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Abstract. The dynamics and characteristics behind intelligent cog-
nitive systems lie at the heart of understanding, and devising, suc-
cessful solutions to a variety of multiagent problems. Despite the
extant literature on collective intelligence, important questions like
“how does the effectiveness of a collective compare to its isolated
members?” and “are there some general rules or properties shaping
the spread of intelligence across various cognitive systems and envi-
ronments?” remain somewhat of a mystery. In this paper we develop
the idea of collective intelligence by giving some insight into a range
of factors hindering and influencing the effectiveness of interactive
cognitive systems. We measure the influence of each examined fac-
tor on intelligence independently, and empirically show that collec-
tive intelligence is a function of them all simultaneously. We further
investigate how the organisational structure of equally sized groups
shapes their effectiveness. The outcome is fundamental to the under-
standing and prediction of the collective performance of multiagent
systems, and for quantifying the emergence of intelligence over dif-
ferent environmental settings.

1 INTRODUCTION

Collective intelligence emerges in all sorts of cognitive systems, from
natural (e.g., animal and human) to artificial (e.g., software agents
and robotics), by cause of diverse social organizations (human soci-
eties, efficient markets, social insect colonies, group collaborations
via the web, etc.). It seems that the complex structure and operation
of these systems hinder our understanding of the dynamics and char-
acteristics behind intelligent collectives, which are fundamental for
devising successful models and solutions to a variety of multiagent
problems. Despite the extant literature on collective intelligence (CI),
the questions consisting of, “how does the effectiveness of a collec-
tive compare to its isolated members?” and, more importantly, “are
there some general rules shaping the spread of intelligence which can
be perceived across different cognitive systems and environments?”
remain somewhat of a mystery. Now imagine we had a series of per-
formance tests over which we can administer any type of cognitive
system, could we then disclose any patterns or factors at all, explain-
ing the emergence of intelligence among all of these systems? In
this paper, we give insight into the main components and character-
istics of collective intelligence, by applying formal tests for the pur-
pose of measuring and quantifying the influence of several factors on
the collective behaviour and the accuracy of a group of agents, and
analysing how the results compare to individual agent scenarios. We
attempt to uncover some of the dynamics and circumstances behind

1 Faculty of IT, Clayton, Monash University, Australia, email:
{nader.chmait,david.dowe,yuanfang.li,david.green}@monash.edu
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intelligent collectives in general, hoping this would reinforce the un-
derstanding and prediction of the behaviour of groups, by bringing
some new results into the AI community.

2 BACKGROUND
Earlier studies [13, 43] have revealed that a collective intelligence
factor can emerge in human groups. We know that collectives can
outperform individuals, and further that their performance is con-
trolled by one or more of a) their organisational or network struc-
ture [29, 3, 30], b) the information aggregation details among their
individuals [1], and c) the diversity between their members [20, 17].
Crowd-computing and crowd-sourcing [32, 24, 2] methodologies are
excellent examples of CI that harness the wisdom of the crowd [37].

After carefully looking at the literature on collective intelligence
including the abovementioned works and others including [28, 42,
38, 8, 41], we filter a set of factors or features from these works -
that are not coupled to one particular cognitive system, problem or
environment - which are intimately relevant to the performance of
collectives, some of which are the number of members in a group,
the communication or interaction protocol, as well as the difficulty
of the environment. Curiously, there are some other factors which
are often relatively neglected, such as the reasoning/learning speed
of the agents and the interaction time of the collective as a whole.
These features, in addition to some hypothetical combinations of
them (grouped in ellipses) are depicted in Figure 1. It is not known in
which circumstances and how much each these features individually
influences the intelligence of the group, let alone the simultaneous
influence of multiple features combined, which is what we attempt
to quantitatively investigate in this paper.

Collective 
intelligence

Environment

Space uncertainty
Algorithmic 
complexity

Individual 
members

Individual 
intelligence

Speed

Cooperation

Communication 
protocol

Number of agents 
in a group

Interaction time

Figure 1: Factors and features relevant to the notion of collective in-
telligence (CI) perceived throughout various cognitive systems, and
some hypothetical relationships between them grouped in ellipses.

The next section introduces our methodology for assessing indi-



vidual and collective agent performances. The agent behaviours to
be evaluated and their communication and interaction protocols are
described in Sections 4 and 5 respectively. After we present our ex-
perimental setup in Section 6, we discuss and analyse our results
from these experiments (in Sections 7 and 8) by making a series of
observations on how the intelligence of the evaluated agents was in-
fluenced by a collection of factors, and draw some interesting con-
clusions connecting the research outcomes. We conclude in Section 9
by a brief summary and give some directions for future work.

3 EVALUATING INTELLIGENCE
To achieve our aims, we need a dynamic environment in which we
can assess the influence of the factors appearing in Figure 1 on the
performance of various types of cognitive systems over different en-
vironmental settings. While many environments could be appropri-
ate, we have chosen for our purpose the Anytime Universal Intelli-
gence Test (ANYNT) [18], which is derived from formal information
theoretic backgrounds that have been practically used to evaluate di-
verse kinds of entities [21, 5, 6, 22], and was proven [18] to be an
unbiased, dynamic setting which can be stopped at anytime.

3.1 The Anytime Universal Intelligence Test
We introduce the Λ∗ (Lambda Star) environment class that focuses
on a restricted - but important - set of tasks in AI. This environment
extends the Λ environment class [18, Sec. 6][23] which implements
the theory behind the Anytime Universal Intelligence Test [18]. The
general idea is to evaluate an agent that can perform a set of actions,
by placing it in a grid of cells with two special objects, Good (⊕) and
Evil (	), travelling in the space using movement patterns of measur-
able complexities. Rewards are defined as a function of the position
of the evaluated agent with respect to the positions of ⊕ and 	.

3.1.1 Structure of the test

We generate an environment space as an m-by-n grid-world popu-
lated with objects from Ω = {π1, π2, . . . , πx,⊕,	}, the finite set
of objects. The set of evaluated agents Π ⊆ Ω is {π1, π2, . . . , πx}.
Each element in Ω can have actions from a finite set of actions
A ={left, right, up, down, up-left, up-right, down-left, down-right,
stay}. All objects can share the same cell at the same time except for
⊕ and	 where in this case, one of them is randomly chosen to move
to the intended cell while the other one keeps its old position. In the
context of the agent-environment framework [25], a test episode con-
sisting of a series of ϑ iterations is modelled as follows:

1. the environment space is first initialised to an m-by-n toroidal
grid-world, and populated with a subset of evaluated agents from
Π ⊆ Ω, and the two special objects ⊕ and 	,

2. the environment sends to each agent a description of its range of 1
Moore neighbour cells [16, 40] and their contents, the rewards in
these cells, as an observation,

3. the agents (communicate/interact and) respond to the observations
by performing an action in A, and the special objects perform the
next action in their movement pattern,

4. the environment then returns a reward to each evaluated agent
based on its position (distance) with respect to the locations of
the special objects,

5. this process is repeated again from point #2 until a test episode is
completed.

We are using a toroidal grid space in the sense that moving off one
border makes an agent appear on the opposite one. Consequently, the
distance between two agents is calculated using the surpassing rule
(toroidal distance) such that, in a 5-by-5 grid space for example, the
distance between cell (1, 3) and (5, 3) is equal to 1 cell.
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Figure 2: A diagrammatic representation of a sample 10-by-10 Λ∗

environment, used to implement the theory behind the Anytime Uni-
versal Intelligence Test [18].

3.1.2 Rewarding function

The environment sends a reward to each evaluated agent from the set
of rewardsR ⊆ Q where −1.0 ≤ R ≤ 1.0.

Let d(a, b) denote the (toroidal) distance between two objects a
and b. Given an agent πj , its positive reward at one test iteration is
calculated as: 1/(d(πj ,⊕) + 1) if d(πj ,⊕) < 2, or 0 otherwise.
Likewise its negative reward at that iterations is:−1/(d(πj ,	) + 1)
if d(πj ,	) < 2, or 0 otherwise. Its total reward, rij at iteration i, is
the sum of its positive and negative rewards at that iteration.

3.2 Algorithmic Complexity
We regard the Kolmogorov complexity [27] of the movement pat-
terns of the special objects as a measure of the algorithmic com-
plexity K(µ) of the environment µ in which they operate. For in-
stance, a Λ∗ environment of high Kolmogorov complexity is suf-
ficiently rich and structured to generate complicated (special object)
patterns/sequences of seeming randomness. We measure the Lempel-
Ziv complexity [26] of the movement patterns as an approximation
to K(µ) as suggested in [26, 14]. Note that, at one test episode, the
movement patterns of ⊕ and 	 are different but (algorithmically)
equally complex. The recurrent segment of the movement pattern is
at least of length one and at most bϑ/2c, cyclically repeated until the
final iteration (ϑ) of the test.

3.3 Search Space Complexity
We measure the search space complexity H(µ) as the amount of
uncertainty in µ, expressed by Shannon’s entropy [35]. Let N be
the set of all possible states of an environment µ such that a state
sµ, is the set holding the current positions of the special objects
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{⊕,	} in the m-by-n space. Thus the number of states |N | in-
creases with the increase in the space dimensions m and n, and it
is equal to the number of permutation m×nP2 = (m×n)!

(m×n−2)!
. The

entropy is maximal at the beginning of the test as, from an agent’s
perspective, there is complete uncertainty about the current state of
µ. Therefore p(sµ) follows a uniform distribution and is equal to
1/|N |. Using log2 as a base for our calculations, we end up with:
H(µ) = −

∑
sµ∈N p(sµ) log2 p(sµ) = log2 |N | bits.

Despite the test’s being originally designed to return a general
measure of intelligence, we do not make this assumption in this pa-
per. Nevertheless, we appraise the test, at a minimum, as an accurate
measure of the testee’s ability of performing over a class of: inductive
inference, compression and search problems, all of which are partic-
ularly related to intelligence [9, 10, 11, 19, 34, 12]. Note, however,
that we will use the term intelligence to describe the effectiveness or
accuracy of an evaluated agent over this test. It is of great importance
that the illustrative class of problems assessed by the test is shared
across, and applies to, various types of cognitive systems since this
meets our criteria for the evaluation, as raised in the introduction.

4 AGENT TYPES AND BEHAVIOURS

We evaluated agents of five different behaviours, both in isolation
and collectively in (cooperative) groups over the Λ∗ environment. A
description of these agents is given in the following paragraphs.

Local search agents: given an agent πj , we denote by cij and
r(cij) the cell where πj is located at iteration i, and the reward in
this cell respectively. Let N i

j and R(N i
j) denote respectively the set

of range of 1 Moore neighbour cells [16, 40] of agent πj (including
cij) at iteration i, and the reward values in these cells. R(cij , a) is a
function that returns the reward agent πj gets after performing action
a ∈ A when it is in cell cij . The behaviour of local search agents is
defined as follows: aij ← arg max

a∈A
R(cij , a). If all actions return an

equivalent reward, then a random action in A is selected.
Reinforcement learning agents: two of the most frequently used

RL (reinforcement learning) behaviours are Q-learning [39] and
Sarsa [33, 39]. In the Q-learning behaviour, agents learn using an
action-quality function in order to find the best action-selection pol-
icy for a given MDP (Markov Decision Process). Alternatively, Sarsa
agents learn a MDP policy using an on-policy temporal-difference
learning technique. Before learning starts, we initialise the elements
of the Q-table to 2.0 so that the quality of a state-action pair,
Q← S ×A, is always positive despite that rewards fall in the range
[−1.0, 1.0]. Because the testing environment is dynamic, each state
in S was designated to be the unique combination of one cell posi-
tion c at one iteration i of the test, leading to a total number of states3

|S| = (m×n)ϑ. Before evaluation, we trained the RL agents for 100
rounds previous to each episode using both a discount factor γ and a
learning rate α of 0.30, selected after fine-tuning these parameters on
a single agent scenario to reach a general (average) optimal payoff.
Our agents learn offline, and thus cease to update their Q-table once
their training is complete.

Oracle agents: an oracle agent knows the future movements of
⊕, the Good special object. At each step i of an episode this agent
approaches the subsequent i + 1 cell destination of ⊕ seeking max-
imum payoff. However, if ⊕ has a constant movement pattern (e.g.,
moves constantly to the right) pushing it away from the oracle, then
the oracle will move in the opposite direction in order to intercept

3 Recall that m and n refer to the grid space dimensions, while ϑ is the
number of iterations in a single test episode.

⊕ in the upcoming test steps. Once it intercepts ⊕, it then continues
operating using its normal behaviour.

Random agents: a random agent randomly choses an action from
the finite set of actionsA at each iteration until the end of an episode.

The scores of the random and oracle agents will be used as a base-
line for our experiments, where a random agent is used as a lower
bound on performance while the oracle is used as an upper bound.

5 COMMUNICATION PROTOCOLS
The agents were also evaluated collectively in groups. A description
of the interaction and communication protocols used in these collec-
tives are given below.

Stigmergy or indirect communication: we propose a simple al-
gorithm for enabling communication between local search agents us-
ing stigmergy [15] (indirect communication). For instance, we let the
agents induce fake rewards in the environment, thus indirectly inform
neighbour agents about the proximity of the special objects. Note
that fake rewards will not affect the score (real reward payoff) of the
agents. Let R̂(N i

j) denote the set of fake rewards in the neighbour
cells of agent πj (including cij) at iteration i, and R̂(cij , a) is a func-
tion returning the fake reward agent πj gets after performing action
a ∈ A when it is in cell cij at iteration i. Fake rewards are induced
in the environment according to Algorithm 1. Each agent proceeds

Algorithm 1 Stigmergic or indirect communication: fake reward
generation over one iteration i of the test.

1: Input: Π (set of evaluated agents), 0 < γ < 1 (fake reward discounting
factor), a test iteration i.

2: Initialize: ∀πj ∈ Π: R̂(N i
j)← 0.0.

3: Begin
4: for j← 1 to |Π| do . loop over agents
5: rmax ← maxR(N i

j)

6: rmin ← minR(N i
j)

7: r̂ ← γ(rmax + rmin) . average expected reward
8: R̂(N i

j)← R(N i
j) + r̂

9: end for
10: End

by selecting an action by relying on fake rewards this time instead of
the real rewards, as follows: aij ← arg max

a∈A
R̂(cij , a). If all actions

are equally rewarding, then a random action is selected. Thereupon,
we expect local search agents using stigmergy to form non-strategic
coalitions after a few iterations of the test as a result of tracing the
most elevated fake rewards in the environment.

Implicit leadership through auctions and bidding: in this co-
operative setting, local search agents go into a single dimensional
English auction [31] at each iteration i, and bid on the right to lead
the other agents in their group by appointing one target cell to be ap-
proached. At each iteration, each auctioneer (agent) generates a value
of the maximum reward existing in its neighbourhood, which is then
used as its bidding “money” for the auction. The richest agent4 wins
the auction visibly to all the other agents. It then selects the target
cell to be approached by all other agents in the collective. This bid-
ding behaviour is described in Algorithm 2 in which nij ∈ N i

j and
r(nij) denote one of the Moore neighbour cells of agent πj (without
excluding cij) at iteration i, and the reward in this cell respectively.

Imitating super-solver agents: a group of isolated local search
agents is put in the same space with one (unevaluated) oracle agent.

4 If more than one agent are equally rich then, for the sake of simplicity, the
last one to participate in the auction wins.
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Algorithm 2 Single dimensional English auction at one iteration i of
the test.

1: Input: Π (set of evaluated agents), −1.0 <bid< 1.0, a test iteration i.
2: Initialize: bid← −1.0
3: Begin
4: for j← 1 to |Π| do . loop over agents
5: money ← maxR(N i

j)

6: if money >= bid then
7: bid← money
8: target← arg max

nij∈N
i
j

r(nij). set the target to the neighbour

cell nij holding the highest reward r(nij) at iteration i
9: end if

10: end for
11: End

Local search agents imitate the oracle by following it into the same
cell only when it is in their visibility range (neighbourhood) other-
wise, they operate using their normal behaviour.

Wisdom of the crowd (WOC) by information aggregation:
where the collective opinion of the evaluated agents is aggregated
from the opinions of all the members of the collective.

In the case of reinforcement learning collectives, we let their mem-
bers share and update a common Q-table, thus making them all learn
and coordinate simultaneously. We evaluated both Q-learning and
Sarsa collectives independently.

In the case of local search collectives, the observations of all
agents in the collective are aggregated into one global observation
(and rewards from these observations are averaged in the case of
overlap). Then, each member proceeds by selecting the action max-
imising its reward in line with the global observation.

6 EXPERIMENTAL SETUP
Each experiment consists of 1000 episodes (runs) of the test, each
consisting of a number of iterations equal to 50. In each episode,
agents are administered over a different task with complexity K(µ),
such thatK(µ) ∈ [2, 23], where aK(µ) of 23 corresponds to a, more
or less, complex pattern prediction or recognition task. Moreover, in
each episode, the collectives are re-initialised with different spatial
(network) arrangements between their members.

Local search agents were evaluated in isolation as well as collec-
tively using four communication or interaction protocols: stigmergy,
implicit leadership, imitation (of the oracle agent) and harnessing
the WOC through information aggregation. Likewise, reinforcement
learning agents were evaluated in isolation and collectively by har-
nessing the wisdom of the crowd (WOC) through sharing and updat-
ing a common Q-table.

Test experiments were conducted over different search space
uncertainties H(µ), and the (intelligence) scores (in the range
[−1.0, 1.0]) of the evaluated agents/collectives averaged over the
1000 episodes were recorded. The score of the collective is calcu-
lated as the mean of the scores of its members. For instance, the met-
ric of (individual agent) universal intelligence defined in [18, Defi-
nition 10] was extended into a collective intelligence metric (Defini-
tion 2) returning an average reward accumulation per-agent measure
of success (Definition 1) for a group of agents Π, over a selection of
Λ∗ environments.

Definition 1 Given a Λ∗ environment µ and a set of (isolated or in-
teractive) agents Π = {π1, π2, . . . , πn} to be evaluated, the (av-
erage per-agent per-iteration) reward R̃Π,µ,ϑ of Π over one test

episode of ϑ iterations is calculated as: R̃Π,µ,ϑ =
∑n
j=1

∑ϑ
i=1 r

i
j

nϑ
.

Definition 2 The (collective) intelligence of a set of agents Π is cal-
culated as: 1

ω

∑
µ∈L R̃Π,µ,ϑ, where L is a set of ω environments

{µ1, µ2, . . . , µω} such that ∀µt, µq ∈ L : H(µt) = H(µq), and
∀µi ∈ L,K(µi) is extracted from a range of (special object move-
ment patterns with) algorithmic complexities in ]1,Kmax].

7 RESULTS AND DISCUSSION

Table 1: Intelligence test scores for collectives of 10 agents across dif-
ferent environment uncertainties H(µ)∈ [13.2, 19.6] bits, evaluated
for 50 test-iterations. A plot of these results is also found in Figure 3.

H(µ) value in bits 13.2 15.6 17.2 18.5 19.6
1 Random agent -0.00079 0.00048 0.00008 -0.00013 0.00002

2 Local search (LS)
agent 0.3365 0.1696 0.0936 0.0575 0.0423

3 LS collective using
stigmergy 0.4025 0.2555 0.1431 0.0829 0.0579

4 LS collective
harnessing the WOC 0.3828 0.3475 0.3118 0.2601 0.2110

5 LS collective using
implicit leadership 0.3744 0.2842 0.2143 0.1722 0.1438

6 LS collective using
imitation

0.5729 0.2880 0.1666 0.1022 0.0731
7 Q-learning agent 0.2516 0.0950 0.0484 0.0301 0.0207

8 Q-learning collective
harnessing the WOC 0.4030 0.1832 0.0870 0.0482 0.0309

9 Sarsa agent 0.2708 0.1007 0.0501 0.0308 0.0228

10 Sarsa collective
harnessing the WOC 0.4511 0.2042 0.1010 0.0563 0.0348

11 Oracle agent 0.8207 0.7905 0.7619 0.7339 0.7059
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Figure 3: A plot of the test scores appearing in Table 1.

Sample results from the previously-mentioned experiments run in
different environment (search space) uncertaintiesH(µ) are listed in
Table 1 for isolated agents and collectives Π, each having a number
of agents or members |Π| = 10 agents. The standard deviation of the
test scores σ is less than 0.001 between identical experiments.

7.1 Collectives outperform individuals
Results in Figure 3 clearly show (in at least three separate cases)
that cooperative or interactive individuals can be more effective than
isolated ones. (From Definition 1, the score of the whole is more than
the sum of its parts.) This is consistent with earlier results (e.g., [29,
1]) for obvious reasons owing to diffusion of information (synergy)
leading to the reduction of uncertainty inside the collective.

Yet the question remains, what are the dynamics which have led to
such results? We recall our main aims, which consist of investigating
and quantifying the influence of a list of factors on (individual and
collective) intelligence. We address each of these factors in detail in
the remainder of this paper.
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7.2 Communication and interaction protocol
We observe in Figure 3 that the effectiveness of the (same selec-

tion of) agents is highly dependent on the collective decision-making
technique or the communication protocol used to aggregate the infor-
mation received from these agents. For instance, adopting auctions
in local search collectives to claim leadership can be more effective
than using stigmergy over some settings. Figure 3 also shows that,
under certain circumstances, introducing heterogeneity in a group of
local search agents by imitating a (super-solver) oracle agent leads
to more effective coalitions that outperform their homogeneous (and
isolated) peers by aggregating new information into the collective.
However, the comparison between local search collectives is rather
more complicated as their intelligence measures seem to further de-
pend on the uncertainty of the testing environment, and not only on
the interaction protocol. We also observe that harnessing the wisdom
of the crowd by aggregating the observations of local search agents is
very effective over highly uncertain environments, yet not exception-
ally efficient in the opposite situation. The latter protocol seems to be
very robust (in comparison to others) with respect to the changes in
the uncertainty of the search space. A more thorough analysis on the
efficiency of the examined communication protocols over different
problem uncertainties is addressed in the following subsection.

In the case of RL agents, we observe that agents of different types
(Q-learning and Sarsa) using the same cooperation technique to ag-
gregate their information have achieved different scores. Sarsa agents
outperform Q-learning agents up to about a similar extent both in co-
operative and isolated settings. This indicates that the collective in-
telligence of the group also depends on, and is correlated with, the
individual intelligence (or the type) of the agents in the group.

Furthermore, despite the broad differences in the interaction proto-
cols and the wide range of task complexities, collective intelligence
manifested across the various collectives, showing that CI can also
emerge in a non-human context or environment, thus reinforcing and
adding to the conclusions of [13] conclusions.

7.3 Uncertainty in the environment
Figure 3 shows that the performance of the evaluated agents de-

creases with the increase in uncertainty5 H(µ), in accordance with
former tests [22] that have been applied on humans and artificial
agents. Moreover, the gap between the scores of the isolated and co-
operative agents varies in view of the uncertainty in the environment,
but the relationship between both variables cannot be easily grasped
from the figure.

We wish to measure the variation in the weight of the cooperative
agents’ scores to their score in the isolated setting, across different
environment uncertainties. Therefore, we define the coefficient of ef-
fectiveness θ = α/β, as the ratio of the score of a set of agents
Π working in some cooperative scenario (α = score(Πcoop)), to
its score in the isolated scenario

(
β = score(Πisolated)

)
. We cal-

culated θ for the different agent types across different uncertainties
and plotted the results in Figure 4.

Figure 4a shows that the θ values corresponding to local search
groups using imitation (θimitation) and those relying on stigmergy
(θstigmergy) are more or less steady across the different H(µ)
values, implying that each of these protocols is approximately
equally advantageous over different problem uncertainties. In addi-
tion, θimitation > θstigmergy over the selected uncertainties, and
thus collectives relying on imitation are more effective than those

5 Except for random agents which always score around zero.
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Figure 4: Shift in effectiveness θ for local search and RL agents over
different environment uncertainties in bits.

using stigmergy. The observations are more interesting for collec-
tives using auctions to claim leadership. For instance, in environ-
ments of uncertainties lower than 16 bits, imitating a smart agent is
more advantageous than following a leader. Whereas, the inverse is
true for environments of higher uncertainties. The effectiveness of
local search agents using auctions significantly increases to become
much higher than that of the same group of agents imitating an ora-
cle. Similar results are observed for local search collectives harness-
ing the wisdom of the crowd. We conclude that relying on the best
(super-solver) agent in the groups does not guarantee an optimal per-
formance. This is somewhat consistent with [20]’s claims re diversity
vs. ability, even though the intuitions here are different. These results
have a fundamental impact on the choice of the communication pro-
tocol to be used in order to aggregate the information received from
a group of agents, especially over problems where the search com-
plexity can be estimated in advance.

For RL agents, Figure 4b shows an overall similar shift in ef-
fectiveness for both Q-learning and Sarsa collectives. Their perfor-
mances significantly increase over isolated agents to reach a peak
around H(µ) = 16 bits, but then start to drop down over higher un-
certainties. This illustrates the fact that cooperative RL collectives are
most advantageous over environments which are somewhat highly-
uncertain for isolated RL agents to be efficient, yet not too uncer-
tain for them (the cooperative collectives) to be considerably effi-
cient. In other words, collective intelligence might only be slightly
perceived in groups operating in very simple environments (or prob-
lems) where individuals could perform relatively well, or in those
too difficult (broad) to be explored within a limited interaction time,
given a limited number of members in the group. Thus, in order to
understand the global picture of collective behaviour and its dynam-
ics, it is crucial to look into the latter two factors (interaction time
and number of members) and measure their effects, if any exist, on
group intelligence.

5



Local search
(LS) agent

LS collective
using stigmergy

LS collective
harnessing
the WOC

LS collective
using implicit
leadership

LS collective
using imitation

Q-learning
agent

Q-learning collective
harnessing
the WOC

Sarsa
agent

Sarsa collective
harnessing
the WOC

Sc
or

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 agents
10 agents
20 agents
30 agents
40 agents
50 agents
60 agents
70 agents

Figure 5: Intelligence scores recorded across different numbers of
agents 5 ≤ |Π| ≤ 70, in 17.8-bitH(µ) environments.

7.4 Number of agents in a group

In all our previous experiments the number of evaluated agents in
each collective was set to 10. Whereas, Figure 5 illustrates the scores
of the evaluated collectives across different number of agents vary-
ing between 5 and 70. The general picture shows that local search
collectives relying on stigmergy and auctions gradually improve in
performance as more agents are added into the collective. This is
not the case for collectives relying on imitation, which only show
a shallow variation in score. In fact, local search agents relying on
imitation performed better than those using auctions when |Π| was
set to 5 agents. However, the opposite was true when we increased
the number of agents to 10 and higher. This illustrates that, when
the group is small in number, relying on a super-solver agent might
be more advantageous than interacting between the individual mem-
bers, however, as the group gets larger, more information is added
into the collective and the expertise of a single oracle becomes rudi-
mentary in comparison to the aggregated experiences (synergy) from
individual members. Moreover, we observe that local search collec-
tives harnessing the WOC improve faster in performance than those
following a leadership. Nonetheless, when the number of agents gets
higher the performances of these two collectives get closer to one
another.

We also observe that, increasing the number of local search agents
is more effective and has greater influence on the scores for agents
relying on auctions than those using stigmergy. On another hand,
the increase in efficiency is slightly non-linear to the number of
agents introduced. For instance, the main improvements in scores are
more concentrated at the early introductions of agents. Afterwards
the scores continue to rise, but less and less significantly.

Similar observations illustrate that the effectiveness of RL collec-
tives harnessing the WOC improves as we increment the number of
agents. Moreover, Sarsa collectives seem to be slightly more effi-
cient than Q-learning collectives as new agents are introduced into
the group. The key issue in this experiment is that, collective intelli-
gence cannot be considered independently of the number of members
in the group. Instead, it is a function of - so far - at least three factors,
each having a different influence that we have measured, and bearing
distinctive properties of which we have identified some.

7.5 Time and intelligence

In this paragraph we address the relevance of time to intelligence,
which is often ignored in the assessment of collective intelligence.
Figure 6 shows the variations in the intelligence scores as we extend
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Figure 6: Variations in the agents’ intelligence scores as we extend
the evaluation time (number of iterations) of the test.

the interaction time (number of iterations or interaction steps) of the
test. We observe that some scores incline to converge as more time
is given to the members to perform on the test. Figure 6a shows that
the advantage of cooperative local search agent groups over isolated
agents is higher at the early stages of the test in the case of agents
using auctions to claim leadership. Afterwards, the gap in perfor-
mance slowly decreases with time until iteration number 600. On the
contrary, the gap between the scores of local search agents imitat-
ing an oracle and their isolated peers grows as we let the test run,
implying that local search agents relying on imitation require longer
periods of time to reach their best performance. We have already
shown in Figure 3 that over some uncertainties, local search agents
relying on auctions outperform those imitating an oracle, which is
again consistent with the results in Figure 6a (up to iteration 300).
However, this experiment also suggests that imitating a super-solver
is highly rewarding over time, leading to better-scoring collectives
than when using leadership through auctions. These results illustrate
how diverse social organisations between the members of the collec-
tive determine its performance over time. For instance, a (dynamic)
leadership scheme or organisation seems to be more rewarding than
a simple flat hierarchy relying on stigmergic communication given a
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limited interaction time with the environment.
Moreover, the general picture shows that a local search collective

harnessing the WOC is most advantageous over isolated agents (and
other collectives) mainly before the 300th iterations, at which point
its performance begins to converge slowly.

In the case of RL agents (Figure 6b), both isolated agents and col-
lectives improve in performance with time, keeping an overall steady
relationship between the differences in their scores. This raises an-
other concern re the intelligence of artificial agents. It is intriguing
as to what ideally counts as more intelligent, a fast re-active agent
with a humble performance, or a slow one with an exceptional per-
formance over an extended period of time? Should we consider the
potential intelligence of an agent instead? To understand the impor-
tance of time in measuring intelligence, we compare the scores of
RL and local search collectives over 13.2-bitH(µ) environments af-
ter 50 and 300 test iterations as illustrated in Figure 6c. We find that
local search collectives outscored Sarsa collectives up to the first 50
iterations while the opposite is true at iteration 300. This type of ex-
periment is one of the most revealing of how the (communication
and interaction) reasoning/learning speed of multiagent systems in-
fluences their measured performance given a finite/bounded opera-
tion or interaction time.

7.6 Algorithmic complexity and intelligence

In this paragraph we shed some light on how the performance of
(groups of) agents is influenced by the algorithmic complexity of the
task. To minimise the effect of search and exploration (relative to
exploitation) on the scores we initialised all agents to neighbour lo-
cations from ⊕. We then evaluated the agents over tasks of different
algorithmic complexities (randomness)K(µ) grouped into three dif-
ficulty levels: easy ∈ [6, 8], medium ∈ [9, 13] and hard ∈ [14, 19].
This experiment stands out from previous related experiments in the
field, as collectives are assessed against tasks of quantifiable algo-
rithmic complexity, as opposed to ones qualitatively ranked based of
their difficulty. Results illustrated in Figure 7 show that the perfor-
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Figure 7: Scores over different task complexities K(µ) using collec-
tives of |Π| = 10 agents, evaluated in 13.2-bit H(µ) environments
for 50 interactions.

mance of artificial agents, similar to that of individual human perfor-
mance [22], decreases when evaluated over patterns of higher algo-
rithmic complexities. For instance, learning and predicting random
patterns is more difficult, per se, than learning or inferring compress-
ible ones. Moreover, this experiment suggests that RL collectives
are better learners than their isolated peers since the difference be-
tween the cooperative agents’ scores over the 3 levels of difficulties
is significantly smaller than that of the isolated ones. What’s more

intriguing in Figure 7 is the difference in behaviour between cooper-
ative RL agents and local search collectives. While RL collectives are
still more effective over isolated agents when evaluated over learning
problems, all local search agents (isolated and collectives) performed
equally when the effect of search and exploration was minimised.
More importantly, we find that RL collectives are more robust with
respect to the change in algorithmic complexity as opposed to local
search agents which display a wide gap in scores over the three levels
of complexity.

All in all, what this experiment suggests is that, further to the pre-
viously examined factors, (collective) intelligence is a function of
the agent type and the algorithmic complexity of the given task, both
combined.

8 ORGANISATIONAL BEHAVIOUR
In spite of the different communication protocols we have evaluated,
it is still not clear how the organisational structure of the group [3, 30]
affects its performance on intelligence tests. Therefore, we have fur-
ther evaluated the performance of equally sized collectives of local
search agents organised in four different (divisional and network)
structures and studied their organisational behaviour. These struc-
tures are illustrated in Figure 8 below. In the flat, fully connected,
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Figure 8: Graphical representation of different group organisational
structures. Nodes represent agents and edges reflect the flow of com-
munication and interaction between these agents.

structure (Figure 8a) all agents share their observations between one
another. This absolute aggregation of information leads to a similar
effect as that of local search collectives harnessing the wisdom of the
crowd. In the subgroup structure (Figure 8b) we divide the collec-
tive into four smaller subgroups. Each one of those subgroups then
implements a flat structure as the one described previously. In the hi-
erarchical structure (Figure 8c), each (non-leaf) agent receives feed-
back from its children at each iteration of the test before selecting
an action. Leaf-nodes operate in isolation. Finally, in the autocratic
structure (Figure 8d), a single agent controls the actions of the rest of
the collectives irrespective of its members’ observations.

The results from our experiments show that flat, fully-connected,
network structures are the most efficient since they maximise the ag-
gregation of information received from the members of the collec-
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Figure 9: Scores of local search collectives organised in different net-
work structures, across various number of agents. The collectives are
evaluated in 17.2-bitH(µ) environments for 50 iterations. The label
(×) in this figure depicts the average score of the agent at the top of
the hierarchy (root node of the binary-tree).

tive. However, it is known that this type of structure is very costly as
it requires a large number of connections (n(n − 1)/2 connections,
where n is the number of agents) to be introduced between the mem-
bers of the group [36]. In this type of organisation (and for the corre-
sponding environment uncertainty and evaluation-time parameters)
the number of agents did not significantly affect the performance of
the collective. Whereas, after dividing this collective into smaller
subgroups, the number of agents turns out to be of major impor-
tance6. The effectiveness of each subgroup improved gradually with
the increase in the number of agents thus reducing the gap in perfor-
mance between this organisational structure and fully-connected one.
This shows that dividing a collective into smaller groups is most ben-
eficial for highly populated collectives, especially when the number
of connections inside the collective grows very large and becomes a
bottleneck on communication.

In the hierarchical and autocratical structures, the measured effec-
tiveness is low compared to the previous two models. We observe that
the average performance of a hierarchical group is slightly steadier
than that of a group governed by single agent with absolute control
on decision-making. Interestingly, we have noticed that in the hier-
archical structure, high-scoring agents are the ones at the top of the
hierarchy since (in our model) they receive feedback from their chil-
dren (which in turn receive feedback from theirs) while the ones at
the bottom perform in isolation and have low scores. Figure 9 shows
that the average scores of the root agents in the hierarchy are sig-
nificantly higher than the average score of the collective, indicating
a high standard deviation between the members’ scores in this or-
ganisational structure. Since the number of leaves is almost half the
number of nodes7, and the number of agents declines quickly as we
move up the hierarchy, this organisation does not deliver a high av-
erage group performance.

Finally, our results show that the performance of a local search
collective implementing an autocracy is similar on average to that of
isolated local search agents. Agents in this organisational structure do
not show any significant discrepancies in their scores or behaviours.

6 Note that all four evaluated subgroups showed a similar performance, but
scores were only plotted for the first subgroup to enhance readability.

7 Number of leaves in a full binary tree is equal to (#nodes+ 1)/2.

9 CONCLUSIONS AND FUTURE WORK

We have addressed the relevance of several factors and their interac-
tion to the notion of intelligence and its emergence. We first started
by looking at the different contexts in which collective intelligence
has been shown to emerge, from face-to-face human groups, group
collaborations via the web, social insect colonies and swarms, etc.
Accordingly, we filtered a series of factors and features that are not
coupled to one particular cognitive system, problem or environment,
and illustrated how they influence the collective behaviour of the
group, and hinder its intelligence.

The studied factors were shown to have a major influence on the
performance of collectives that we have also measured. But, what
made our conclusions more intriguing is the peculiar nature of col-
lective intelligence seen as a function of all the examined factors
simultaneously, as well as some of them combined. We identified
circumstances where one cooperative system outperformed another
under some values or setups of the studied factors yet failed to do
so under others (e.g., in Section 7.5, limited vs. extended interaction
time and, in Section 7.3, low vs. high environment uncertainty), re-
flecting on how these factors independently but also jointly shape the
effectiveness of multiagent systems, and the spread of intelligence
in these systems. Some of our conclusions (in Section 7.3) reflected
how relying on an expert (super-solver) agent in the group does not
guarantee its optimal performance. We also measured the effect of in-
troducing more agents into the group (Section 7.4), and showed that
it is tightly controlled by the communication protocol used between
its members. We have highlighted scenarios (in Section 7.6) where
only some types of collectives outperform their equally sized group
of isolated agents over (algorithmically) complex environments, and
shown how the influence of the environment difficulty (uncertainty
and complexity) is a major factor controlling the capacity for intelli-
gence. Moreover, we looked (in Section 8) into how the effectiveness
of (the same selection of) agents adopting different organisational
and network structures can significantly vary from one structure to
another.

We have answered a fundamental question by showing the exis-
tence, and quantitatively measuring the influence, of some general
factors and principles shaping the spread of intelligence that are reg-
ularly perceived across different cognitive systems.

In order for our results to be transferred to a guideline for design-
ing multiagent cooperation, we have released the source code and
scripts to run our experiments as open-source in [7, Section 5.1]. This
will allow both additional testing and extensions to (the current ver-
sion of) the Λ∗ environment. The motivation is to encourage people
in the AI community to quantitatively evaluate new types of heuris-
tics, algorithms, communication protocols and network structures.

Another future goal is to further evaluate agents and collectives
over a wide range of general AI problems. For example, agents (iso-
lated or collectives) could be evaluated over exploration/exploitation
problems in an environment consisting of a hidden fitness landscape
with many local, and only one global, optima as further elaborated
in [7, Section 6.2]. Other possible examples might include pattern
recognition (and sequence completion) problems, in which payoff is
determined by how accurately a subject learns and predicts a pattern.
Other general multiagent problems that require coordination [7, Sec-
tion 6.1] (e.g., lifting and moving an object), or scheduling [4] (e.g.,
job shop scheduling), can be used for alternative evaluation.

Finally, we hope that - by following this direction in the quantifi-
cation of intelligence - we would pave the way towards a rigorous
and unified model of collectively intelligent groups and societies.
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