Formal Semantics and Verification for Feature Modeling

Jing Sun

Department of Computer Science

The University of Auckland
New Zealand
j.sun@cs.auckland.ac.nz

Yuan Fang Li
School of Computing
National University of Singapore
Singapore
liyf@comp.nus.edu.sg

Abstract

Research on features has received much attention in the
domain engineering community. Feature modeling plays an
important role in the design and implementation of complex
software systems. However, the presentation and analysis
of feature models are still largely informal. There is also
an increasing need for methods and tools that can support
automated feature model analysis. This paper presents a
formal engineering approach to the specification and verifi-
cation of feature models. A formal semantics for the feature
modeling language is defined using first-order logic. It pro-
vides a precise and rigorous formal interpretation for the
graphical notation. In addition, further validation of the
semantics using the Z/EVES theorem prover is presented.
Finally, we demonstrate that the consistency of a feature
model and its configurations can be automatically verified
by encoding the semantics into the Alloy Analyzer. A case
study of the Key Word in Context (KWIC) index systems fea-
ture model is presented to illustrate the verification process.

Keywords: Feature Modeling, Domain Engineering,
Feature Oriented Domain Analysis, Z/EVES, Alloy, Formal
Verification.

1 Introduction

Research on feature modeling has received much atten-
tion in the domain engineering community. In an applica-
tion domain, a set of features gives rise to a software product
line [14]. Feature-Oriented Reuse Method (FORM) [6] and
Feature-Oriented Domain Analysis (FODA) [5] are domain

Hongyu Zhang
School of Computer Science
and Information Technology
RMIT University, Australia

hongyu@cs.rmit.edu.au

Hai Wang
Department of Computer Science
University of Manchester
United Kingdom
hwang @cs.man.ac.uk

engineering methods that concentrate on modeling and an-
alyzing a product line’s commonalties and variabilities in
terms of features. According to Kang et al., customers and
engineers usually speak of product characteristics in terms
of the features that the product has or delivers; thus it is nat-
ural and intuitive to express any commonality or variability
in terms of features [7]. FORM and FODA are known for
the introduction of feature models, which contain a graphi-
cal tree-like notation that shows the hierarchical organiza-
tion of features. Feature modeling is considered as “the
greatest contribution of domain engineering to software en-
gineering” [1].

Although much research has been centered on features,
the concept of features and their relationships have not been
well understood or formally defined. Many different kinds
of graphical notations (‘languages’) have been proposed to
assist feature modeling [2, 1]. However, the lack of pre-
cision in the description of features and their relationships
have prevented them from a wide adoption. In addition,
there is an increasing need for methods and tools that can
support automated feature model analysis. In the first pa-
per on feature modeling in 1990 [5], Kang et al. suggested
the formalization of features as a future direction and men-
tioned the possibility of applying an algebraic-based tech-
nique. However, since then formalization of feature models
has not been taken up. In this paper, we present an approach
to formalizing and verifying feature models using formal
reasoning techniques. A first-order semantics for the feature
modeling language is defined. Theorem proving techniques
are used to validated the correctness of the semantics. Fur-
thermore, we demonstrate that the consistency of a feature
model and its configurations can be automatically verified,
where the source of inconsistency can be identified.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

The remainder of the paper is organized as follows.
Section 2 gives a brief overview of feature modeling, Z,
Z/EVES and Alloy. In Section 3, we present a formal se-
mantics for the feature modeling language. Section 4 de-
scribes the meta-level reasoning support for validating the
correctness of the semantics. In Section 5, we present a
case study to demonstrate the feature model verification us-
ing the Alloy Analyzer. We use the Key Word in Context
(KWIC) index systems as an example to illustrate the verifi-
cation process. Section 6 concludes the paper and discusses
the future works.

2 Background
2.1 Feature modeling

There are many definitions about features in the software
engineering community, such as those found in Feature En-
gineering [13], FODA [6] and ODM [12]. We choose the
ODM definition, “Feature is a distinguishable characteris-
tic of a concept that is relevant to some stakeholders”, as it
has its root in conceptual modeling and cognitive science.
In classical conceptual modeling, we describe concepts by
listing their features, which differentiate instances of a con-
cept. In software engineering, we believe that software fea-
tures differentiate software systems. In domain engineering
and software product line context, features distinguish dif-
ferent members of a product line. A productline can be seen
as a concept, and members of the product line can be seen
as instances of the concept. Product line members share
common features and also differ in certain features.

Conceptual relationships among features can be ex-
pressed by a feature model as proposed by Kang et al. [5].
A feature model consists of a feature diagram and other as-
sociated information (such as rationale, constraints and de-
pendency rules). A feature diagram provides a graphical
tree-like notation that shows the hierarchical organization
of features. The root of the tree represents a concept node.
All other nodes represent different types of features.

Kang et al. classified features as mandatory, optional
and alternative features, and introduced an AND-OR graph
based notation for representing feature models [5]. Many
other researchers proposed different graphical notations and
‘languages’ for feature modeling. For example, Czarnecki
and Eisenecker [1] proposed the or, optional-alternative,
optional-or features and new notations; Griss et al. [2] pro-
posed XOR and OR features. Many of these notations and
‘languages’ refer to same or similar relationships. There is
a lack of commonly-accepted, precise definitions in feature
modeling research.

Table 1 provides an overview of some commonly found
feature types. We use the graphical notation introduced by
Czarnecki and Eisenecker [1]. In Table 1, assuming the con-

Type Notation

Mandatory

Optional

Alternative

Optional Alternative

Optional Or

Table 1. Types of features in a feature diagram

cept C is selected, we have the following definitions on its
child features:

e Mandatory — The feature must be included into the de-
scription of a concept instance.

e Optional — The feature may or may not be included
into the description of a concept instance.

o Alternative — Exactly one feature from a set of features
can be included into the description of a concept in-
stance.

e Or — One or more features from a set of features can
be included into the description of a concept instance.

e Optional Alternative — One or more features from a set
of Alternative features is optional.

e Optional Or — One or more features from a set of Or
features is optional.

Feature models are often used to model commonality
and variability in a domain engineering context. Common-
alities can be modeled by common features (mandatory fea-
tures whose ancestors are also mandatory), and variabilities
can be modeled by variant features, such as optional, al-
ternative, and or-features. A domain can be modeled as a
concept. Figure 1 shows a simple feature model for a Car
domain [1].

From the Car feature model (Figure 1), we can see that
(Car, CarBody, Transmission, Manual, Engine, Gasoline)

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

O
Pulls trailer

Electric Gasoline

Figure 1. A simple Car feature model.

Transmission

Automatic

and (Car, CarBody, Transmission, Automatic, Engine, Elec-
tric, Gasoline, PullsTrailer) are possible configurations de-
rived from the Car feature model. However, not all combi-
nations of features are valid. For example, the configuration
(Car, CarBody, Transmission, Automatic, Manual, Engine,
Gasoline) is invalid since the features Automatic and Man-
ual are exclusive to each other.

2.2 Z and Z/EVES

Z [15] is a state-based formal language based on ZF set
theory and first-order predicate logic. Z/EVES [9] is an
interactive system for composing, checking, and analyzing
Z specifications. In particular, it supports general theorem
proving of Z specifications. Z/EVES organizes Z specifica-
tions in the form of sections to improve structure and reuse.
The built-in section toolkit defines basic constants and
operators. Specifications are built hierarchically by includ-
ing existing sections as their parents.

In Z/EVES, theorems can be developed to describe prop-
erties about a model. They appear in the form of axioms,
rewrite rules or assumption rules. An axiom is treated as a
fact, which is not invoked during reduction. When Z/EVES
encounters a rewrite rule, it will rewrite its left-hand side
to its right-hand side. An assumption rule is assumed to be
true when Z/EVES performs simplification. Theorems can
be marked as disabled so that they are not automatically
invoked during reduction or rewriting.

2.3 Alloy

Alloy [3] is a structural modeling language based on
first-order logic for expressing complex structural con-
straints and behaviors. It can be viewed as a subset of Z
since it is less expressive. Alloy treats relations as first-class
citizens and uses relational composition as a powerful op-
erator to combine various structured entities. Like Z, Alloy
is a declarative language. The essential constructs of Alloy
are signatures, facts, functions and assertions.

The Alloy Analyzer [4] is a tool for analyzing models
written in Alloy. Given a finite scope for a specification, Al-
loy Analyzer translates it into a propositional formula and
uses SAT solving technology to generate instances that sat-

isfy the properties expressed in the specification. It sup-
ports two kinds of automatic analysis: simulation, in which
the consistency of an invariant or operation is demonstrated
by generating a state transition; and checking, in which a
consequence of the specification is tested by attempting to
generate a counterexample.

3 Formal semantics for feature modeling

In this Section, we present a formal semantics for the fea-
ture modeling language using the first-order logic in Z. We
show that all the commonly-used feature types in Section
2.2 can be expressed precisely. Furthermore, we define two
more relations to capture the additional constraints among
the features in a feature model.

3.1 Feature and concept

Features represent distinguishable characteristics of a
concept. A concept consists of a set of related features with
constraints. We give the definitions of Feature and Concept
as follows.

[Feature] | Concept : P Feature

We define feature as a given set. Concept is a special
kind of feature, which is represented as a subset of Feature.

holds : Concept «— Feature
V¢ : Concept ® (c,c) € holds
The above defines a relation holds that captures the rela-
tionship between a concept and each feature in the descrip-
tion of a concept instance. It represents a valid combination
(configuration) of features that a concept instance can have.
Each feature combination describes one possible instance
of the concept. The above predicate states that the concept

node of a feature diagram is always included in any instance
description derived from the diagram.

3.2 Formal definitions of feature types

3.2.1 Mandatory

Mandatory defines features that must be included into the
description of a concept instance, if their parent feature is
included. It can be defined formally as follows.

Mandatory : Concept — (Feature x P Feature)

V¢ : Concept; pf : Feature; s : P Feature

¢ Mandatory (pf,s) < pf ¢ s
A ((c,pf) € holds = (Vf : s ® (c,f) € holds))
A ((c,pf) ¢ holds = (Vf : s ® (c,f) ¢ holds))

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

The above defines Mandatory as a relation between a
concept ¢ and a pair of a parent feature pf and its direct
child feature set s. The first predicate states that the parent
feature pf should not be included in the child set s. The
second and third predicates state that if the parent of the
mandatory feature set s is held by a concept instance, all
the features in set s should be included into the description
of the same concept instance; otherwise none.

3.2.2 Optional

Optional defines features that may or may not be included
into the description of a concept instance, if their parent is
included. It can be defined formally as follows.

Optional : Concept < (Feature x P Feature)

V¢ : Concept; pf : Feature; s : P Feature
¢ Optional (pf,s) < pf ¢ s
A ((c,pf) ¢ holds = (Vf : s ® (c,f) ¢ holds))

The above states that if the parent feature pf of a set of
Optional features s is not included in a feature configura-
tion, there should be no features included from the set s in
the same concept instance; otherwise, the choice is free.

3.2.3 Alternative

Alternative defines that exactly one feature from a set of
features can be included into the description of concept in-
stance, if its parent is included; otherwise none. Its formal
definition is as follows.

Alternative : Concept < (Feature x P Feature)

V¢ : Concept; pf : Feature; s : P Feature ®
¢ Alternative (pf,s) < pf ¢ s
A ((c,pf) € holds = (3, f : s ® (¢,f) € holds))
A ((c,pf) ¢ holds = (Vf : s ® (c,f) ¢ holds))

324 Or

Or defines that one or more features from a set of features
can be included into the description of a concept instance,
if their parent is included; otherwise none. Its formal defi-
nition is as follows.

Or : Concept < (Feature X P Feature)

V¢ : Concept; pf : Feature; s : P Feature ®

cOr (pf,s) < pf &s
A ((c,pf) € holds = (3f : s ® (c,f) € holds))

A ((c,pf) ¢ holds = (Vf : s ® (c,f) ¢ holds))
3.2.5 Normalized feature types

As mentioned in Section 2.2, there are two other types of
features in a feature diagram, i.e., optional-alternative and

optional-or features. An optional-alternative feature type
denotes that one or more features in a set of alternative-
features is optional. From a concept instance point of view,
it has the same result as all the features in the alternative
set are optional. An optional-or feature type denotes that
one or more features in a set of or-features is optional. This
is the same as all the feature in the or-feature set are op-
tional, which can be further simplified as each feature in the
or-feature set is optional individually. Thus the optional-or
features is a redundant feature type, which can be replaced
by a set of individual optional features. The above is called
normalization on feature diagrams [1]. Therefore, given any
feature model, it can be represented by its normalized form
that only contains five possible different type of features,
i.e., Mandatory, Optional, Alternative, Or and OptionalAl-
ternative. We define the OptionalAlternative feature type as
follows.

OptionalAlternative : Concept < (Feature X P Feature)

V¢ : Concept; pf : Feature; s : P Feature
¢ OptionalAlternative (pf,s) < pf ¢ s
A ((c,pf) € holds = ((3,f : s ® (c,f) € holds)
V (Vf:se(c,f) ¢ holds)))
A ((c,pf) ¢ holds = (Vf : s ® (c,f) ¢ holds))

The above defines that if the parent feature pf of its
optional-alternative child set s is held by a concept instance,
at most one feature from the set s can be included in the
same concept instance; otherwise none.

3.3 Additional constraints among features

So far, we have provided formal semantics for each com-
ponent in a feature diagram. However, a feature model
not only consists of the relationships presented in a fea-
ture diagram, but also includes additional constraints among
the features that indicates valid combinations in a feature
model. In other words, some features may be dependent
on the presence of other features in a concept instance. We
identified two relations, i.e., Requires and Excludes, to cap-
ture the additional constraints among features as follows.

3.3.1 Requires

Requires defines a relationship that the selection of a feature
in the description of a concept instance requires the selec-
tion of other features. Its formal definition is as follows.

Requires : Concept < (Feature x P Feature)

V¢ : Concept; fi : Feature; s : P Feature o
¢ Requires (f1,s) <
(¢c,f1) € holds = (Vfa : s ® (c,f2) € holds)
The above states that if a feature f; is selected by a con-
cept instance, then all features in the set s must also be se-

lected by the same instance.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

3.3.2 Excludes

Excludes defines a relationship that the selection of a feature
in a concept instance excludes the selection of the others. It
can be defined as follows.

Excludes : Concept < (Feature x P Feature)

V¢ : Concept; fi : Feature; s : P Feature o
¢ Excludes (f1,s) <
(¢,f1) € holds = (Vfz : s ® (c,f2) ¢ holds)

In summary, a feature diagram captures the hierarchical
relationships between a parent feature and its direct child
features. And these relationships can be well described by
the five different types of features, i.e., Mandatory, Op-
tional, Alternative, Or and Optional-Alternative. The two
relations, Requires and Excludes, capture the additional
constraints among any features in the feature model. Such
additional constraints can be dependencies, mutual exclu-
sions and so on, which can be expressed by using the com-
bination of the above two relations.

4 Meta-level theorems & proofs in Z/EVES

Since the formal semantics presented in the previous
Section will serve as a precise and rigorous formal founda-
tion for the graphical feature modeling language, we need
to ensure that it is logically sound and it captures the mean-
ing intended. Therefore, we need to prove its correctness,
by stating desirable properties as theorems and prove them
formally using the Z/EVES theorem prover. Moreover, def-
initions alone are not sufficient enough to reasoning about
feature model properties using Z/EVES efficiently and ef-
fectively. As suggested in [10], it is necessary to provide
“a sufficient stock of theorems” to describe properties and
facts of definitions and to express the relationship of several
definitions so their proof can be well automated.

Hence, for the above two reasons we developed a library
of theorems. To improve structural clarity and reuse, we
made use of the section mechanism of Z/EVES. The formal
semantics is put into a section feature and the library
of theorems is put into a section feature theory, with
section feature as its parent.

Below we show a fragment of the feature_theory sec-
tion. Two simple theorems are shown. The first theorem
ConceptlsFeature is an assumption rule. It states the fact
that any concept is a feature. The second theorem is a
rewrite rule. It states that (c,f) € holds can be rewritten
as f € holds({c}), the relational image of holds applied

to {c}.

Z. Section feature_theory, parents: feature

theorem disabled grule ConceptlsFeature
V¢ : Concept o ¢ € Feature

theorem rule imageHoldsRule
V¢ : Concept; f : Feature
(¢,f) € holds < f € holds(| {c} |

end of Z Section feature_theory

The library was incrementally and iteratively built such
that whenever we encounter a theorem that is not easily
proved, we observe the remaining goal and develop auxil-
iary theorems to facilitate the proof of current goal, after the
auxiliary theorems are themselves proved. A few examples
illustrate the theorem library and how proofs are constructed
as follows.

From the semantics defined in the previous Section, we
know that if a set of features is defined as Alternative and
its parent feature is held by a concept, then exactly one
member of the set can be held by that concept. In order
to prove that the definition of Alternative is correct, we con-
structed a number of theorems stating its various proper-
ties and proved them. For example, the following theorem,
altTranRule3 states that if the parent f of a set of Alternative
features s is held by a concept c, then the intersection of the
s and the set of all the features held by the concept c is a
singleton set containing g, the one feature in s that is held
by c.

theorem altTranRule3
YV : Concept; f,g : Feature; s : P Feature o
(c,f) € holds N (c, (f,s)) € Alternative N
g €sN(cg) € holds =
{g} = sNholds({c})

This theorem is too distant from the definition of
Alternative to be proved directly. Hence, to prove it, we de-
veloped a few auxiliary theorems, two of which are shown
here.

theorem altTranRulel
V¢ : Concept; f : Feature; s : P, Feature o
(c,f) € holds A (c, (f,s)) € Alternative =
(3g:sesnholds({c}) =1{g})

theorem altTranRule2
V¢ : Concept; f : Feature; s : P, Feature o
(c,f) € holds A (c, (f,s)) € Alternative =
#(sNholds(| {c}) =1

prooffaltTranRule2)
simplify;
use altTranRulelc := ¢, f = f, s = s);
prove;
equality substitute s N (holds (| {c}));
use sizeUnit[Feature][x = gl;
reduce;

The first one states that there indeed exists such a feature
that is a member of the intersection of the two sets; and

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

the second states that the cardinality of the intersection is
actually 1. These two theorems are proved and the original
theorem is proved based on them. The proof script of the
second theorem is also shown. Clearly, it uses the result of
theorem altTranRulel to conclude that s N holds({c} |) is
equivalent with {g}, whose cardinality is 1.

In the library, besides theorems about particular defini-
tions in the semantics, there are also theorems about the
relationship between various definitions. For example, the
following theorem involves Mandatory and Alternative fea-
ture types, stating that for two feature sets s1, s, if they
belong to Mandatory and the Alternative respectively for
the same concept ¢ under the same parent feature f, then
their intersection has only one element. Proof of this theo-
rem involved another 4 auxiliary theorems, which describe
some closely-related properties about the current theorem.
For instance, one theorem states that given the above con-
figuration, the intersection of the two sets s; s2 is a subset
of holds({c} |), the features held by c.

theorem manAltRule3
V¢ : Concept; f : Feature; s1,s2 : P, Feature |
(c,f) € holds A (c, (f,s1)) € Mandatory N\
s1Ns2 £ 0O A (¢, (f,s2)) € Alternative o
(3 g : Feature o {g} = s1 N s2)

The library contains 40 theorems, all of which are proved
by Z/EVES!. These 40 theorems serve two purposes:

e They help to prove the correctness of the formal se-
mantics by stating and proving desirable properties
about definitions in the semantics. Proving the theo-
rems give us more confidence that the definitions in
section feature capture the intended meaning.

e They can be used to verify feature models in the future.
As stated earlier, in Z/EVES, simple facts should be
proved with relative ease and automation. These the-
orems can help Z/EVES to assume facts and rewrite
some predicates to a closer form towards the goal. Fu-
ture feature models in Z will themselves be put into
sections with feature_theory as parent or ancestor.

Although Z/EVES itself can be used to verify feature
model, however, as a theorem prover, the verification pro-
cess requires much user interaction and expertise. A more
automated solution is desired. In the next Section, we
demonstrate the use of the Alloy Analyzer for automated
feature model verification.

5 Feature model verification in Alloy

The semantics presented in the previous Sections pro-
vide a formal basis for the automated verification of feature

'A full list of the semantics and theorem library can be found at:
http://www.comp.nus.edu.sg/ 1liyf/feature_semantics/

models, an important task in domain engineering. We pro-
pose to use Alloy Analyzer to perform verification for three
reasons: Firstly, Alloy is a light-weight formal modeling
language based on first-order logic. It can be viewed as a
subset of Z. We can easily encode the first-order semantics
of the feature language in it. Secondly, Alloy Analyzer is a
fully automated reasoning tool that requires no user interac-
tions. Thirdly, it provides simulation and checking func-
tionalities that are good for finding counterexamples and
identifying source of the inconsistencies in the model. In
this Section, we use the feature model for the Key Word in
Context (KWIC) index systems to illustrate the verification
process.

5.1 The Key Word in Context feature model

The KWIC (Key Word in Context) problem was used by
Parnas [8] to contrast different criteria for modular software
decomposition. Since its introduction, the problem has been
used in several studies to illustrate the benefits of different
software architectural styles. We use it as a case study to
demonstrate the effectiveness of our approach in verifying
feature models using Alloy. Parnas formulated the KWIC
problem as follows:

“The KWIC [Key Word in Context] index system accepts
an ordered set of lines; each line is an ordered set of words,
and each word is an ordered set of characters. Any line
may be ‘circularly shifted’ by repeatedly removing the first
word and appending it at the end of the line. The KWIC
index system outputs a list of all circular shifts of all lines
in alphabetical order.”

All the KWIC systems are similar in the sense that they
satisfy the basic requirements as stated above. However,
there are also differences across KWIC systems related to
functional requirements, design decisions and implementa-
tion details. We have identified the following features of
KWIC systems:

e Input/Output - Original lines can be read from a text
file, or from system console, or both. Sorted lines can
be output to a text file, or to system console, or both.

e Circular Shift - Original lines are ‘circularly shifted’
by repeatedly removing the first word and appending
it at the end of the line.

e Shift Processing - Line shifting can be performed on
each line as it is read from the input device or after all
the lines have been read.

o Shift Data - Circular shifts can be stored explicitly (as
a set of strings) or implicitly (as pairs of index and off-
set).

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

KWIC

INPUT/OUTPUT

SHIFT_DATA

CIRCULAR_SHIFT

SHIFT_PROCESSING

L S

0
NOISE_WORDS

AllLines

ARCH_STYLE

Pipe & Filter
Implicit
Invocation
ORDER
' CASE_SENSITIVITY

'
™ Insensitive
[]

ALPHA_SORT

SharedData

Figure 2. A feature model for the Key Word in Context index systems.

e Noise Words - In some KWIC systems, circular shifts
that start with noise words (such as a, the, and, etc.)
should be eliminated.

e Compression - The circular shifts could be stored in
compressed or uncompressed form.

e Alphabet Sort - All circular shifts of all lines are sorted
in alphabetical order.

e Order - The alphabetically sorted lines could be in de-
scendent or ascendant order.

e (Case Sensitivity - Case sensitivity may or may not be
taken into account during sorting lines.

e Architecture Style - As described by Shaw and Gar-
lan [11], the architecture style for a KWIC sys-
tem could be Shared Data (functional decomposition),
ADT (Abstract Data Types), Implicit Invocation, and
Pipe & Filters.

Based on the above feature classification, a feature di-
agram for the KWIC systems can be defined as shown in
Figure 2. We also know from our knowledge of the KWIC
systems that not all the combinations of the features de-
scribed in the above feature diagram (Figure 2) are valid in a
KWIC implementation. Some additional constraints among
the features are described as follows.

e Compression and ShiftData - We compress the circu-
larly shifted lines when ShiftData is explicit (when cir-
cular shifts are stored as a set of strings).

o ShiftProcessing and ArchStyle - The Pipe & Filter ar-
chitectural style is limited to the sequential/batch pro-
cessing, precluding the use of the incremental process-
ing. Thus the decision on ShiftProcessing depends on
the decision on ArchStyle.

e ShiftData and ArchStyle - If the architectural style is
Pipe & Filter, each filter (such as Input, Circular Shift
and Alphabet Sort) has to keep a copy of lines, thus
the circular shifts can be only stored explicitly. So the
decision on ShiftData is also dependent on ArchStyle.

5.2 Encoding and presenting feature models in Al-
loy

As we mentioned earlier, Alloy is a light-weight formal
modeling language based on first-order logic. We can eas-
ily encode the first-order semantics of the feature language
in Alloy and perform automated feature model verification
using the Alloy Analyzer.

module feature/FeatureModel

sig Feature {}

disj sig Concept extends Feature {
holds : set Feature

}{ this in holds }

fun Mandatory (c:Concept, pf:Feature, s:set Feature)
{pf !in s

pf in c.holds => all f£:s | £ in c.holds

pf ! in c.holds => all f£:s | £ !in c.holds

}

Note that we encode the semantic of feature language
in the Alloy module ‘FeatureModel.als’ as above. Users
can reuse this module to construct their Alloy-based feature
models for specific domains (concepts). For example, the
KWIC feature model in Figure 2 can be presented in Alloy
as follows.

open feature/FeatureModel

disj sig KWIC extends Concept{}

static disj sig CircularShift extends Feature({}
static disj sig ShiftData extends Feature{}
fact {

Mandatory (KWIC, KWIC, InputOutput+

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

CircularShift+AlphaSort+ArchStyle) }
fact {
Alternative (KWIC, ArchStyle, SharedData+
ADT+ImplicitInvocation+PipeFilter) }

fact {Requires (KWIC, Compression, Explicit)}
fact {Requires (KWIC, PipeFilter, AllLines) }

o

Note the open command refers to the semantic defini-
tions of feature diagram in the ‘FeatureModel.als’ module.
In Alloy, a fact is a set of predicates that constrains the val-
ues of the sets and relations. In the above example, the
first group of fact statements specify different feature types
in the feature model; while the second group of fact state-
ments specify the additional constraints among features in
the KWIC feature model defined in the previous subsection.

After transforming a feature diagram into its correspond-
ing Alloy-based formal model, we can use the Alloy Ana-
lyzer to check various KWIC feature configurations readily.

5.3 Verifying the KWIC concept instances

We perform automated feature model verification
through the analysis of the Alloy feature model. With the
aid of Alloy Analyzer, we can verify whether a set of fea-
tures selected from a feature model represents a valid in-
stance. For invalid feature combinations, we can identify
the source of unsatisfiability in the original model to point
out where the conflicts are. For a given feature model, we
can show whether such a model is solvable and list valid
feature configurations in the model. We use the KWIC ex-
ample to illustrate the various verification tasks that can be
performed through Alloy as follows.

5.3.1 Checking a valid concept instance

To check whether a concept instance (configuration) is valid
under a feature model in Alloy, we first use the negation
technique to negate the statement as: there is no such in-
stance existed under the feature model. If by running the
Alloy Analyzer a counterexample can be found against this
statement, we can say that the instance is a valid concept
configuration. For example, if we want to check whether the
concept instance listed below is valid, we make an assertion
stating that this configuration does not exist, as follows.

assert Correctnessl {

no c:KWIC | c.holds = c+InputOutput+File+
Console+CircularShift+ShiftData+Implicit+
NoiseWords+ShiftProcessing+EachLine+Order
+AlphaSort+Descendent+CaseSensitivity
+Sensitive+ArchStyle+SharedData

}

check Correctnessl for 25

Note that 25’ is the total number of features in the KWIC
model. The Alloy Analyzer checks whether this assertion
holds by trying to find a counterexample. Alloy outputs ‘So-
lution found’ and displays the instance, which means that
Alloy has found a KWIC instance that has the above con-
figuration. The result of the checking is shown in Figure 3.
Thus we can conclude that our assertion does not hold and
the above configuration is indeed valid.

(KUTC, ShifrProcessing, RachTinetAllTines) }
ltact (Mandatory (KWIC, AlphaSort, Order+CaseSemsitivity) }
iract { Alternative (KWIC, Order, AscendanttDescendent) }

ve (RWIC, Ca
ve (RWIC, Ar

& Clapnason
T archsty
- ascendant
(= i

ensitivity, SensitivelInsensi
tyls, SharedDatatADT+Implic:

iontRiperiltar)

// aqditional constraints among the KWIC features
, Bxplicil) }
AllLines) }
Explicit) }

l// check for a correct concept configuration, if solution found that means instan
ssert Correctnessl (
mo ¢ : KWIC | c.holds — c+InputOutput+Filo+Consolo+Circularfhift+shiftbata+Inply?
)
lcheck Correctnessl for 25

o iwic

(=] o E

holds. nmds\ hnms\ hmds\ m:ms

i \%1w mm% mv
AIEHSM QW) QShavEdDala (Order) (Cq

=
e
— e — T

hn\ds/ hn\ds/ hulds/ Folds foids / holds
_—

\5 Featmmﬁ f{anure eature_0o Feature_03
Daseenemy) ((anasin),) (ShitDat), Caniibrocessing
Sl rocessing

Line 54, Column 20

Figure 3. Checking a valid configuration.

5.3.2 Checking an invalid concept instance

We use the similar method to check an invalid configuration,
such as listed below. We define an assertion as follows.

assert Correctness2{

all c:KWIC | c.holds != c+InputOutput+
File+CircularShift+ShiftData+Implicit+
Compression+ShiftProcessing+AllLines+
AlphaSort+Ascendant+CaseSensitivity+
Insensitive+ArchStyle+Order+PipeFilter

}

check Correctness2 for 25

This time, the Alloy Analyzer could not find a solution.
It outputs ‘No solution found’, which means no counterex-
ample could be found against the assertion statement. Thus
we can conclude that our assertion holds and such a config-
uration for the KWIC feature model is not valid.

Besides discovering the existence of an invalid instance
in a feature model, tracing where the inconsistency arises is
also crucial for a reasoning tool to be practical. Without any
tool support, identifying the cause of the inconsistency in a
feature model could be frustrating. One possible system-
atic technique for finding the causes of inconsistent defini-
tions is to manually remove individual knowledge informa-
tion until any inconsistency is identified. This task can be
lengthy and error prone. In the recent version of Alloy Ana-
lyzer, the ‘unsatisfied core’ functionality of the SAT solvers
was utilized. It supports the core extraction, a new analysis

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

technique that helps to discover over-constraint in declara-
tive models. This functionality can provide us some assis-
tance for tracing the cause of an invalid concept instances
and inconsistencies in a feature model. For example, if we
use the ‘determine unsat core’ function on the above invalid
instance, the output is as follows.

& tloy Anaiycer {
Fue Eal Twis

Blawcas & || unsatoore

T 1 Fomures
|// the KWIC featire dingram & (111 negate

ifact { Nandatory(RWIC, KWIC, InputOutputiCircularShifttAlphaSortd ||| £311 ailnon-
ltact { Or(8WIC. InputUutput, FiletUonsole)}
fact { Mandatory(RWIC, CircularShift, ShiftData+ShiftProcessing) e
ifact { Optional (RNIC, CircularShift, CompressiomtloiseMords)}
Alternative (BRIC, ShilDals, Iuplicit+Dxpliciy)]
AL i i ing, EachlincthllLincs)}
)}

, AlphaSort,

AL 4
Alternative(KNTC, Ca
Alternative (RWIC, Ar.

tivity, Sensitivet
., SharedDatatADT+T

ssert Cor St
no ¢ : KWIC | c.holds = ctInputOutput+FiletConsol etCircularShift |

icheck Correctnessl for 25
|// check for an incorrect concept configuration, if no solution f
lassert Correctness2{ all ¢ : KWIC | c.holds !=

H i £+5hi FtDatatTnplici

2 for 25 ‘,

IO g1 T

Line 45, Column 35

Figure 4. Checking the source of unsatisfia-
bility.

Figure 4 shows how the Alloy Analyzer determines
which facts caused the problem. In the right panel, clauses
highlighted with red color are related to the conflicts in the
model. Arrows were added in the figure to show the cor-
respondence between the clauses in the right panel and the
concepts in the left panel. After examining all red clauses,
we found that the three clauses with arrows attached (in Fig-
ure 4) actually caused the inconsistency. Hence, the lack
of solution was indeed due to the inconsistency between
the assertions (facts) and their original definitions. In this
case, the inconsistency is mainly caused by the contradic-
tion of Compression requiring Explicit, PipeFilter architec-
ture requiring Explicit and alternative features Implicit and
Explicit in the KWIC model, as shown in Figure 4.

5.3.3 Checking solvability of a feature model

It is hard to assume that we could always select a valid con-
figuration from a feature model. Furthermore, we cannot
assume that the feature models that we wrote are always
consistent by design. However, Alloy can verify the validity
of the feature models by generating valid concept instances
one at a time, as follows:

fun findInstance() {some KWIC}
run findInstance for 25

The findInstance predicate instructs the Alloy Analyzer
to find some valid configurations in the KWIC model. By
selecting a large enough scope (e.g., 25 in this example),

we are able to validate the solvability of a feature model
design. As for our KWIC model, a valid configuration is re-
turned as the model is solvable. Alloy finds one solution at
a time. Other possible solutions (valid configurations) can
be explored through the ‘next’ function in Alloy. Solutions
can be viewed visually through the visualization function
provided by the Alloy Analyzer. In addition, if a feature
model is inconsistent by design, we can use the ‘unsatisfied
core’ functionality to determine where the source of incon-
sistency is, as illustrated in the previous subsection.

5.4 Semantic equivalence of feature models

Two feature models can be semantically equivalent even
though they have different appearances in diagram. By ‘se-
mantically equivalent’, we mean that all valid feature in-
stances (configurations) derived from one feature model can
also be derived from the other model, and vice versa.

Constraint: F3 and F4 require F2

Figure 5. Equivalent feature models.

Considering the two models shown in Figure 5, we can
see that these two feature models share the same feature
configurations (C, F1), (C, F2), (C, F2, F3), (C, F2, F4),
and (C, F2, F3, F4). Thus they are semantically equivalent.
Note that the feature model on the right has an additional
constraint as ‘F3 and F4 require F2’. To prove the equiva-
lence, we formalize these two feature models in Alloy and
make an assertion as follows:

disj sig C extends Concept{}
static disj sig F1 extends Feature{}

assert Equivalent(
(Alternative (C, C, F1+F2) &&
Optional (C, F2, F3+F4)) <=>
(Alternative (C, C, F1+F2) &&
Optional (C, C, F3+F4)&&
Requires (C, F3, F2) &&
Requires (C, F4, F2))

}

check Equivalent for 5

We state in the assertion Equivalent that the two feature
models are semantically equivalent. Alloy cannot find a
counter example against the statement. Thus, it verifies that
our assertion is true, that the above two feature models are
indeed semantically equivalent at the conceptual level.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

6 Conclusions

In this paper, we presented an approach to formalizing
and verifying feature models using formal reasoning tech-
niques. The contributions of the paper lie in the follow-
ing three main categories. Firstly, we provided a formal se-
mantics for the feature model language using the first-order
logic in Z. We specified formal definitions for the five fea-
ture types and two additional relations for feature modeling.

Secondly, we validated the correctness of the defined
semantics using the Z/EVES theorem prover. A library
of proof rules (theorems) are developed for supporting the
meta-level reasoning for the feature modeling language.
Z/EVES is an interactive theorem prover that supports the Z
language, in which is the formal semantics built. By stating
properties about the semantics formally in first-order logic
and proving them in Z/EVES, we can ensure that it captures
the intended meaning. Thus the defined feature semantics
provide a precise and rigorous formal basis for the feature
modeling process. It is based on such a formal semantics
that automated formal reasoning and verification of feature
models can be made possible.

Thirdly, we demonstrated that by encoding the semantics
in Alloy, Alloy Analyzer can be used to verify the consis-
tency of a given feature model, with the ability of gener-
ating counterexamples in the case of inconsistencies. We
chose Alloy Analyzer to perform feature model verifica-
tion for three reasons: firstly, Alloy is based on first-order
logic, which makes the encoding straightforward; secondly,
the verification process is fully automated, which frees the
users from the tedious, error-prone manual reasoning tasks;
thirdly, in case of an inconsistency in the model, Alloy An-
alyzer can generate counterexamples and ‘unsatisfied core’,
which helps to identify the source of the inconsistency. A
case study of the Key Word in Context (KWIC) index sys-
tems feature model was presented to illustrate the verifica-
tions process. We showed that the valid and invalid con-
figurations of the KWIC feature model can be verified, the
solvability of a feature model can be checked and the source
of inconsistencies in a feature model can be identified. Fur-
thermore, we also demonstrated that two different feature
models can be checked for semantic equivalence at a con-
ceptual level. In summary, our approach provided a variety
of automated feature model verification facilities.

In the future, we plan to develop an integrated feature
modeling environment that supports the construction of
graphical feature models, the exchange of feature models
using XML, and the transformation from the XML format
into their corresponding Alloy feature models for auto-
mated verification.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

[11]

(12]

[13]

[14]

[15]

K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, MA.,
2000.

M. Griss, J. Favaro, and M. d’ Alessandro. Integrating feature
modeling with the RSEB. In The Fifth International Con-
ference on Software Reuse, pages 76-85, Vancouver, BC,
Canada, 1998.

D. Jackson. Micromodels of software: Lightweight mod-
elling and analysis with Alloy. Website, 2002. http:
//alloy.mit.edu/reference-manual .pdf.

D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Al-
loy Constraint Analyzer. In 22nd International Conference
on Software Engineering, pages 730733, Limerick, Ireland,
2000. ACM Press.

K. C. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peter-
son. Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90TR-21, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh,
PA, November 1990.

K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures. Annals of Software En-
gineering, 5:143-168, 1998.

K. C. Kang, J. Lee, and P. Donohoe. Feature-Oriented Prod-
uct Line Engineering. IEEE Software, 9:58-65, 2002.

D. L. Parnas. On the Criteria to be Used in Decompos-
ing Systems into Modules. Communications of the ACM,
15:1053-1058, December 1972.

M. Saaltink. The Z/EVES system. In J. P. Bowen, M. G.
Hinchey, and D. Till, editors, ZUM’97: Z Formal Specifica-
tion Notation, volume 1212 of Lecture Notes in Computer
Science, pages 72-85. Springer-Verlag, 1997.

M. Saaltink. The Z/EVES 2.0 User’s Guide. Technical Re-
port TR-99-5493-06a, ORA Canada, One Nicholas Street,
Suite 1208 - Ottawa, Ontario KIN 7B7 - CANADA, Oct.
1999.

M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

M. Simos and et al. Software technology for adaptable
reliable system (STARS) organization domain modeling
(ODM) guidebook version 2.0. Technical Report STARS-
VC-A025/001/00, Lockheed Martin Tactical Defense Sys-
tems, Manassas, VA, 1996.

C. Turner, A. Fuggetta, L. Lavazza, and A. Wolf. A Concep-
tual Basis for Feature Engineering. Journal of Systems and
Software, 49:3-15, 1999.

D. Weiss and C. T. R. Lai. Software Product-Line Engi-
neering: A Family-Based Software Development Process.
Addison-Wesley, 1999.

J. Woodcock and J. Davies. Using Z: Specification, Refine-

ment, and Proof. International Series in Computer Science.
Prentice-Hall, 1996.

Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’05)
0-7695-2284-X/05 $20.00 © 2005 IEEE

