ETF2700/ETF5970 Mathematics for Business

Lecture 11

Monash Business School, Monash University, Australia

Outline

Last two weeks:

- Basic theory of interest
- Cash flow stream: sequences and series
- Present value techniques and applications
- Depreciation, inflation, and real growth
- Difference equations

This week:

More about difference equations

Student Evaluation of Teaching and Units, SETU

- All students are encouraged to complete SETU Survey on Moodle
- Your feedback is highly appreciated

Review: First-order linear difference equation A first-order linear difference equation

$$Y_{t+1} = aY_t + b$$

- *a*, *b* and Y_0 are given
- First-order: Y_{t+1} is fully determined by the 1-period lagged value Y_t
- Linear: Relationship between Y_{t+1} and Y_t is linear
- a = 1: An arithmetic sequence so $Y_t = Y_0 + t \cdot b$

イロト イポト イモト イモト 一日

Review: Solve $Y_{t+1} = aY_t + b$, for $a \neq 1$

1) Rewrite difference equation

$$\underbrace{Y_{t+1} - \frac{b}{1-a}}_{\widetilde{Y}_{t+1}} = a \cdot \underbrace{\left(Y_t - \frac{b}{1-a}\right)}_{\widetilde{Y}_t}$$

2) $\widetilde{Y}_t = Y_t - \frac{b}{1-a}$ is a geometric sequence

$$\widetilde{Y}_t = a^t \widetilde{Y}_0 = a^t \left(Y_0 - \frac{b}{1-a} \right)$$

3) Write

$$Y_t - \frac{b}{1-a} = a^t \left(Y_0 - \frac{b}{1-a} \right)$$
$$Y_t = \frac{b}{1-a} + a^t \left(Y_0 - \frac{b}{1-a} \right)$$

Review: Solution to $Y_{t+1} = aY_t + b$ When $a \neq 1$,

$$Y_t = \widetilde{Y}_t + \frac{b}{1-a} = a^t \left(Y_0 - \frac{b}{1-a}\right) + \frac{b}{1-a}$$

Example

In the last week's example, you have an initial savings of \$1000 in your bank account. In each month, you spend 80% of your last month's savings; and you receive an income of \$5000. To summarise, we have a = 0.2, b = 5000 and $Y_0 = 1000$. Thus

$$Y_t = 0.2^t \left(1000 - \frac{5000}{1 - 0.2} \right) + \frac{5000}{1 - 0.2}$$
$$= 0.2^t (-5250) + 6250$$

Review: An equilibrium state or stationary state A point Y^* is an equilibrium/stationary state if

$$Y_M = Y^* \quad \Rightarrow Y_t = Y^* \text{ for all } t \ge M$$

An equilibrium/stationary state Y^* is a solution of the equation

$$y = ay + b$$

because the subscript *t* can removed.

- When $a \neq 1$, there is only one equilibrium state $Y^* = \frac{b}{1-a}$
- When a = 1 but $b \neq 0$: There is no equilibrium state
- When a = 1 but b = 0: Any value is an equilibrium $Y^* \in (-\infty, \infty)$, because the sequence Y_t will never change

Review: Stability

• The sequence $Y_t = aY_{t-1} + b$ converges

$$Y_t \to Y^* = \frac{b}{1-a}$$

for all initial value $Y_0 \in \mathbb{R}$, if and only if |a| < 1.

In this case, we say the difference equation is globally asymptotically stable, or sometimes just stable.

General situations

- a > 1: Y_t is divergent if $Y_0 \neq \frac{b}{1-a}$
- 0 < a < 1: Y_t achieves uniform convergence
- -1 < a < 0: Y_t achieves convergence with oscillation
- a < -1: Y_t is divergent with oscillation if $Y_0 \neq \frac{b}{1-a}$

An Example: National Income

Consider a simple model with structural equations:

$$Y_t = C_t + I_t, \quad C_t = 0.8Y_{t-1} + 100, \quad I_t = 200$$

with $Y_0 = 1700$.

- Y_t is national income at time t
- C_t is consumption at time t
- I_t is the investment at time tTime Path

 $Y_t = (0.8Y_{t-1} + 100) + 200 = 0.8Y_{t-1} + 300$

Difference Equation: $Y_t = 0.8Y_{t-1} + 300$ with $Y_0 = 1700$

1) Rewrite the difference equation

$$Y_t - rac{300}{1 - 0.8} = 0.8 \cdot \left(Y_{t-1} - rac{300}{1 - 0.8}
ight)$$

2) $\widetilde{Y}_t = Y_t - \frac{300}{1 - 0.8}$ is a geometric sequence

$$\widetilde{Y}_t = 0.8^t \widetilde{Y}_0 = 0.8^t \left(1700 - \frac{300}{1 - 0.8} \right) = 200 \cdot 0.8^t$$

3) Write

$$Y_t = \widetilde{Y}_t + \frac{300}{1 - 0.8} = 200 \cdot 0.8^t + 1500$$

Equilibrium State and Stability

Starting with the difference equation $Y_t = 0.8Y_{t-1} + 300$ with $Y_0 = 1700$, we have now:

$$Y_t = \widetilde{Y}_t + \frac{300}{1 - 0.8} = 200 \cdot 0.8^t + 1500$$

- the equilibrium state is $y^* = \frac{300}{1-0.8} = 1500$
- the difference equation is **global asymptotically stable** since the corresponding *a* = 0.8 ∈ (-1, 1)
- $Y_t \rightarrow 1500$, as $t \rightarrow \infty$, regardless the value of Y_0

Relationship with differential equation Consider the differential equation

$$\frac{dy}{dt} = ky$$

Let y = y(t), and according to the first principle, we have

$$\frac{dy}{dt} = y'(t) \approx \frac{y(t+\Delta) - y(t)}{\Delta}$$

Hence, we have

$$\frac{y(t + \Delta) - y(t)}{\Delta} \approx ky(t),$$

$$y(t + \Delta) \approx (1 + \Delta k) \cdot y(t)$$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 4 目 か 4 合
11/26

Approximation by difference equation Recall that

 $y(t + \Delta) \approx (1 + \Delta k) \cdot y(t)$ Define $Y_{t+1} = y(\Delta + t)$ and $Y_t = y(t)$, then $Y_{t+1} \approx (1 + \Delta k)Y_t, \Rightarrow$ $Y_t \approx (1 + \Delta k)^t Y_0 = (1 + \Delta k)^t y(0)$

'is' a geometric sequence.

$$y(t) = Y_{t/\Delta} \approx (1 + \Delta k)^{t/\Delta} \cdot y(0)$$

・ロト・日・・ヨ・・ヨ・ヨーのへで
12/26

Revisit the differential equations

$$y(t) \approx (1 + \Delta k)^{t/\Delta} \cdot y(0) = \left((1 + \Delta k)^{\frac{1}{\Delta k}} \right)^{kt} y(0).$$

As $\Delta \to 0$, $\Delta k \to 0$ and
 $(1 + \Delta k)^{\frac{1}{\Delta k}} \to e$

so

$$y_t = e^{kt} y(0) = A e^{kt}$$

where A = y(0) is an arbitrage constant.

1.4

A more complicated example

1) Consider a simple model with structural equations

$$Y_t = C_t + I_t$$
, $C_t = 0.8Y_{t-1} + 100$, $I_t = 0.25(C_t - C_{t-1})$

with $Y_0 = 1700$ and $C_0 = 1000$.

2) To compute Y_1 , we have the observations for t = 1:

$$C_1 = 0.8Y_0 + 100 = 1460$$

 $I_1 = 0.25 \cdot (C_1 - C_0) = 0.25(1460 - 1000) = 115$
 $Y_1 = C_1 + I_1 = 1460 + 115 = 1575$

Recurrence relationship

$$I_t = 0.25(C_t - C_{t-1})$$

= 0.25 { (0.8Y_{t-1} + 100) - (0.8Y_{t-2} + 100) }
= 0.2Y_{t-1} - 0.2Y_{t-2}

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣

Recurrence relationship

$$Y_t = (0.8Y_{t-1} + 100) + (0.2Y_{t-1} - 0.2Y_{t-2})$$

= $Y_{t-1} - 0.2Y_{t-2} + 100$,

with $Y_0 = 1700$ and $Y_1 = 1575$, for t = 2, 3, ...

Time path for National Income

Is there an equilibrium state for Y_t ?

If Y_t has an equilibrium state Y_{*}, then it can be worked out by solving the following equation:

 $Y_* = Y_* - 0.2 Y_* + 100$

- It turns out to be that $Y_* = 500$.
- Do we have any method to justify the equilibrium state?

Solve the difference equation

$$Y_t = Y_{t-1} - 0.2Y_{t-2} + 100, \quad t = 2, 3, \dots$$

with $Y_0 = 1700$ and $Y_1 = 1575$.

Step 1: Express *Y*^{*t*} in the form of a difference equation:

$$Y_t - C = (Y_{t-1} - C) - 0.2(Y_{t-2} - C)$$

where we want to know the value C. Rewrite this equation as

$$Y_t = Y_{t-1} - 0.2Y_{t-2} + 0.2C$$

Thus, we obtain that 0.2C=100 and then C=500.

Transform Y_t to \tilde{Y}_t Step 2: Let $\tilde{Y}_t = Y_t - 500$. We have

$$\widetilde{Y}_t = \widetilde{Y}_{t-1} - 0.2 \widetilde{Y}_{t-2}$$

Can we solve \widetilde{Y}_t ? Rewrite the difference equation as

$$\widetilde{Y}_t - a\widetilde{Y}_{t-1} = K\left(\widetilde{Y}_{t-1} - a\widetilde{Y}_{t-2}\right)$$

What value is *a* and what value is *K*?

$$\widetilde{Y}_t = (a+K)\widetilde{Y}_{t-1} - aK\widetilde{Y}_{t-2}$$

Matching it with Step 1, we have

$$a + K = 1$$
 and $a \cdot K = 0.2$

Work out the values of *a* and *K*

$$a+K=1, \quad a\cdot K=0.2$$

Actually *a* and *K* are the two (different) roots of the quadratic equation:

$$x^2 - x + 0.2 = 0$$

Use the abc-formula to work out the two roots as

$$a = \frac{5 - \sqrt{5}}{10} \approx 0.2764$$
 and $K = \frac{5 + \sqrt{5}}{10} \approx 0.7236$

<ロト<</p>
<日ト<</p>
<日ト<</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<18/26</p>

From Y_t to \widetilde{Y}_t and then to \overline{Y}_t **Step 3:** Let $\overline{Y}_t = \widetilde{Y}_t - a\widetilde{Y}_{t-1}$, then

$$\overline{Y}_t = K\overline{Y}_{t-1}, \quad \Rightarrow \quad \overline{Y}_t = K^{t-1}\overline{Y}_1$$

where

$$\overline{Y}_1 = \widetilde{Y}_1 - a\widetilde{Y}_0$$

= (Y_1 - 500) - a(Y_0 - 500)
= 1075 - 1200a = 475 + 125\sqrt{5}

So we have

$$\widetilde{Y}_t - a\widetilde{Y}_{t-1} = K^{t-1}\overline{Y}_1 = \lambda \cdot K^t$$

where $\lambda = \overline{Y}_1/K = 875 + 75\sqrt{5}$

 $\widetilde{Y}_t \Leftarrow \widehat{Y}_t^* \Leftarrow \overline{Y}_t$ Step 4:

$$\widetilde{Y}_t = a \widetilde{Y}_{t-1} + \lambda \cdot \mathbf{K}^t$$

To proceed, we need to guess a solution of \tilde{Y}_t . Assume the solution is in the form of $\tilde{Y}_t^* = C_1 K^t$, then

$$C_1 K^t = a \cdot C_1 K^{t-1} + \lambda \cdot K^t$$

Dividing both sides by K^{t-1} , we obtain

$$KC_1 = aC_1 + \lambda K \quad \Rightarrow C_1 = \frac{\lambda K}{K - a} = 625 + 475\sqrt{5}$$

Write $\hat{Y}_t = \tilde{Y}_t - \tilde{Y}_t^* = \tilde{Y}_t - C_1 K^t$ then

$$\hat{Y}_t = a\hat{Y}_{t-1}, \Rightarrow \quad \widetilde{Y}_t - \widetilde{Y}_t^* = \hat{Y}_t = a^t\hat{Y}_0 = a^t(\widetilde{Y}_0 - C_1)$$

$$Y_t \Leftarrow \widetilde{Y}_t \Leftarrow \overline{Y}_t$$

Step 5:

$$\widetilde{Y}_t - C_1 K^t = a^t (\widetilde{Y}_0 - C_1) =: a^t \cdot C_2$$
$$\widetilde{Y}_t = C_1 K^t + C_2 \cdot a^t$$
$$Y_t = \widetilde{Y}_t + 500 = C_1 K^t + C_2 \cdot a^t + 500$$

where from above

$$C_2 = Y_1 - 500 - C_1 = 1075 - C_1 = 450 - 475\sqrt{5}$$

Plugging-in all other values C_1 , *a* and *K* obtained above, we derive the general formula of Y_t .

(ロ) (部) (E) (E) (E)

General Solution

Consider the second-order linear difference equation

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + b$$

In our example: $\phi_1 = 1$, $\phi_2 = -0.2$ and b = 100.

Suppose $\phi_1 + \phi_2 \neq 1$ and the characteristic equation is

 $x^{2} = \phi_{1}x + \phi_{2}$, or equivalently, $x^{2} - \phi_{1}x - \phi_{2} = 0$

which has two different roots a and K.

Let

$$Y_t = \mathbf{C}_1 \cdot \mathbf{a}^t + \mathbf{C}_2 \cdot \mathbf{K}^t + \frac{b}{1 - \phi_1 - \phi_2}$$

where C_1 and C_2 are arbitrary constants.

Initial Conditions If initial value Y_0 and Y_1 are given, we can solve out:

$$Y_0 = C_1 + C_2 + \frac{b}{1 - \phi_1 - \phi_2}, \ \ Y_1 = C_1 a + C_2 K + \frac{b}{1 - \phi_1 - \phi_2}$$

to derive C_1 and C_2 , where *a* and *K* are previously derived.

Stability

When |a| < 1 and |K| < 1, regardless what the initial values Y_0 and Y_1 are, we have

$$Y_{t} = C_{1} \cdot a^{t} + C_{2} \cdot K^{t} + \frac{b}{1 - \phi_{1} - \phi_{2}}$$

$$\rightarrow C_{1} \cdot 0 + C_{2} \cdot 0 + \frac{b}{1 - \phi_{1} - \phi_{2}}$$

$$= \frac{b}{1 - \phi_{1} - \phi_{2}},$$

which is the **equilibrium state**. In our example, we obtain the equilibrium state as

$$b/(1 - \phi_1 - \phi_2) = 100/(1 - 1 - (-0.2)) = 500$$

Time Path: National Income

$$Y_t = Y_{t-1} - 0.2Y_{t-2} + 100, \quad t = 2, 3, \dots$$

with $a \approx 0.2764$ and $K \approx 0.7236$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

A reminder to complete SETU (Student Evaluation of Teaching and Units)

◆□ → < @ → < E → < E → E</p>

26/26