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Abstract: We propose kernel estimators for the densities of persistent and transient

inefficiencies in a generalized panel data stochastic frontier model. This approach relaxes

the conventional distributional assumptions imposed on the inefficiencies, thereby

aiming to increase robustness. A Bayesian sampling algorithm is developed to estimate

all model parameters and unobserved entities, as well as the bandwidths needed to

construct the densities of persistent and transient inefficiencies. The advantages of our

estimator and sampling algorithm are demonstrated through numerical studies based

on pseudo-samples. We find that our estimation approach outperforms conventional

Bayesian estimation, providing more accurate estimates of firm level inefficiencies. We

also apply the approach to analyze the cost frontier and related characteristics for a panel

of large US commercial banks, and discuss differences relative to the traditional Bayesian

framework. Our estimator reveals that the high-density region of transient inefficiency

varies over time, whereas the conventional approach does not possess such a feature.

Moreover, the contribution of persistent inefficiency to the total inefficiency revealed by

our approach is slightly more than half of that suggested by the conventional framework.

Key words: Bayesian sampling, cost efficiency, high-density region, kernel conditional

density estimation, random effects.
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1 Introduction

Stochastic frontier models, introduced by Aigner, Lovell and Schmidt (1977) and Meeusen

and van den Broeck (1977), have been extensively used in evaluating efficiency and pro-

ductivity of firms across many industries (see, for example, Lee and Tyler, 1978; Greene,

2005, and recent reviews by Kumbhakar et al., 2022a, 2022b). A production frontier repre-

sents the maximal output that can be obtained from a given set of inputs while a cost

frontier captures minimum costs given fixed output levels and input prices. To account

for the maximal (minimal) nature of the frontier, a stochastic frontier model features

a composite error term, which is a convolution of a symmetric component capturing

statistical noise and a non-negative component, capturing inefficiency. To estimate

firm-level inefficiencies and the frontier itself, certain distributional assumptions on the

two components of the composite error are needed. The risk of distributional misspecifi-

cation makes it essential to examine how inefficiencies are modeled in stochastic frontier

frameworks.

The distribution of inefficiency is often specified as a member of a parametric family.

Aigner et al. (1977) considered a Half-Normal distribution, while Meeusen and van den

Broeck (1977) proposed specifying an Exponential distribution for inefficiency. Later,

Stevenson (1980) proposed using a Truncated Normal distribution and Greene (1990)

chose a general Gamma distribution. To estimate inefficiencies, Jondrow et al. (1982)

suggested using a firm-specific estimator based on their conditional mean given the

composite error (which itself depends on the distributional assumptions for both pieces

of the composite error).

As a parametric assumption of the distribution of inefficiency is subjective, semi-

and nonparametric estimation approaches of the distribution of inefficiency have been

investigated. Schmidt and Sickles (1984) were the first to eschew distributional assump-

tions on inefficiency, but needed to require inefficiency to be time invariant, an onerous

assumption with even moderately sized panels. Their approach is also limited by its

inability to provide an absolute measure of inefficiency, instead comparing firms to a

best practice firm. Park and Simar (1994) suggested a nonparametric specification of in-

efficiency, but left the frontier function parametrically specified. Their asymptotic results
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on the estimation of inefficiency require the panel to be sufficiently long. Park, Sickles

and Simar (1998, 2003) continued studies in this direction with extensions allowing de-

pendence between input variables and inefficiency. Tran and Tsionas (2009) derived a

two-step procedure to estimate the parameters of the frontier using the least squares

method and the conditional mean of inefficiency using a local linear estimator. Further,

Kneip et al. (2012) assumed that inefficiency is a random function of time and estimated

them via a linear combination of a small number of common functions calculated from

the data. Under these nonparametric approaches, one could only estimate the mean of

the individual level of inefficiency. This is one limitation that we will address in our work

here.

A Bayesian approach has the advantage that non-observable inefficiencies as un-

known identities, can be estimated through a sampling procedure, during which parame-

ters are estimated. Bayesian methods have found a range of interesting implementations

in the frontier estimation literature. Among the first attempts was the work of van den

Broeck et al. (1994), who conducted Bayesian inference for a stochastic frontier model,

implementing it through Bayes factors among different distribution assumptions (in-

cluding Half-Normal, Truncated Normal, and Gamma distributions) on inefficiencies.

They used Monte Carlo simulation together with importance sampling to carry out the

required numerical integration. Koop et al. (1994) developed Bayesian techniques for

analyzing cost efficiencies with a flexible form of the cost function and further described

the Gibbs sampling method applied in stochastic frontier models (Koop et al., 1995).

Shortly after, Koop et al. (1997) discussed a stochastic frontier model with fixed or random

effects within a Bayesian framework. They postulated a flat prior for the coefficients in

the frontier, the error variance and unobserved firm heterogeneity in the fixed effects

panel stochastic frontier model while they used an informative prior for inefficiency in

the random effects panel data model.

Fernández et al. (1997) examined whether posterior inference can be conducted with

an improper prior, as well as provided theoretical foundations for Bayesian inference

in stochastic frontier models. Tsionas (2000, 2001) specified a Normal-Gamma and a

Truncated Normal distribution for inefficiencies and conducted Bayesian estimation of
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stochastic frontier models using the Gibbs sampler. However, both of these Bayesian

studies assume a parametric distribution of inefficiencies, which may limit their flexibility

and robustness in capturing the true inefficiency distribution in empirical applications.

To avoid parametric prior density assumptions on the inefficiency, Griffin and Steel

(2004) proposed using a Dirichlet process based technique to estimate the distribution of

inefficiency within a sampling framework. An important contribution of their approach

was to combine the advantages of the nonparametric and Bayesian approaches in the es-

timation of inefficiencies and their distribution. In a recent study, Feng, Wang and Zhang

(2019) proposed approximating the distribution of inefficiencies through a transformed

Parzen-Rosenblatt kernel density estimator and using it as the prior density function.

Although both approaches have relaxed parametric assumptions on the distribution of

inefficiency, both methods estimate the distribution of inefficiency based on their own

information, rather than information contained in the composite errors.1

Bayesian estimation of the four component model proposed by Colombi et al. (2014),

initially developed by Tsionas and Kumbhakar (2014), is in its nascency. Further, semi-

or nonparametric estimation of this model is even sparser. Here, building upon and

expanding the ideas of Feng et al. (2019), we seek to use recently developed insights on

the Bayesian construction of the inefficiency distributions, both persistent and transient,

to estimate the four component model in a straightforward approach. In our study,

we present a new nonparametric estimator for the two inefficiency distributions using

information contained in the realized composite errors and the unobserved heterogene-

ity. These are the key differences between our approach to estimation and the method

proposed by Feng et al. (2019).

Our starting point is that time-varying inefficiency is a part of the composite error,

and the estimation of inefficiency and its density rely on the composite error (Amsler

et al., 2024). Similarly, persistent inefficiency is part of unobserved heterogeneity and

the estimation of it relies on that heterogeneity. Even though both forms of inefficiency

are unknown, the composite errors and unobserved heterogeneity can be calculated

once the production frontier has been estimated. Consequently, the conditional density

1A recent contribution by Tsionas et al. (2023) is a twist on this theme, using efficiency estimates
constructed from DEA to form a prior.
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of inefficiency is approximated by the joint density of the inefficiency and the realized

composite errors divided by the marginal density of the realized composite errors, where

both the joint density and the marginal density are approximated by the corresponding

kernel estimates.

Our main contribution is the development of a semiparametric Bayesian approach

for the general four-component stochastic frontier panel data model. In particular, we

provide a new, robust, approximation to the distributions of both types of inefficiency,

building up the likelihood function and posterior. We also develop a sampling algorithm

to estimate the parameters of the frontier function, the error variance and various band-

widths involved in the approximation of the conditional density of the inefficiencies. We

sample the coefficients that appear in the parametric frontier, and then calculate the

composite errors and draw the inefficiencies from their conditional density. From the

perspective of panel data models, our approach to estimation can be classified within the

random effects framework because our likelihood is built based on the assumption that

the inefficiencies are not correlated with the explanatory variables. Nonetheless, while

sampling the smoothing parameters involved in the conditional density of transient

inefficiencies, we have to rely on realized composite errors and consequently the model

is effectively treated as a fixed effects panel data model (see, for example, Rendon, 2013).

We use four pseudo-samples to examine the performance of our estimator in compar-

ison with Tsionas and Kumbhakar’s (2014) estimator. Even though the pseudo-sample is

generated Tsionas and Kumbhakar (2014), our estimator shows superior performance

against theirs. The advantages of our estimator are further illustrated by considering

the translog stochastic frontier model that analyzes cost efficiency of a panel of large US

commercial banks. Although both our estimator and that of Tsionas and Kumbhakar’s

(2014) produce similar parameter estimates, the corresponding 95% Bayesian credible

intervals obtained via our approach are narrower than those from Tsionas and Kumb-

hakar (2014). Moreover, our approach finds that for a bank with median level inefficiency,

the 95% high-density region of the transient inefficiency varies over time. However,

such time-varying features are not discovered using Tsionas and Kumbhakar’s (2014)

approach. Moreover, the contribution of persistent inefficiency to the total inefficiency
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of a hypothetical bank estimated by our approach is roughly half of that from Tsionas

and Kumbhakar’s (2014) estimator.

The rest of this paper is organized as follows. We present a conditional kernel density

estimator of inefficiencies and develop a sampling algorithm for estimation purposes in

the next section. In Section 3, we use two pseudo-samples to examine the performance of

our approach against two competing estimators. In Section 4, we compare our approach

to the fully parametric approach of Tsionas and Kumbhakar (2014) using a panel of US

large commercial banks. Section 5 concludes the paper.

2 Semiparametric stochastic frontier model

2.1 Unknown distribution of inefficiencies

Tsionas and Kumbhakar (2014) proposed a panel data stochastic cost frontier model

that disentangles unobserved firm heterogeneity from persistent and transient technical

inefficiency. The model is expressed as

yit = x′
itβ + αi + ηi + uit + vit, (1)

where αi ∼ iidN (0, σ2
α) and vit ∼ iidN (0, σ2

v) with σα and σv being unknown (and strictly

positive and finite) parameters, for firms i = 1, 2, . . . , N and time t = 1, 2, . . . , T . In this

model, yit represents the logarithmic cost, xit is a vector of p explanatory variables for

the ith firm at time t, β is the corresponding vector of coefficients, αi represents the

firm-specific random effects capturing the unobserved heterogeneity (time-invariant

and independent from inefficiency), ηi represents the persistent (long-run) inefficiency

component (non-negative), vit represents the idiosyncratic random error, and uit is a

non-negative random variable that represents the short-run or transient inefficiency,

which can be interpreted as the percentage increase in cost of firm i due to temporal

inefficiency.

The short-term inefficiency uit is assumed to be time-variant and uncorrelated with

explanatory variables and vit. The time-invariant restriction is unrealistic sometimes,

especially in a panel with a long time horizon. To relax this restriction, Cornwell, Schmidt

and Sickles (1990) introduced time-varying inefficiencies as the sum of the time-invariant
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inefficiency and a quadratic function of time t. Kumbhakar (1990) and Battese and Coelli

(1992) specified time-varying inefficiencies as the product of time-invariant inefficiency

and (different) non-linear functions of time t. In such studies, the time-varying inefficien-

cies are treated as random effects, and estimation is carried out through maximization of

parametric likelihood functions.

Let y, X and u denote respectively, the collections of yit, xit and uit, for i = 1, 2, . . . , N

and t = 1, 2, . . . , T . Let α = (α1, α2, . . . , αN)
′ and η = (η1, η2, . . . , ηN)

′. Under the assump-

tion of iid Gaussian errors of vit, the likelihood is

L(y|β,α,η,u, σ2
α, σ

2
v ,X) =

(
2πσ2

v

)−NT
2

N∏
i=1

T∏
t=1

exp

{
− 1

2σ2
v

(
yit − x′

itβ − αi − ηi − uit

)2}
,

which Tsionas and Kumbhakar (2014) used to develop their sampling algorithms together

with distributional assumptions of ηi, uit and αi.

A key issue to proceed with the above likelihood function is to obtain the densities of

uit and ηi. In Tsionas and Kumbhakar (2014), they assumed that ηi ∼ iidN+
(
0, σ2

η

)
and

uit ∼ iidN+ (0, σ2
u), where ση and σu are unknown (and positive and finite) parameters.

We note that the composite errors, ηi + uit + vit, for i = 1, 2, . . . , N and t = 1, 2, . . . , T ,

contain information about the distributional properties of ηi and uit. Therefore, instead

of imposing distributional assumptions on ηi and uit, we propose to approximate the

densities of ηi and uit by kernel density estimates of their respective conditional densities,

where the bandwidths are treated as parameters to be estimated along with the remaining

model parameters through a Bayesian sampling procedure.2

2.2 Conditional densities

2.2.1 Conditional density of uit

The key insight to our approach is that the composite error uit + vit contains information

about the distribution of uit (Amsler et al., 2024). Let εit = uit + vit, for i = 1, 2, . . . , N and

t = 1, 2, . . . , T . We approximate the density of uit by the conditional density of uit given

2Although αi might be estimated in a similar way as ηi, we have not done so because the random effects
are usually not of primary interest in the context of panel stochastic frontier models.
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(εi1, εi2, . . . , εiT ), denoted as f(uit|εi1, εi2, . . . , εiT ), which is defined as

fu|ε
(
uit|εi1, εi2, . . . , εiT

)
=

fu,ε
(
uit, εi1, εi2, . . . , εiT

)
fε
(
εi1, εi2, . . . , εiT

) ,

for i = 1, 2, . . . , N and t = 1, 2, . . . , T . This conditional density is well defined conditional

on realized εit.3

We approximate the joint density of (uit, εi1, εi2, . . . , εiT ) by

f̂u,ε
(
uit, , εi1, εi2, . . . , εiT | hu,hε

)
=

1

TN

N∑
j=1

T∑
t=1

Khε (εi − εj) khu (uit − ujt) , (2)

where εi = (εi1, εi2, . . . , εiT )
′, Khε(·) is a multivariate kernel with hε = (h1, h2, . . . , hT )

′ a

vector of bandwidths, and khu(·) is a univariate kernel with bandwidth hu. For simplicity,

we use h to represent the vector of the above-mentioned bandwidths, hu, h1, h2, . . . , hT ,

and h2 to denote the vector of squared bandwidths.4

In the literature on multivariate density estimation, the multivariate kernel function

is often specified as a product of univariate kernel functions, each of which is allowed to

have its own bandwidth (see, for example, Li and Racine, 2006). As discussed by Zhang

et al. (2014), when a kernel density estimator such as (2) is plugged into a likelihood

function for the purpose of estimating bandwidths, we also need to exclude the jth

observation that makes εit = εjt or uit = ujt (for all t) from (2) in order to exclude cases

with k(0/ht) or k(0/hu), which will make the corresponding bandwidth arbitrary. Let

Tεi = {t : εjt ̸= εit, for t = 1, 2, . . . , T} and Jui =
{
j : ujt ̸= uit,∃t ∈ {1, 2, . . . , T}

}
,

for i = 1, 2, . . . , N . Let Nu denote the number of terms excluded from the summation in

(2). Therefore, the leave-one-group-out estimator given by (2) is then expressed as5

f̂(uit, εi|h) =
1

NT −Nu

1

huh1h2 · · ·hT

∑
j∈Jui

T∑
t=1

{
k

(
uit − ujt

hu

) ∏
t∈Tεi

k

(
εit − εjt

ht

)}
. (3)

3If the density of uit were approximated by the kernel density estimate based on (ui1, ui2, . . . , uiT ) it
would be similar in fashion to Feng et al. (2019). However, as Feng et al. (2019) assume that inefficiency is
time invariant, the resulting estimate would not use information contained in (εi1, εi2, . . . , εiT ).

4The kernel-form conditional density given by (2) is defined in the frequentist domain. Although
(εi1, εi2, . . . , εiT ) is a vector of random entities, it is known conditional on β, αi, ηi and initial values of
uit, and the uit’s are known conditional on β, αi and ηi. We will develop a Bayesian sampling algorithm,
through which we will sample all these unknown entities conditionally.

5It is not enough to simply leave one observation out, because a zero argument of any kernel function
will make the corresponding bandwidth arbitrary.
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A popular choice of a kernel function is the probability density function (PDF) of the

standard Gaussian distribution, which we use throughout this paper.

The joint density of εi is approximated by

f̂ε (εi|hε) =
1

N −Nε

1

h1h2 · · ·hT

N∑
j=1
j ̸=i

{∏
t∈Tεi

k

(
εit − εjt

ht

)}
, (4)

where Nε denotes the number of terms excluded from the function and the bandwidths

h1, h2, . . . , hT are defined as the same as those in (3).

The conditional density of uit given the realized composite error terms is

f̂h(uit|εi,h) =
f̂(uit, εi|h)
f̂ε(εi|hε)

, for i = 1, 2, . . . , N, and t = 1, 2, . . . , T. (5)

Each of these kernel estimates integrates to one and satisfies positivity, and is thus a

density function.

Our idea is to approximate the density of uit by the conditional density of uit condi-

tional on (εi1, εi2, . . . , εiT ). The resulting kernel density estimator involves the univariate

kernel for uit and multivariate kernel for (εi1, εi2, . . . , εiT ) and thus is a high-dimensional

density estimation. An alternative approach is to approximate the density of uit by the

conditional density of uit conditional on εit, which results in a low dimensional kernel

density estimator using univariate kernels. However, the use of a multivariate kernel

density of (εi1, εi2, . . . , εiT ) allows accommodation of possible serial dependence of uit

over time (Amsler et al., 2014). We will discuss this alternative, low-dimensional approach

later in a subsection of comparison studies using pseudo-samples.

2.2.2 Conditional density of ηi

Let θit = ηi + vit and θi = (θi1, θi2, . . . , θiT )
′, and let

Jηi = {j : ηj ̸= ηi, for j = 1, 2, . . . , N} and Tθi = {t : θjt ̸= θit, for t = 1, 2, . . . , T} ,

for i = 1, 2, · · · , N . The joint density of (ηi,θi) is approximated by a kernel estimator:

f̂(ηi,θi|b) =
1

N −Nη

1

bηb1b2 · · · bT

∑
j∈Jηi

{
k

(
ηi − ηj

bη

) ∏
t∈Tθi

k

(
θit − θjt

bt

)}
, (6)
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for i = 1, 2, . . . , N , where Nη is the number of terms excluded from the density function,

and b represents the vector of the above-mentioned bandwidths, bη, b1, b2, . . . , bT , and b2

to denote the vector of squared bandwidths.

The joint density of θi is approximated by

f̂θ (θi|bθ) =
1

N −Nθ

1

b1b2 · · · bT

N∑
j=1
j ̸=i

{∏
t∈Tθi

k

(
θit − θjt

bt

)}
, (7)

where Nθ is the number of terms excluded from the density function, and bθ represents

the vector of bandwidths, b1, b2, . . . , bT .

The conditional density of ηi given θit is

f̂b(ηi|θi, b) =
f̂(ηi,θi|b)
f̂θ(θi|bθ)

, for i = 1, 2, . . . , N. (8)

It might be possible to select optimal bandwidths using a likelihood cross-validation

method if uit and εi, or ηi and θi are observable. However, due to their non-observable

nature, we follow Zhang et al. (2006) and treat bandwidths as parameters, which are

estimated through Markov chain Monte Carlo (MCMC) sampling techniques.6

2.3 Bayesian estimation

A Bayesian approach has an advantage of being able to estimate firm-specific ineffi-

ciencies via classical frequentist approaches. Flexible inference without parametric

assumptions about the distribution of inefficiencies could be achieved by placing a prior

distribution on infinite dimensional spaces. Ferguson (1973) introduced a popular non-

parametric Dirichlet prior process, which was employed by Griffin and Steel (2004) to

model the distribution of inefficiencies in stochastic frontier models. Walker, Damien,

6As a referee rightly noted, our approach could be elaborated further by also modeling the determi-
nants of persistent and time-varying efficiency (as in Lai and Kumbhakar, 2018a,b). If an environmental
variable is to be included in the model, for example, via σ2

η,i = exp(γzi), our sampling framework can be
modified to sample the additional parameter as well. One approach to incorporating information from the
environmental variable is to derive the kernel density estimator of ηi exp(−0.5γzi) instead of the current
conditional density estimator. Alternatively, we can allow the bandwidth for the kernel function of ηi to be
made dependent on exp(γzi), because the variance of ηi derived from the kernel estimation of its marginal
density depends on the squared bandwidth. Both approaches allow the variance of uit to be influenced by
an environmental variable (and can be generalized to accommodate multiple environmental variables).
As our empirical example does not focus on environmental variables, we leave a full accounting of this
approach for future research.
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Laud and Smith (1999) provided a survey of Bayesian nonparametric methods, including

the mixture of a Dirichlet process and Pólya tree priors. Another nonparametric method

is based on kernel density estimation, whose performance is determined by bandwidths.

Bandwidth selection is critical in kernel density estimation and nonparametric regres-

sion (see, for example Zhang, King and Hyndman, 2006; Zhang, Brooks and King, 2009;

Zhang, King and Shang, 2014, for discussion on bandwidth selection using Bayesian

approaches).

The stochastic frontier model considered in this paper is semiparametric in the sense

that we do not impose parametric assumptions on the distributions of inefficiency. Our

method is based on kernel density estimation, which is used to derive the conditional

density estimator of inefficiencies. We then derive a posterior for the semiparametric

model and describe sampling steps in the MCMC procedure.

2.3.1 Priors and posteriors

In the four-component stochastic frontier model, Tsionas and Kumbhakar (2014) as-

sumed that uit ∼ N+(0, σ2
u) and ηi ∼ N+(0, σ2

η). Instead of these parametric assumptions,

we suggest using kernel estimators presented by (5) and (8). We follow the general model

structure of Tsionas and Kumbhakar (2014), but implement a semiparametric approach

by replacing their parametric assumptions on the inefficiency distributions with non-

parametric kernel estimators. From the perspective of distributional specification, the

parametric assumptions in Tsionas and Kumbhakar (2014) reflect subjective choices

that may not align well with the underlying data. In contrast, our approach employs

data-driven, nonparametric (kernel-based) estimates of the inefficiency distributions,

which are expected to offer greater flexibility and robustness.

Following the discussion of O’Donnell and Coelli (2005), we choose a joint improper

prior for β:

p(β) ∝ 1.

According to the prior choice discussed by Tsionas and Kumbhakar (2014), we assume

q̄κ
σ2
κ

∼ χ2
(
λ̄κ

)
, for κ = α and v,
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where λ̄κ denotes the degree of freedom of the χ2 distribution, and hyperparameters are

chosen as q̄κ = 10−4 and λ̄κ = 1, for κ = α and v.

Following the discussion of Zhang, Brooks and King (2009), we choose the prior of

each squared bandwidth to be:

p
(
b2η
)
∝

1− exp (−b2η/2)

exp (b2η/2)
, p

(
b2t
)
∝ 1− exp (−b2t/2)

exp (b2t/2)
, for t = 1, 2, . . . , T,

p
(
h2
u

)
∝ 1− exp (−h2

u/2)

exp (h2
u/2)

, p
(
h2
t

)
∝ 1− exp (−h2

t/2)

exp (h2
t/2)

, for t = 1, 2, . . . , T.

Such priors are able to prevent bandwidths from getting too large or too small during

sampling iterations, and consequently, let the data choose bandwidths. Thus, the joint

prior of all squared bandwidths is

p(b2) = p(b2η)
T∏
t=1

p(b2t ), p(h2) = p(h2
u)

T∏
t=1

p(h2
t ).

According to Bayes’ theorem, the posterior of (β, σ2
α, σ

2
v ,u,h

2, b2)′ is

π(β,α,η, σ2
α, σ

2
v ,u,h

2, b2|y,X) ∝

L(y|β,α,η,u, σ2
α, σ

2
v ,X)p(β)p(α|σ2

α)p(σ
2
α)p(σ

2
v)p(u|h2)p(h2)p(η|b2)p(b2), (9)

where p(u|h2) is approximated by (5) and p(η|b2) is approximated by (8). If such ap-

proximated kernel estimators were treated as frequentist-domain estimators and band-

widths were selected using likelihood cross-validation, the resulting Bayesian sampling

procedure would be a hybrid Bayes-frequentist approach in the sense of Yuan (2009).

Nonetheless, in our Bayesian framework, bandwidths are treated as parameters and are

sampled conditional on updates to the other unknown entities. As a consequence, our

Bayesian framework might also be regarded as a Bayes-frequentist approach.7

The details on conditional posteriors are presented in Appdendix A. We choose the es-

timates of uit and ηi from Tsionas and Kumbhakar (2014) as their respective initial values

in the MCMC procedure. To impose non-negativity for the inefficiencies and bandwidths,

we use the random-walk Metropolis algorithm to sample each component of η, b2, u and

h2 in log transformations, where tuning parameters are selected in an adaptive way, as dis-

cussed by Garthwaite et al. (2016). Therefore, the components of (β, σ2
α, σ

2
v ,α,η,u, b2,h2)

are sequentially sampled through conditional posteriors described by (A.1)–(A.8).
7We thank an anonymous reviewer for pointing this out.
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3 Performance assessment using pseudo samples

In our simulation study, all pseudo-samples are generated from the same four-component

stochastic frontier model of Tsionas and Kumbhakar (2014), but under varying scenarios

designed to test different structural features of inefficiency. The purpose of this design

is not to compare models per se, but rather to assess and compare the performance of

various estimators when confronted with different forms of misspecification. To this end,

we focus on a set of carefully constructed data-generating processes that differ in the

behavior and distribution of persistent and transient inefficiencies.

We evaluate five estimators: our proposed semiparametric Bayesian estimator, the

fully parametric Bayesian estimator of Tsionas and Kumbhakar (2014), and three variants

of our estimator designed to isolate specific model components. These variants are:

(i) the imposition of time-invariant inefficiency only in the model; (ii) the imposition

of time-varying inefficiency only in the model; and (iii) use of a simplified conditional

density based solely on contemporaneous composite errors. While the comparisons of

some of these estimators are relegated to the appendix for brevity, we emphasize three

key ones in the main analysis: our full estimator, the benchmark estimator of Tsionas and

Kumbhakar (2014), and our simplified approach based on univariate (contemporaneous)

conditioning. This structure allows us to systematically assess the value of our kernel-

based density approximation and its flexibility in recovering inefficiency distributions

under various forms of misspecification.

3.1 Competing estimators

We examine the performance of our estimator in comparison with several alternative

estimation approaches as follows.

Estimator A is Tsionas and Kumbhakar’s (2014) Bayesian estimator for the four-

component panel stochastic frontier model given in (1).

Estimator B is our estimator, but applied to the panel stochastic frontier model with

time-invariant inefficiencies only:

yit = x′
itβ + αi + ηi + vit, (10)
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where αi ∼ N (0, σ2
α) represents random effects. We propose to approximate the joint

density function f(ηi,θi) by

f̂(ηi,θi|bη, bθ) =
1

N − 1

1

bηb1b2 . . . bT

N∑
j=1
j ̸=i

{
k

(
ηi − ηj

bη

) T∏
t=1

k

(
θit − θjt

bt

)}
, (11)

with θi = ηi + vit. Moreover, we propose to approximate the density of ηi by f(ηi|θi),

which is the conditional density of ηi given the composite error θi, and is approximated

by the corresponding kernel density estimator. The resulting sampling algorithm is a

simplified version of the algorithm developed for our proposed estimation strategy.

Estimator C is our estimator, but applied to the panel stochastic frontier model

without persistent inefficiencies:

yit = x′
itβ + αi + uit + vit, (12)

where αi ∼ N (0, σ2
α) represents random effects, uit, for i = 1, 2, . . . , N and t = 1, 2, . . . , T ,

are iid with their density being approximated by (5).

Estimator D is is our estimator for the four component panel stochastic frontier model

given in (1) where the density of uit is approximated by the conditional density of uit on

εit and is expressed as

f̂(uit|εit, hu, hε) =
f̂(uit, εit|hu, hε)

f̂(εit|hϵ)
. (13)

The numerator and denominator are approximated respectively, by

f̂(uit, εit|hu, hε) =
1

NT − 1

1

huhε

N∑
j=1

T∑
s=1

s ̸=t if j=i

k

(
uit − ujs

hu

)
k

(
εit − εjs

hϵ

)
, (14)

and

f̂(εit|hε) =
1

NT − 1

1

huhε

N∑
j=1

T∑
s=1

s ̸=t if j=i

k

(
εit − εjs

hϵ

)
. (15)

The estimator of the four component model here uses a kernel conditional density

estimate of uit that is conditional on εit rather than the collection of εit across time,

making it a simplified version of our proposed approach. In comparison to estimator
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D, we anticipate that our approach will effectively address possible unmodeled serial

dependence of uit over time.

The errors vit, for i = 1, 2, . . . , N and t = 1, 2, . . . , T , are iid N (0, σ2
v), where σv is

unknown (and positive and finite) parameters. In summary, the difference between our

estimator and the four competing estimators are described in Table 1.

Table 1: A summary of competing estimators in the simulation study.

Models Differences to our approach

Estimator A Tsionas and Kumbhakar’s (2014) estimator, where the estimation of persis-

tent and transient inefficiencies depends on their distributional assump-

tions.

Estimator B Only persistent inefficiencies are are estimated based on conditional kernel

density estimation.

Estimator C Only transient inefficiencies are estimated based on conditional kernel

density estimation.

Estimator D The distribution of uit is approximated by the conditional kernel density

estimator only conditioning on εit.

3.2 Data generating process

We now conduct a simulation study to examine the performance of our stochastic fron-

tier panel data estimator in comparison with several competing approaches. The data

generating process is

yit = β0 + β1xit + αi + ηi + uit + vit, (16)

where αi ∼ N (0, 0.12) and vit ∼ N (0, 0.12). The explanatory variables xit is randomly

generated from the standard normal distribution. We set β0 = β1 = 1 and the sample

size to be N = 100 and T = 10. When generating inefficiency terms, we consider the

following four scenarios:

Scenario 1: We generate ηi ∼ N+(0, 0.52) independently across i, and uit ∼ N+(0, 0.52)

independently across i and t. We evaluate the performance of our approach in
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comparison to the estimator proposed by Tsionas and Kumbhakar (2014) where

their model is correctly specified.

Scenario 2: We generate ηi ∼ N+(0, 0.52) independently across i, and define uit =

ui0 × g(t) following Kumbhakar (1990), where ui0 ∼ N+(0, 0.52) is generated in-

dependently across i, and g(t) = (1 + exp(0.05t + 0.04t2))−1. This setup allows uit

to exhibit time-varying variance. The competing estimator is the one proposed

by Tsionas and Kumbhakar (2014), and their assumption regarding the distribu-

tion of uit is misspecified in this context. This scenario enables us to evaluate

the robustness of our estimator under distributional misspecification of transient

inefficiencies.8

Scenario 3: We generate ηi ∼ χ2(1) independently across i, and define uit = ui0 ×

g(t), where ui0 ∼ N+(0, 0.52) is generated independently across i and g(t) = (1 +

exp(0.05t+ 0.04t2))−1. The competing estimator is the one proposed by Tsionas and

Kumbhakar (2014), and their assumptions of the distributions of ηi and uit are both

misspecified here. This scenario allows us to assess the robustness of our proposed

approach under joint distributional misspecification.

Scenario 4: We generate ηi ∼ N+(0, 0.52) independently across i, and define uit = 0.1 +

0.8ui,t−1, where ui,0 ∼ N+(0, 0.52) is generated independently across i. This setup

allows uit to possess serial correlation over time. This scenario enables us to assess

the performance of our estimator in comparison to Estimator D in the presence of

unmodeled temporal dependence in uit.

3.3 Assessment criteria

Following Feng, Wang and Zhang (2019), we employ two measures to evaluate the corre-

lation between the estimated inefficiencies and the corresponding true values.

8This simple data generating process allows uit to vary over time, while requiring only a distributional
assumption for ui0. If more complex time-varying dynamics are of interest, one may consider the data
generating processes discussed by Lai and Kumbhakar (2020; 2023).
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The first is Spearman’s rank correlation between two vectors of ranks:

ρt = 1− 6

N (N2 − 1)

N∑
i=1

(
Rank(est)

it − Rank(true)
it

)2

, for t = 1, 2, . . . , T, (17)

where Rank(est)
it and Rank(true)

it are the ranks of the ith firm at time t according to the

estimated inefficiencies and their corresponding true inefficiencies, respectively. The

resulting correlation coefficient ρt is between −1 and 1. The closer it is to 1, the better the

corresponding estimator performs. We calculate the average of the time-varying rank

correlations for uit which is denoted as ρ̄. We also calculate the rank correlations for ηi

which is denoted as ρη.

The second is the average Euclidean distance between the estimated transient ineffi-

ciencies denoted as u(est)
it , and the true transient inefficiencies denoted as u(true)

it , and is

defined as

dt =
1

N

( N∑
i=1

(
u(est)
it − u(true)

it

)2)1/2
, for t = 1, 2, . . . , T. (18)

The smaller the Euclidean distance, the better the corresponding estimator performs.

We calculate the average (over time) of the time-varying Euclidean distance which is

denoted as d̄. For the persistent inefficiency, the average Euclidean distance is calculated

by

dη =
1

N

( N∑
i=1

(
η(est)
i − η(true)

i

)2)1/2
, (19)

where η(est)
i is the estimated persistent inefficiency and η(true)

i is the true persistent ineffi-

ciency.

3.4 Discussion of the estimators

As the number of transient inefficiencies to be estimated is equal to the number of gener-

ated inefficiencies, randomness has a significant impact on Tsionas and Kumbhakar’s

(2014) estimation of uit and its distribution. This is evident from the posterior conditional

distribution of uit, which is the half-normal distribution with mean ûit. In contrast, our

proposed kernel conditional density estimator borrows information across both i and
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t. By construction, it is able to utilize the information contained in all the generated

inefficiencies, ûit, for i = 1, 2, . . . , N , and t = 1, 2, . . . , T . This explains why our kernel

conditional density estimate outperforms Tsionas and Kumbhakar’s (2014) estimate

even if their distributional assumption of uit is correctly specified. Our approach offers

an advantage of robustness in empirical studies where the true distribution of uit is

unknown.

Further, even though Tsionas and Kumbhakar’s (2014) estimator is correctly specified,

we might still expect that our estimator possesses improved behavior following the

argument in Amsler et al. (2024). The decomposition of variance of a given inefficiency is

V (u) = V (E[u|ξ]) +E [V ar(u|ξ)]. As we increase the size of the conditioning set from ξ to

ξ∗ (which is what our estimator proposes), then necessarily E [V ar(u|ξ∗)] ≤ E [V ar(u|ξ)]

while V (E[u|ξ∗]) ≥ V (E[u|ξ]). Thus, even under correct specification, the fact that

our estimator leverages more information in the conditioning set is what could lead to

improved performance in the simulations.

Put differently, one advantage of our kernel-based estimator is that it estimates the

joint conditional density f(uit|εi1, . . . , εiT ), using information pooled across both firms

and time periods. In contrast, the approach in Tsionas and Kumbhakar (2014) relies on

parametric distributional assumptions and conditional likelihoods that are constructed

separately for each firm and time period. As a result, their method does not borrow infor-

mation across the panel in the same way and may be more vulnerable to misspecification

of the inefficiency distribution.

The flexibility of our method to learn from the entire panel structure is particularly

valuable in empirical settings where the shape of the inefficiency distribution is unknown

or complex. This advantage will be clearly demonstrated in Scenario 2. Nonetheless,

kernel-induced densities are not independent across firms or time, as the method aver-

ages discrepancies across both dimensions. As such an average allocates large weights to

the neighbors of each data point, the kernel estimation induces less dispersion in the

inefficiency distributions, resulting in a more concentrated probability mass than that of

the Half-Normal density.
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3.5 Results obtained through simulated samples

Each of our sampling procedures consists of 15,000 iterations with the first 5,000 itera-

tions being discarded to allow for burn-in. The mixing performance, or loosely speaking

the convergence status, of each simulated chain is monitored by the simulation inef-

ficiency factor (SIF), which is approximated by the ratio of the variance of the sample

mean over the variance of the sample mean from a hypothetical sampler taking draws

independently from the posterior (see, for example, Kim, Shephard and Chib, 1998;

Zhang, Brooks and King, 2009). The closer the SIF value is to 1, the better the mixing

performance. In our experience, a sampling algorithm usually achieves reasonable mix-

ing performance when its SIF values are below 100. The SIF values of the simulated

chains derived under the four scenarios respectively, are summarized and tabulated in

the Appendix Table B1. The low SIF values indicate that our samplers have achieved very

good mixing performance.

3.5.1 Scenario 1

When the pseudo-sample is generated under the assumption that uit ∼ N+(0, σ2
u),

Tsionas and Kumbhakar’s (2014) estimator of the four component model is correctly

specified. However, our estimator does not need an assumption about the distribution of

uit but possesses flexibility to estimate the unspecified distribution of uit. The posterior

mean estimates are summarized and tabulated in Table 2. In terms of estimation of β0

and β1, which are the parameters of the linear frontier, our estimator and Estimator D

outperform Tsionas and Kumbhakar’s (2014) estimator and the other two estimators

based on incorrect specification (Estimators B and C). When estimating the two variance

parameters, σα and σv, our estimator produced more accurate estimates than Tsionas

and Kumbhakar’s (2014) estimator. Moreover, Estimator C produced a more accurate

estimate of σv than Tsionas and Kumbhakar’s (2014) estimator.

As shown in Figure 1, when assessing the accuracy of the estimated uit, we found that

the rank correlation coefficients derived via our approach are higher than those obtained

via Tsionas and Kumbhakar’s (2014) estimator for all t values. Nonetheless, their estima-

tor produced much higher rank correlation coefficients than the other two competing
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estimators for all t values. Moreover, using the measure of the average rank correlation

coefficients across t, we found that our preferred estimator produces ρ̄ = 0.9915 and out-

performs Tsionas and Kumbhakar’s (2014) estimator, and that both estimators perform

much better than Estimator C. As for the persistent inefficiency, our estimator produces

ρη = 0.9880 and performs better than Tsionas and Kumbhakar’s (2014) estimator, which

produces ρη = 0.9157.

In order to measure the overall accuracy of the estimated inefficiencies, we calculated

the average of estimated persistent and transient inefficiencies for each model, and

compared them with the average of the true inefficiencies, respectively. The row starting

with ū of Table 2 shows that Tsionas and Kumbhakar’s (2014) estimator performs slightly

better than ours, and that both estimators perform much better than Estimator C. The

row starting with η̄ shows that our estimator performs slightly better than Tsionas and

Kumbhakar’s (2014) estimator when estimating the persistent inefficiencies.

Under the Euclidean distance measure dt, the lower panel of Figure 1 shows that our

estimator outperforms Tsionas and Kumbhakar’s (2014) estimator because the resulting

distance values derived via our approach are always clearly smaller than those obtained

via Tsionas and Kumbhakar’s (2014) estimator for all t values. Moreover, according

to the values of d̄ and dη shown in Table 2, our estimator clearly outperforms Tsionas

and Kumbhakar’s (2014) estimator. As such, under the measures of dt, d̄ and dη, our

proposed approach outperforms Tsionas and Kumbhakar’s (2014) estimator, which in

turn outperforms Estimator C.

In this scenario, Estimator D demonstrates marginally superior performance com-

pared to our approach in terms of ρ̄ and d̄. However, it underperforms relative to our

estimator when measuring ρη and dη. Notably, our approach has the potential advan-

tage of modeling the unobserved dependence of uit. We will examine this aspect in the

following scenarios.

Thus, even though the pseudo-sample is generated from the four component model,

our Bayesian semiparametric model has produced clearly better results than the correctly

specified model. Ignoring the incorporation of persistent inefficiencies, our estimator

leads to inaccurate estimates of the linear frontier, but the ranking of inefficiencies re-
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mains almost unchanged. However, ignoring the incorporation of transient inefficiencies

clearly worsens the performance of our estimator in terms of both ranking and frontier

accuracy.

3.5.2 Scenario 2

When the pseudo-sample is generated under uit = ui0 × (1 + exp(0.05t+ 0.04t2))−1 with

ui0 being generated from N+(0, σ2
u), the competing Estimator A is incorrectly specified in

terms of the distribution of uit. Meanwhile, our estimator does not require a distributional

assumption of uit and as a consequence, is robust.

The results for this scenario are summarized in Table 3 and Figure 2. In particular,

one can see that the estimate of β1 for each estimator is very close to the true value,

although Tsionas and Kumbhakar’s (2014) estimator performs slightly worse than the

other three estimators. When estimating the intercept of the linear frontier, our estimator

outperforms Tsionas and Kumbhakar’s (2014) estimator, which in turn outperforms

the other two competing estimators due to their reliance on an incorrect parametric

specification. Our estimator also outperforms Tsionas and Kumbhakar’s (2014) estimator

in the estimation of σα and σv, while the estimate of σv obtained under the incorrectly

specified Estimator C is as accurate as that obtained under our proposed approach.

In order to measure the overall accuracy of the random effects, persistent inefficiency,

and transient inefficiency, we calculated the average of their estimated values obtained

through each estimator, and then compared them with the averages of the true values,

respectively. Overall, the values of ᾱ, η̄ and ū also reported in Table 3 show that our

estimator and Estimator D perform better than the other three estimators under model

misspecification.

Figure 2 shows that the rank correlation coefficients for uit derived from our estimator

are higher than those obtained using the estimator of Tsionas and Kumbhakar (2014) for

all values of t. Moreover, the rank correlation of persistent inefficiencies calculated from

our estimator is ρη = 0.9819, which is higher than that obtained using Tsionas and Kumb-

hakar’s (2014) estimator, suggesting that our approach yields improved performance.

Under the Euclidean distance measures dt and d̄, the lower panel of Figure 2 shows
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that our estimator has produced smaller distance values than Tsionas and Kumbhakar’s

(2014) estimator for all t values. In addition, our estimator produced a distance value of

d̄ = 0.0007 and dη = 0.0050, whereas Tsionas and Kumbhakar’s (2014) estimator produced

an average distance value of d̄ = 0.0036 and dη = 0.0126. Thus, our proposed approach

outperforms Tsionas and Kumbhakar’s (2014) estimator, which performs slightly better

than the other two estimators.

On the one hand, ignoring the incorporation of persistent inefficiencies in our estima-

tor does not lead to obvious changes under the rank correlation and Euclidean distance

measures. However, it does result in inaccurate estimates of the intercept of the linear

frontier. On the other hand, ignoring the incorporation of transient inefficiencies clearly

worsens the performance of our estimator.

3.5.3 Scenario 3

When the pseudo-sample is generated with ηi ∼ χ2(1) and uit = ui0 × (1 + exp(0.05t +

0.04t2))−1, the model proposed by Tsionas and Kumbhakar (2014) is misspecified. It is

therefore worthwhile to assess the performance of our estimator in comparison to theirs,

as our approach does not rely on such distributional assumptions. The results obtained

from this scenario are summarized in Table 4 and Figure 3, where we primarily focus on

comparing our estimator with Tsionas and Kumbhakar (2014).

From Table 4 we can see that for the estimation of the intercept and β1, our estimator

performs slightly better than the estimator of Tsionas and Kumbhakar (2014). The average

values of α, η and u obtained from our estimator are all closer to the true values than those

derived from Tsionas and Kumbhakar’s (2014) estimator. In addition, the average rank

correlation coefficients ρ̄ and ρη calculated from our estimator are higher than those from

Tsionas and Kumbhakar’s (2014) estimator. Similarly, the average Euclidean distance

measures d̄ and dη are smaller when using our estimator, indicating better performance.

Figure 3 further supports these findings by presenting the rank correlation and Euclidean

distance over time.

Overall, the results from this scenario suggest that when the four component model is

misspecified for a pseudo sample, our estimator outperforms Tsionas and Kumbhakar’s
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(2014). This indicates that our estimator and the associated sampling algorithm are

robust to the distributional assumptions of ηi and uit.

3.5.4 Scenario 4

In our proposed Bayesian framework, we approximate the density of uit using the

conditional density of uit, which is conditional on either the multivariate density of

(εi1, . . . , εiT ) or the univariate density of εit. Let the resulting two estimators be denoted

as f̂(uit|εi1, . . . , εiT ) and f̂(uit|εit), respectively. When the pseudo-sample is generated

with uit being generated from N+(0, σ2
u), the univariate density leads to more accurate

estimates of the transient inefficiencies than the multivariate counterpart. However, the

opposite is true when the pseudo-sample is generated with uit being correlated.

To further evaluate the accuracy of the transient inefficiency estimates, we generated

an additional pseudo-sample where ui,t = 0.1 + 0.8ui,t−1, with ui,1 being drawn from

N+(0, σ2
u). This specification induces strong serial correlation in uit. The resulting dis-

tance measures, rank correlations, and parameter estimates are summarized in Table 5.

The results show that the multivariate density estimate f̂(uit|εi1, . . . , εiT ) leads to more

accurate estimates of the transient inefficiencies than its univariate counterpart. This

finding confirms that using f̂(uit|εi1, . . . , εiT ) as an approximation to the density of uit

effectively accommodates the unobserved serial dependence of the transient inefficien-

cies.

4 Cost efficiency of large US commercial banks

We utilize our semiparametric model to analyze the cost efficiency of a panel of large US

commercial banks. Over the past three decades, there has been considerable interest

in studying the efficiency of the banking industry, as it is one of the largest and most

important sectors in the US economy. Both data envelopment analysis (Sherman and

Gold, 1985) and stochastic frontier models with various specifications (Adams et al., 1999;

Kumbhakar and Tsionas, 2005; Kumbhakar et al., 2007; Malikov et al., 2016; Tsionas et al.,

2023) have been employed in previous studies to assess various types of efficiency of

banks.
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Technological and financial innovations have contributed to the rise of larger and

more complex organizations in the US commercial banking industry. This structural

transformation has raised important questions about how efficiently these institutions

operate. Studies such as Feng and Zhang (2012, 2014); Feng et al. (2019) have examined

the productivity of large US banks using stochastic distance frontier methods. In this

context, cost efficiency reflects both the internal organization of banks and, more broadly,

the effectiveness of public service provision by the government. Improving cost efficiency

can reduce resource waste in banking operations and support overall economic develop-

ment. Thus, analyzing cost efficiency not only provides a measure of bank performance

but may also offer guidance for future improvements of their business practices in the

sector.

4.1 Data and models

We used the annual data of commercial banks from the Reports of Income and Condition

published by the Federal Reserve Bank of Chicago (see Feng and Serletis, 2009, for a

description of the data). The data contains 141 continuously operating large banks,

which have at least 3 billion dollars in assets in year 2000 dollars. The sample period is

from 1998 to 2005, and hence we have observations for N = 141 banks over T = 8 years.

We consider three input prices: the wage rate for labor, the interest rate for borrowed

funds and the price of physical capital; three outputs: consumer loans, non-consumer

loans, and securities; as well as the total cost. All variables are constructed following

Berger and Mester (2003).

We employ a translog cost frontier model (more details about the translog function

can be found in Sickles and Zelenyuk, 2019, and references therein) with L input prices
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X1, . . . , XL, M outputs Y1, . . . , YM , and cost C for each bank i at time t = 1, 2, . . . , T :

log(Cit/XL,it) =a0 +
L−1∑
j=1

aj log
Xj,it

XL,it

+
1

2

L−1∑
j=1

L−1∑
k=1

ajk log
Xj,it

XL,it

log
Xk,it

XL,it

+
M∑

m=1

cm log Ym,it +
1

2

M∑
m=1

M∑
n=1

cmn log Ym,it log Yn,it

+
1

2

L−1∑
j=1

M∑
m=1

gjm log
Xj,it

XL,it

log Ym,it +
L−1∑
j=1

wjt log
Xj,it

XL,it

+
M∑

m=1

δmt log Ym + γ1t+
1

2
γ2t

2 + αi + ηi + uit + vit, (20)

where ajk = akj and cmn = cnm, for all j, k,m, n, according to symmetry. In this situation,

homogeneity of degree one in input prices is imposed (as required by economic theory).

In matrix notation we rewrite equation (20) as

yit = x′
itβ + αi + ηi + uit + vit, (21)

for i = 1, 2, . . . , N and t = 1, 2, . . . , T , where yit is the normalized cost, xit is a vector of all

variables on the right hand side of (20) including the constant term, β is the vector of

corresponding coefficients of the translog function, αi is the firm-specific random effect,

and ηi and uit represent persistent and transient inefficiency, respectively, and whose

distributions are unknown in our semiparametric model.

4.2 Parameter estimates and mixing performance

We estimated (20) using our proposed sampling algorithm, and for comparison pur-

poses, we also estimated the model under the assumptions discussed by Tsionas and

Kumbhakar (2014). Our sampling procedure consists of 50,000 iterations, where the

first 20,000 iterations are discarded to allow for burn-in. The estimated coefficients of

our semiparametric model appear in Table 6, while a summary of parameter estimates

using Tsionas and Kumbhakar’s (2014) estimator is presented in Table 7. We found that

the signs of the estimated coefficients are mostly consistent across the two models, yet

the magnitudes of the coefficients are in some cases substantially different. Moreover,

according to the 95% Bayesian credible intervals for the parameters derived under both
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models, we found that our estimator tends to produce narrower intervals than Tsionas

and Kumbhakar’s (2014) estimator. Taken together, some differences in magnitudes and

in the credible intervals, also lead to different conclusions about the significance of some

coefficient from zero (see for example, c23 and δ3).

The estimates of the bandwidths used in our density estimation are reported in

Appendix Table B2 along with the corresponding SIF values. As all the SIF values of the

parameters and bandwidths are clearly below 100, the sampling algorithm achieved a

reasonable mixing performance.

4.3 Transient and persistent inefficiencies

4.3.1 Inefficiencies of a median-inefficiency bank

We consider a bank with median estimated transient inefficiency, that is the median

among

ū(est)
i· =

1

T

T∑
t=1

u(est)
it , for i = 1, 2, . . . , N.

Using our estimator, we obtained time-varying posterior densities of transient ineffi-

ciency for the bank with the median inefficiency, identified based on the average inef-

ficiency over time. These density plots are presented in Figure 4. Under Tsionas and

Kumbhakar’s (2014) estimator, the graphs of the time-varying posterior density of tran-

sient inefficiency for the same bank are presented in Figure 5. During the sample period,

the transient inefficiency derived from Tsionas and Kumbhakar’s (2014) estimator places

the majority of probability mass inside the interval (0, 0.6), whereas our proposed ap-

prach places a similar amount of probability mass inside a narrower interval, (0.12, 0.24).

This result is key, suggesting much less variation in transient efficiency of a bank at the

median level of inefficiency over the 8 year period than what would be found assuming

Half-Normal distribution for both persistent and transient inefficiency.

With our proposed approach, we obtained the box and whisker plot of the transient

inefficiency of the median bank in each year, and such plots are presented in the up-

per panel of Figure B.1. The high posterior density region of the transient inefficiency

increased during 1998–2000, after which it started to decrease until the year 2002. How-

ever, during 2002–2005, the 95% high-density region (HDR) steadily moved upward. In
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contrast to this pattern, with Tsionas and Kumbhakar’s (2014) estimator, the HDR of the

posterior density of the median bank exhibits little variation over the years according to

the box and whisker plot presented in the lower panel of Figure B.1.

Figure 5 presents the graphs of the posterior density of persistent inefficiency of the

median bank obtained through our estimator, and that obtained through Tsionas and

Kumbhakar’s (2014) estimator; The 95% HDRs are (0.01,0.05) and (0, 0.1), respectively.

This finding means that more often than not, our estimator tends to predict a lower

level of persistent inefficiency than Tsionas and Kumbhakar’s (2014) estimator for a

median-inefficiency bank.

4.3.2 Inefficiencies of a hypothetical bank

Averaging over the MCMC draws for our proposed approach, we obtained the posterior

estimates of ηi and uit denoted respectively, as η̂i and ûit, for i = 1, 2, . . . , N and t =

1, 2, . . . , T . Based on the collection of η̂i, we obtained the kernel estimate of the density

of persistent inefficiency of an unobserved bank, which we call a hypothetical bank.

Similarly, based on the collection of ûit, we derived the kernel estimate of the density of

transient inefficiency of the hypothetical bank. The two density estimates are plotted in

the upper panel of Figure 6.

The kernel density estimates of the transient inefficiency derived through both esti-

mators are quite close to each other. The 95% HDR of the density estimated with our

approach is (0.075, 0.443) with its mode being located at 0.1602, whereas the HDR of

the density estimated following Tsionas and Kumbhakar (2014) is (0.074, 0.430) with its

median being located at 0.1560.

The kernel estimate of the density of the persistent inefficiency derived under our

approach differs from that derived using Tsionas and Kumbhakar’s (2014) estimator. The

95% HDR derived through our estimator is (0.012, 0.031) with its mode being 0.0205.

However, the 95% HDR derived with Tsionas and Kumbhakar’s (2014) estimator is (0.014,

0.069) with a mode of 0.0342 (50% larger).

The kernel density estimates of total inefficiency, which is defined as the sum of the

posterior means of persistent and transient inefficiencies, for a hypothetical bank under
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both models are plotted in Figure 7. Our estimator yields a 95% highest density region

(HDR) over the interval (0.088, 0.458), with a mode of 0.1811, while the model of Tsionas

and Kumbhakar (2014) produces a 95% HDR over the interval (0.087, 0.491), with a mode

of 0.1853. Our estimated density of total inefficiency results in a narrower HDR than

that derived from Tsionas and Kumbhakar’s (2014) posterior estimates of persistent and

transient inefficiencies. The shape and central location of our kernel density estimate for

total inefficiency are similar to those based on Tsionas and Kumbhakar’s (2014) posterior

estimates. This similarity likely arises from the fact that total inefficiency reflects the

overall discrepancy between observed cost and the cost frontier, and both models results

in similar frontier estimates.

According to our approach, persistent inefficiency contributes 9.44% to the mode

of the total inefficiency. Meanwhile, under Tsionas and Kumbhakar’s (2014) estimator,

persistent inefficiency contributes 16.19% to the mode of total inefficiency.

Further, we compare our kernel density approximations with the estimated Half-

Normal densities of inefficiencies derived by plugging in the posterior averages of the

parameters from the model of Tsionas and Kumbhakar (2014). In Figure 8, the dashed

red curves represent the prior assumptions about transient and persistent inefficiencies.

These two curves are clearly different from our density estimates, which are based on the

realized inefficiencies.

For transient inefficiencies, the kernel density approximation concentrates its mass

within the interval (0.1, 0.3), whereas the Half-Normal density spreads it over a broader

range, (0, 0.5). For persistent inefficiencies, the kernel density places its high-density

region in the interval (0.01, 0.03), while the Half-Normal density again spans a wider

interval, (0, 0.1). In both cases, the kernel density approximation provides a more infor-

mative representation of the underlying inefficiency distributions than the Half-Normal

assumption.

4.3.3 Prediction accuracy

We compare the prediction accuracy of our estimator with Tsionas and Kumbhakar’s

(2014) estimator. We leave 10% of banks (14 banks) out for the purpose of assessing
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prediction performance and use the other 90% of banks (127 banks) for estimation.

Denote NTrain and NTest as the number of banks in the training set and testing set, respec-

tively. Let y∗kt represent the dependent variable in the testing set for k = 1, 2, . . . , NTest and

t = 1, 2, . . . , T .

To evaluate the prediction accuracy, we calculate the mean squared prediction error

(MSPE) at year t:

MSPEt =
1

NTest

NTest∑
k=1

(ŷ∗kt − y∗kt)
2,

where ŷ∗kt is the predicted response. Figure 9 presents the calculated MSPEt over time.

Overall, the MSPEt derived from our estimator is smaller than that obtained from Tsionas

and Kumbhakar’s (2014) estimator, except for the three years of 2000, 2001 and 2005.

Nonetheless, the average MSPE derived from our approach is 0.1123, while the one

derived from Tsionas and Kumbhakar’s (2014) estimator is 0.1204, indicating that our

approach leads to more accurate prediction.

4.4 Returns to scale and technical change

Over the past two decades, a considerable number of studies have examined returns to

scale (RTS) at large U.S. banks, driven by the growing dominance of these institutions in

the banking industry. RTS can be measured in terms of elasticities of cost:

RTSit = 1/
M∑

m=1

εmit, where εmit =
∂ log(Cit/XLit)

∂ log Ymit

.

Technical change (TC) has been of interest to economists as well. Usually, a time

trend is involved in the translog cost frontier model by including linear and quadratic

components of time, and the interactions of the time trend with input prices and outputs

of the cost frontier. For such specifications, a measure of TC is given by

TCit = −∂ log(Cit/XLit)

∂t
.

Figure 10 presents the point estimates of average annual RTS and TC, calculated by

averaging over individuals for each year, as well as the corresponding 95% Bayesian

credible intervals, respectively. In general, the estimates of RTS and TC derived from
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the two models are quite close to each other and follow similar patterns. However, the

95% Bayesian credible intervals derived from our estimator are substantially narrower

than the corresponding ones from Tsionas and Kumbhakar’s (2014) estimator, suggesting

more accurate estimation with our proposed approach.

The estimated values of average RTS during 1998–2005 are slightly larger than one

under each model, indicating that, on average, there is some evidence for increasing

returns to scale among large commercial banks in the US during the sample period. The

conclusion is consistent between the two models, but Tsionas and Kumbhakar’s (2014)

estimator generally shows slightly higher estimates from the year 2000. Interestingly,

both models suggest that the average RTS has increased over time, from around 1.05

in 1998 for both models to around 1.08 in 2005 for our estimator (1.10 for Tsionas and

Kumbhakar’s (2014) estimator). Meanwhile, the average TC estimates fluctuate (roughly)

between 2% and 5% per annum, with a peak in 2000 (that is, right before the dot-com

bubble crush and the 2001 recession) and a trough in 2004, followed by a quick recovery

to 5% in 2005.

5 Conclusion

We propose a new Bayesian approach to estimate persistent and transient inefficiencies,

along with their distributions, in the four-component panel stochastic frontier model.

This model was originally studied by Tsionas and Kumbhakar (2014) using Bayesian

methods under the assumption that both inefficiency components follow Half-Normal

distributions. Rather than impose such distributional assumptions, we approximate

the joint density of transient inefficiency and the composite error term—defined as

the sum of transient inefficiency and Gaussian noise varying over time and space. The

density of transient inefficiency is then obtained by dividing this joint density by the

marginal density of the composite error. A similar approach is used to approximate

the density of persistent inefficiency, with all bandwidths treated as parameters. We

construct a proportional posterior and develop a sampling algorithm accordingly. Using

pseudo-samples, we demonstrate that our method exhibits a strong mixing performance

and outperforms the model of Tsionas and Kumbhakar (2014) as well as four alternative
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specifications.

We applied our estimator, as well as Tsionas and Kumbhakar’s (2014), to analyze the

cost efficiency of a panel of large US commercial banks. Both models produced similar

estimates of most parameters, but not all. Moreover, the corresponding 95% Bayesian

credible intervals derived through our estimator were mostly narrower than those derived

from Tsionas and Kumbhakar’s (2014) estimator, suggesting that our estimates are more

precise; in some cases leading to different conclusions about the parameters.

For a large bank with a median level inefficiency, the 95% high-density region of

the transient inefficiency varies over time discovered by our approach. However, this

time-varying feature is not obvious for the transient inefficiency estimated through

Tsionas and Kumbhakar’s (2014) estimator. Moreover, our Bayesian semiparametric

econometric approach tends to predict lower levels of persistent inefficiency than Tsionas

and Kumbhakar (2014).

When studying inefficiencies of a hypothetical bank, we have found that the densities

of transient inefficiency derived through the two models are quite close, but the estimated

density of persistent inefficiency derived through our approach differs substantially from

that derived through Tsionas and Kumbhakar’s (2014) estimator. Upon deriving the

kernel density of total inefficiency, we have found that persistent inefficiency contributes

9.44% to the mode of total inefficiency according to our estimator. On the other hand,

persistent inefficiency contributes 16.19% to the mode of total inefficiency. The estimates

of the average annual RTS and TC derived from the two models follow similar patterns,

however, the 95% Bayesian credible intervals derived from our estimator are narrower

than corresponding ones from Tsionas and Kumbhakar’s (2014) estimator, suggesting

more accurate estimation with our approach.
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Table 2: Estimates derived via the proposed approach and competing estimators under

Scenario 1 in the simulation study.
Estimate (standard deviation)

True value Our estimator Estimator A Estimator B Estimator C Estimator D

β0 1.0 0.9994 (0.0120) 1.0141 (0.0166) 1.4181 (0.0337) 1.4103 (0.0315) 1.0061 (0.0139)

β1 1.0 1.0056 (0.0038) 1.0118 (0.0089) 1.0102 (0.0107) 1.0062 (0.0039) 1.0071 (0.0034)

σα 0.1 0.1149 (0.0091) 0.1562 (0.0350) 0.3212 (0.0258) 0.3215 (0.0234) 0.1361 (0.0108)

ση 0.5 — 0.4859 (0.0408) — — —

σu 0.5 — 0.5024 (0.0182) — — —

σv 0.1 0.1143 (0.0027) 0.1236 (0.0222) 0.3208 (0.0076) 0.1133 (0.0030) 0.0992 (0.0024)

ᾱ 0.0011 (0.1000) 0.0003 (0.1093) 0.0084 (0.0728) -0.0011 (0.3030) 0.3191 (0.0011) 0.0007 (0.1313)

η̄ 0.4081 (0.3110) 0.4123 (0.3155) 0.3916 (0.2511) 0.3973 (0.0595) — 0.4065 (0.3077)

ū 0.4009 (0.3038) 0.4022 (0.3107) 0.4001 (0.2816) — 0.4042 (0.3104) 0.4008 (0.3036)

ρ̄ 1.0 0.9915 0.9032 — 0.9920 0.9988

d̄ 0.0 0.0017 0.0034 — 0.0018 0.0006

ρη 1.0 0.9880 0.9157 0.1666 — 0.9682

dη 0.0 0.0060 0.0110 0.0308 — 0.0095
Note: True values of ᾱ, η̄, and ū are the averages of the corresponding simulated true values with their

respective standard deviations given in parentheses.
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Table 3: Estimates derived via the proposed approach and competing estimators under

Scenario 2 in the simulation study.
Estimate (standard deviation)

True value Our estimator Estimator A Estimator B Estimator C Estimator D

β0 1.0 0.9708 (0.0115) 0.9337 (0.0111) 1.4118 (0.0346) 1.4195 (0.0297) 0.9734 (0.0106)

β1 1.0 0.9961 (0.0034) 0.9914 (0.0048) 0.9930 (0.0046) 0.9955 (0.0034) 0.9950 (0.0034)

σα 0.1 0.1082 (0.0085) 0.1900 (0.0335) 0.3559 (0.0259) 0.3491 (0.0251) 0.0986 (0.0083)

ση 0.5 — 0.4958 (0.0425) — — —

σu 0.5 — 0.2123 (0.0140) — — —

σv 0.1 0.1008 (0.0024) 0.1014 (0.0126) 0.1362 (0.0032) 0.1025 (0.0024) 0.1013 (0.0024)

ᾱ -0.0259 (0.0941) -0.0003 (0.1034) 0.0090 (0.1066) -0.0022 (0.3517) 0.0019 (0.3472) 0.0002 (0.0925)

η̄ 0.4438 (0.3305) 0.4496 (0.3230) 0.3992 (0.2465) 0.1014 (0.0557) — 0.4476 (0.3440)

ū 0.0890 (0.1083) 0.0910 (0.1126) 0.1691 (0.1020) — 0.0895 (0.1106) 0.0898 (0.1118)

ρ̄ 1.0 0.9944 0.5417 — 0.9929 0.9952

d̄ 0.0 0.0007 0.0036 — 0.0008 0.0006

ρη 1.0 0.9819 0.9355 -0.2396 — 0.9863

dη 0.0 0.0050 0.0126 0.0488 — 0.0042
Note: True values of ᾱ, η̄, and ū are the averages of the simulated corresponding true values with their

respective standard deviations given in parentheses.

Table 4: Estimates derived via the proposed approach and competing estimators under

Scenario 3 in the simulation study.
Estimate (standard deviation)

True value Our estimator Estimator A Estimator B Estimator C Estimator D

β0 1.0 0.9705 (0.0319) 0.9207 (0.0543) 2.1402 (0.0901) 2.1457 (0.0716) 0.9593 (0.0183)

β1 1.0 0.9961 (0.0033) 0.9934 (0.0070) 0.9960 (0.0047) 0.9957 (0.0033) 0.9963 (0.0033)

σα 0.1 0.3087 (0.0271) 0.4992 (0.2094) 1.5953 (0.1135) 1.5949 (0.1145) 0.1902 (0.0143)

ση

√
2 — 1.8832 (0.1572) — — —

σu 0.5 — 0.2384 (0.0703) — — —

σv 0.1 0.0994 (0.0024) 0.1568 (0.0493) 0.1398 (0.0033) 0.0994 (0.0023) 0.0991 (0.0023)

ᾱ -0.0259 (0.0941) 0.0092 (0.3055) -0.1037 (0.2902) -0.0184 (1.5975) -0.0143 (1.6000) -0.0019 (0.1870)

η̄ 1.1534 (1.5983) 1.1518 (1.7057) 1.2196 (1.3706) 0.1046 (0.0647) — 1.1742 (1.6442)

ū 0.0948 (0.1156) 0.0948 (0.1155) 0.1897 (0.0867) — 0.0949 (0.116) 0.0949 (0.1157)

ρ̄ 1.0 0.9999 0.5244 — 0.9999 0.9999

d̄ 0.0 0.0001 0.0041 — 0.0001 0.0001

ρη 1.0 0.9957 0.9522 -0.0491 — 0.9981

dη 0.0 0.0298 0.0269 0.1908 — 0.0175
Note: True values of ᾱ, η̄, and ū are the averages of the simulated corresponding true values with their

respective standard deviations given in parentheses.
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Figure 1: Rank correlation coefficient and Euclidean distance for transient inefficiencies
under Scenario 1, where Tsionas and Kumbhakar’s (2014) estimator for the model is
correctly specified.
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Figure 2: Rank correlation coefficient and Euclidean distance for transient inefficiencies
under Scenario 2, where Tsionas and Kumbhakar’s (2014) estimator for the model is
misspecified for uit.
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Figure 3: Rank correlation coefficient and Euclidean distance for transient inefficiencies
under Scenario 3, where Tsionas and Kumbhakar’s (2014) estimator for the model is
misspecified for both ηi and uit.
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Figure 4: Time-varying posterior density of transient inefficiency for a large US bank
(1998–2005) with a median inefficiency.
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Table 5: Estimates derived via the proposed approach and competing estimators under
Scenario 4 in the simulation study.

Estimate (standard deviation)
True value Our estimator Estimator D

β0 1.0 0.9829 (0.0113) 0.9812 (0.0112)
β1 1.0 0.9956 (0.0034) 0.9964 (0.0033)
σα 0.1 0.1051 (0.0086) 0.1057 (0.0082)
ση 0.5 — —
σu 0.5 — —
σv 0.1 0.0999 (0.0023) 0.0968 (0.0023)
ᾱ -0.0259 (0.0941) -0.0003 (0.0992) 0.0002 (0.1007)
η̄ 0.4438 (0.3305) 0.4397 (0.3259) 0.4399 (0.3204)
ū 0.4627 (0.1629) 0.4625 (0.1623) 0.4635 (0.1623)
ρ̄ 1.0 0.9950 0.9663
d̄ 0.0 0.0003 0.0009
ρη 1.0 0.9851 0.9819
dη 0.0 0.0053 0.0052

Note: True values of ᾱ, η̄, and ū are the averages of the simulated corre-
sponding true values with their respective standard deviations given in
parentheses.

Figure 5: Posterior density of persistent inefficiency for a large US bank (1998-2005) with
median inefficiency.
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Table 6: Parameter estimates from our proposed approach for the cost frontier of large
US banks (1998-2005).

Parameters Posterior mean 95% Credible interval SIF
a0 1.2658 (1.1906, 1.3408) 7.3
a1 0.3167 (0.2527, 0.3813) 4.4
a2 0.6688 (0.6233, 0.7143) 3.4
c1 0.0536 (0.0292, 0.0780) 5.7
c2 0.4754 (0.4397, 0.5122) 5.5
c3 0.4546 (0.4117, 0.4982) 6.3
a11 -0.0283 (-0.0713, 0.0152) 4.0
a12 0.0727 (0.0426, 0.1026) 4.2
a22 0.0706 (0.0600, 0.0811) 2.9
c11 -0.0797 (-0.0944, -0.0648) 2.9
c12 -0.0068 (-0.0096, -0.004) 2.0
c13 0.0281 (0.0208, 0.0354) 9.0
c22 -0.0677 (-0.0860, -0.0489) 8.1
c23 0.0105 (-0.0097, 0.0305) 6.9
c33 0.1604 (0.1399, 0.1806) 5.6
g11 -0.2248 (-0.2671, -0.1810) 5.2
g12 0.1036 (0.0761, 0.1307) 5.9
g21 0.0632 (0.0326, 0.0939) 5.9
g22 0.0085 (-0.0424, 0.0602) 5.0
g13 -0.0761 (-0.0923, -0.0599) 3.9
g23 0.0469 (0.0233, 0.0702) 4.2
w1 -0.1477 (-0.1988, -0.0974) 4.5
w2 0.0534 (0.0254, 0.0818) 3.9
δ1 -0.0006 (-0.0030, 0.0017) 3.9
δ2 0.0095 (0.0051, 0.0139) 2.4
δ3 -0.0100 (-0.0147, -0.0052) 3.1
γ1 0.0484 (0.0413, 0.0553) 2.4
γ2 -0.0303 (-0.0354, -0.0253) 3.0
σα 0.1522 (0.1329, 0.1746) 5.2
σv 0.0946 (0.0903, 0.0991) 4.6
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Table 7: Parameter estimates from Tsionas and Kumbhakar’s (2014) estimator for the cost
frontier of large US banks (1998–2005).

Parameters Posterior mean 95% Credible interval SIF
a0 1.3137 (1.1679, 1.4589) 2.6
a1 0.1937 (0.0694, 0.3181) 2.2
a2 0.6939 (0.6001, 0.7881) 2.4
c1 0.0989 (0.0572, 0.1403) 2.3
c2 0.4537 (0.3859, 0.5219) 2.1
c3 0.4230 (0.3483, 0.4976) 2.0
a11 -0.0001 (-0.0797, 0.0787) 2.7
a12 0.0360 (-0.0243, 0.0978) 2.6
a22 0.0725 (0.0496, 0.0953) 2.5
c11 -0.0806 (-0.1161, -0.0448) 2.1
c12 -0.0088 (-0.0158, -0.0018) 2.3
c13 0.0376 (0.0285, 0.0467) 2.5
c22 -0.1041 (-0.1299, -0.0778) 2.8
c23 0.0316 (0.0020, 0.0613) 3.1
c33 0.1802 (0.1482, 0.2122) 2.7
g11 -0.2042 (-0.2742, -0.1350) 2.4
g12 0.0694 (0.0276, 0.1111) 2.6
g21 0.1032 (0.0543, 0.1525) 3.0
g22 -0.0583 (-0.1475, 0.0302) 2.6
g13 -0.0750 (-0.1055, -0.0447) 2.9
g23 0.0298 (-0.0152, 0.0741) 2.7
w1 -0.1575 (-0.2466, -0.0685) 2.5
w2 0.0552 (0.0007, 0.1102) 2.7
δ1 -0.0020 (-0.0072, 0.0031) 2.3
δ2 0.0032 (-0.0075, 0.0141) 2.5
δ3 -0.0051 (-0.016, 0.0059) 2.6
γ1 0.0636 (0.0473, 0.0801) 2.4
γ2 -0.0344 (-0.0459, -0.0229) 2.2
σα 0.0432 (0.0245, 0.0657) 25.3
ση 0.0489 (0.0272, 0.0735) 28.0
σu 0.2429 (0.1953, 0.2832) 34.0
σv 0.2000 (0.1824, 0.2195) 23.7
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Figure 6: Kernel density estimates of inefficiencies for a hypothetical bank.
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Figure 7: Kernel density estimates of total inefficiency that is the sum of the persistent
and transient inefficiencies for a hypothetical bank.
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Figure 8: Our estimated densities of transient and persistent inefficiencies in compar-
ison with the parametric densities using parameters estimated following Tsionas and
Kumbhakar (2014).
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Figure 9: Out-of-sample mean squared prediction errors for the predicted responses of
14 banks through the estimated translog model given by (20).
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Figure 10: Estimates and the corresponding 95% Bayesian credible intervals of average
returns to scale and technical change, derived respectively, from our proposed approach
and Tsionas and Kumbhakar’s (2014) estimator, of the cost frontier of large US banks
(1998-2005).
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Appendices

A Details about conditional posteriors

In order to estimate the firm-specific random effects, we develop an algorithm that is

based on the sampling algorithm of Tsionas and Kumbhakar (2014). The conditional

posterior of β is

β|α,η, σ2
α, σ

2
v ,u,h

2, b2,y,X ∼ N (β̃, Ṽ ), (A.1)

where

Ṽ =

[
1

σ2
v

N∑
i=1

x′
ixi

]−1

, and β̃ = Ṽ

[
1

σ2
v

N∑
i=1

x′
i (yi − αilT − ηilT − ui)

]
,

with xi being a T × (p+ 1) matrix expressed as (xi1,xi2, · · · ,xiT )
′, yi = (yi1, yi2, · · · , yiT )′

and lT being a vector of dimension T with all components being one.

Further, the conditional posterior of σ2
v is

σ−2
v

{
q̄v +

N∑
i=1

T∑
t=1

(
yit − x′

itβ − αi − ηi − uit

)2}∣∣∣∣∣ β,α,η,u,y,X ∼ χ2
(
NT + λ̄v

)
. (A.2)

Next, the conditional posterior of αi is

αi|σ2
α, σ

2
v , ηi,ui,h

2, b2,yi,xi ∼ N
(
ᾱi, s̄

2
)
, (A.3)

where s̄2 = σ2
α (1 + σ2

αlT
′Σ−1lT )

−1, ᾱi = s̄2lT
′Σ−1(yi − x′

iβ − ηi − ui) and Σ = σ2
vIT .

Further, σ2
α can be drawn from the following conditional posteriors:

σ−2
α (q̄α +α′α)

∣∣ β,η, σ2
η, σ

2
v ,u,h

2,y,X ∼ χ2
(
N + λ̄α

)
, (A.4)

Then, we draw ηi from the conditional density

ηi|β,α, σ2
α, σ

2
v ,h

2, b2,y,X ∼ f̂b(ηi|θi, bη, bθ) (A.5)

for i = 1, 2, . . . , N . Then, the conditional posterior of each component of b2 is

b2η|β,α,η, σ2
α, σ

2
v ,u,y,X ∼

N∏
i=1

f̂b(ηi|θi, bη, bθ)p(b
2), and

b2t |β,α,η, σ2
α, σ

2
v ,u,y,X ∼

N∏
i=1

f̂b(ηi|θi, bη, bθ)p(b
2), t = 1, 2, . . . , T. (A.6)
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Finally, we approximate the conditional posterior of uit by

uit|β,α,η, σ2
α, σ

2
v ,h

2, b2,y,X ∼ f̂h(uit|εi, hu,hε), (A.7)

for i = 1, 2, . . . , N and t = 1, 2, . . . , T .

The conditional posterior of each component of h2 is

h2
u|β,α,η, σ2

α, σ
2
η, σ

2
v ,u,y,X ∼

N∏
i=1

T∏
t=1

f̂h(uit|εi, hu,hε)p(h
2), and

h2
t |β,α,η, σ2

α, σ
2
η, σ

2
v ,u,y,X ∼

N∏
i=1

T∏
t=1

f̂h(uit|εi, hu,hε)p(h
2), t = 1, 2, . . . , T. (A.8)
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B Additional tables and figures

Figure B.1: Box and whisker plots of transient inefficiencies for a large US bank (1998-
2005) with the median inefficiency at different years.

1998 1999 2000 2001 2002 2003 2004 2005
0.12

0.14

0.16

0.18

0.20

0.22

0.24
Our estimator

1998 1999 2000 2001 2002 2003 2004 2005
0

0.1

0.2

0.3

0.4

0.5

0.6

55



Table B1: Simulation inefficiency factor for each parameter in our simulation studies.
Scenario 1 Scenario 2

Our Estimator Estimator A Estimator B Estimator C Estimator D Our Estimator Estimator A Estimator B Estimator C Estimator D
β0 11.5 15.7 11.7 18.4 15.0 12.4 14.8 18.1 18.6 12.0
β1 1.2 7.3 1.1 1.1 1.3 1.3 3.5 1.2 1.3 1.3
σα 1.8 13.0 2.2 1.2 2.7 1.7 9.2 1.3 1.1 3.8
ση — 3.4 — — — — 2.9 — — —
σu — 10.0 — — — — 14.9 — — —
σv 1.4 18.5 1.2 4.4 1.6 1.1 17.7 1.1 1.1 1.3
hu 19.2 — — 14.6 12.2 16.8 — — 15.7 8.0
h1 16.8 — — 16.2 9.3 16.8 — — 16.8 8.1
h2 17.6 — — 17.6 — 16.7 — — 17.6 —
h3 17.2 — — 14.4 — 18.7 — — 16.7 —
h4 18.1 — — 16.7 — 16.2 — — 16.4 —
h5 18.2 — — 16.2 — 15.6 — — 15.9 —
h6 15.5 — — 14.1 — 16.2 — — 16.6 —
h7 17.5 — — 16.8 — 17.0 — — 15.4 —
h8 18.0 — — 17.3 — 15.8 — — 15.7 —
h9 17.6 — — 17.1 — 16.6 — — 15.6 —
h10 17.7 — — 17.6 — 17.0 — — 15.6 —
bη 17.5 — 12.7 — 17.6 19.3 — 10.2 — 19.0
b1 16.8 — 16.6 — 17.3 16.9 — 17.3 — 16.8
b2 17.6 — 18.4 — 15.8 16.9 — 15.6 — 17.5
b3 17.4 — 17.4 — 16.7 14.2 — 17.8 — 18.2
b4 17.5 — 18.3 — 16.6 16.8 — 16.7 — 18.6
b5 16.1 — 18.5 — 16.1 16.1 — 17.7 — 17.9
b6 17.9 — 18.8 — 17.5 18.2 — 16.0 — 17.6
b7 16.7 — 17.6 — 16.2 18.3 — 16.5 — 18.3
b8 18.4 — 18.6 — 18.6 19.5 — 17.4 — 18.5
b9 19.3 — 18.0 — 12.5 16.4 — 17.7 — 13.2
b10 17.3 — 17.4 — 16.6 18.6 — 17.0 — 16.8

Scenario 3 Scenario 4
Our Estimator Estimator A Estimator B Estimator C Estimator D Our Estimator Estimator A Estimator B Estimator C Estimator D

β0 18.8 19.6 19.7 19.8 16.7 12.4 — — — 13.1
β1 1.2 3.8 1.2 1.3 1.3 1.3 — — — 1.6
σα 7.1 17.3 1.0 1.0 2.2 2.9 — — — 1.8
ση — 3.7 — — — — — — — —
σu — 19.7 — — — — — — — —
σv 1.2 19.7 1.1 1.4 1.1 1.2 — — — 1.9
hu 16.2 — — 16.5 9.6 18.2 — — — 11.6
h1 12.8 — — 14.2 8.7 16.9 — — — 8.5
h2 19.7 — — 16.9 — 17.2 — — — —
h3 18.2 — — 15.4 — 18.0 — — — —
h4 18.7 — — 17.5 — 17.5 — — — —
h5 18.9 — — 16.0 — 16.7 — — — —
h6 17.9 — — 17.5 — 17.5 — — — —
h7 18.0 — — 16.8 — 17.2 — — — —
h8 16.9 — — 17.5 — 16.7 — — — —
h9 17.6 — — 18.3 — 15.4 — — — —
h10 18.6 — — 17.4 — 16.8 — — — —
bη 17.7 — 10.6 — 17.3 17.7 — — — 17.4
b1 15.8 — 16.5 — 18.7 16.6 — — — 17.4
b2 17.2 — 17.0 — 18.5 14.8 — — — 18.8
b3 18.2 — 18.6 — 18.3 14.7 — — — 18.2
b4 19.1 — 16.9 — 19.6 15.7 — — — 16.9
b5 17.7 — 17.2 — 17.9 14.3 — — — 17.5
b6 19.2 — 18.0 — 18.2 16.0 — — — 16.6
b7 18.6 — 17.7 — 18.5 15.2 — — — 16.5
b8 17.2 — 17.1 — 18.6 17.0 — — — 17.4
b9 18.5 — 17.6 — 19.0 16.7 — — — 17.3
b10 18.9 — 17.5 — 18.6 15.4 — — — 16.3
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Table B2: Bandwidth estimates from our estimator for the cost frontier of large US banks
(1998–2005).

Parameters Posterior mean 95% Credible interval SIF
hu 0.0149 (0.0098, 0.0208) 42.8
h1 1.6017 (0.2195, 4.0787) 37.0
h2 0.4968 (0.0699, 2.8135) 42.3
h3 1.3053 (0.0931, 3.8154) 35.7
h4 0.2748 (0.0547, 2.4713) 51.3
h5 1.0831 (0.1407, 3.5606) 37.4
h6 0.0831 (0.0615, 0.1149) 41.1
h7 0.8506 (0.1241, 3.3292) 43.4
h8 0.1587 (0.0964, 0.3085) 47.0
bη 0.0019 (0.0012, 0.0028) 32.2
b1 1.5807 (0.4071, 3.1868) 30.5
b2 1.6170 (0.4580, 3.1802) 31.6
b3 1.5574 (0.3970, 3.0848) 32.9
b4 1.5896 (0.4817, 3.1578) 30.6
b5 1.6145 (0.4588, 3.2455) 33.1
b6 0.0586 (0.0333, 0.0929) 18.6
b7 1.5576 (0.3976, 3.1516) 32.1
b8 1.6084 (0.4456, 3.1661) 31.0
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