNOP  X X X X X 5  X X X  X 4 
mNOP  X X X X X 5  X X   X 3 
tNOP X X X X X X 6 X X X X X X 6 

ENUM X X X X  X 5 X X  X  X 4 
ENUMP X X  X   3 X X  X  X 4 
CONJ X X X X X X 6  X X X  X 4 

CONJP  X  X X X 4  X    X 2 
EF X X X X X X 6 X X X X X X 6 

EFP  X   X X 3  X    X 2 
OBP X X X X X X 6 X X X X X X 6 

OBPP  X     1  X     1 
DTP  X X X   3   X    1 

DTPP  X     1  X     1 
FUN  X    X 2       0 

FUNP  X    X 2       0 
TRN  X  X  X 3  X  X   2 

TRNP  X  X  X 3  X  X   2 
SUBP X X X  X X 5 X X X  X X 5 

DOMN  X     1 X      1 
RANG  X  X   2  X  X   2 
CHN  X  X X X 4  X  X X X 4 



30/30  

CHNP  X   X X 3  X   X X 3 
ELPROP  X  X X  3  X     1 

 

Table 9. Selection of 92 Metrics by Boruta in Model Generation 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


