ETF2700/ETF5970 Mathematics for Business

Lecture 10

Monash Business School, Monash University, Australia

1 / 27

メロトメ部トメミトメミト | 重

Outline

Last week (introduction to investment):

- Basic theory of interest
- Cash flow stream: Sequences and series
- \blacksquare Present value techniques and applications

This week:

- Depreciation, inflation, and real growth
- A glimpse of difference equation

Student Evaluation of Teaching and Units, SETU

- All students are encouraged to complete SETU Survey on Moodle
- Your feedback is highly appreciated

Depreciation

■ On July 1, 2019, your company purchased an equipment with a cost of \$10,500.

- Will you still "report" \$10,500 one year later?
- No. The value is **depreciated** due to the use of the equipment, or new technology, etc.
- \blacksquare The decline in the value of an asset is called depreciation.

Mathematics for depreciation

- $A_0 = 10500$: Original *book value* of the equipment
- *At* : The *book value* of the equipment after *t* years of depreciation
- *i*: Depreciation rate per year

The *book value* after one year is

$$
A_1 = A_0(1 - i) = A_0 - \underbrace{i \cdot A_0}_{\text{depreciated value}}
$$

How can we obtain the depreciation rate *i*? We need further information.

- \blacksquare The equipment will have a useful life of 5 years
- After 5 years, your company expects to sell it for \$500
- \blacksquare Mathematically, such information means $A_5 = 500$
- Can we determine the depreciate rate *i* using such information? Not yet. We need to cho[os](#page-2-0)[e a](#page-4-0)[m](#page-3-0)[e](#page-4-0)[th](#page-0-0)[od](#page-26-0)[.](#page-0-0) $\frac{1}{2}$ $\frac{1}{2}$

Straight line depreciation

Assumption: The value decreases by same **amount** each year

\n- \n
$$
A_1 = A_0 - i \cdot A_0 = A_0 (1 - i)
$$
\n
\n- \n
$$
A_2 = A_1 - i \cdot A_0 = A_0 (1 - 2i)
$$
\n
\n- \n
$$
A_3 = A_2 - i \cdot A_0 = A_0 (1 - 3i)
$$
\n
\n- \n
$$
A_t = A_0 (1 - it)
$$
 after *t* years of depreciation\n
\n- \n
$$
Solve \, A_5 = A_0 (1 - 5i)
$$
, that is,\n
\n

 $500 = 10500(1-5i)$ $\Rightarrow i \approx 0.1905 \Rightarrow A_1 = A_0(1-i) = 8500$

Reducing-balance depreciation

Assumption: The value decreases by same **rate** each year.

\n- \n
$$
A_1 = A_0 \cdot (1 - i) = A_0 (1 - i)
$$
\n
\n- \n
$$
A_2 = A_1 \cdot (1 - i) = A_0 (1 - i)^2
$$
\n
\n- \n
$$
A_3 = A_2 \cdot (1 - i) = A_0 (1 - i)^3
$$
\n
\n- \n
$$
A_t = A_0 (1 - i)^t
$$
 after *t* years of depreciation Solve\n
$$
A_5 = A_0 (1 - i)^5
$$
, that is,\n
\n

$$
500 = 10500(1-i)^5 \Rightarrow i \approx 0.4561 \Rightarrow A_1 = A_0(1-i) \approx 5711.44
$$

Straight Line vs Reducing Balance

In our example,

- Straight Line: $A_1 = 8500$
- Reducing Balance: $A_1 \approx 5711.44 < 8500$

Straight Line

- **a** an equal amount each period
- \blacksquare most commonly used because of its simplicity

Reducing balance

- \blacksquare more in the early years than in the later years
- depending on the type of asset, you may find this is more appropriate

Example

A machine cost for \$30,000 and is depreciated at 15% p.a. After 5 years, what is its value and the total amount of depreciation?

We have $A_0 = 30000\$ and $i = 15\%$.

Straight-Line Depreciation

 $A_5 = A_0(1 - 5i) = 30000 \cdot (1 - 5 \cdot 0.15) = 7500$ \$ $A_5 - A_0 = 30000 - 7500 = 22500$ \$

Reducing-balance Depreciation $A_5 = A_0 (1 - i)^5 = 30000 \cdot (1 - 0.15)^5 \approx 13311.16$ \$ $A_5 - A_0 \approx 30000 - 13311.16 = 16688.84\$

Inflation: Depreciation of currency

Suppose now

- vou have $P_0 = 100$ dollars cash
- each unit of good sells for 1\$: you can buy 100 units

You do not deposit the cash and one year later

- vou still have $P_1 = 100$ dollars cash
- the price increases by $r_i = 25\%$, so each unit sells for 1.25\$: you can buy $\frac{100}{1+r_i} = 80$ units In terms of purchasing power:

100\$ later = $\frac{1}{1+r_i} \cdot 100$ goods =0.8 \cdot 100\$ now

The dollars depreciated by $i = 1 - 0.8 = 0.2 = 20\%$ p.a.

Real Growth

Suppose you now have P_0 dollars cash and deposit it in the bank

- Receives interest: $P_0(1 + r)$
- All prices increase by inflation rate r_i
- \blacksquare The real value is

$$
\frac{P_0(1+r)}{1+r_i} = P_0 \cdot \left(\frac{1+r}{1+r_i}\right)
$$

 \blacksquare The **real growth** r_{real} :

$$
P_0 \cdot \left(\frac{1+r}{1+r_i}\right) = P_0(1+r_{\text{real}}) \Rightarrow r_{\text{real}} = \frac{1+r}{1+r_i} - 1
$$

A Glimpse of Difference Equation

Review: Sequence

In the 9th week lecture, a sequence is an ordered list of numbers

 $T_1, T_2, T_3, T_4, \ldots$

I Investment Project: T_n is the cash flow at time *n*

For convenience, in this lecture, we start from *Y*₀, the list becomes

 $Y_0, Y_1, Y_2, Y_3, Y_4, \ldots, Y_t, \ldots$

where Y_0 is a (given) "starting value".

Arithmetic sequence

- Recurrence relation: $Y_{t+1} = Y_t + d, t = 0, 1, 2, ...$
- General Formula: $Y_t = Y_0 + t \cdot d, t = 0, 1, 2, \ldots$

Geometric sequence

- Recurrence relation: $Y_{t+1} = K \cdot Y_t, t = 0, 1, 2, \ldots$
- General Formula: $Y_t = K^t Y_0, t = 0, 1, 2, \ldots$
- Each of the recurrence relations above is a so-called **difference equation**
- The general formula of *Y^t* is the **solution** to the difference equation: *Y*₀ is often given.

A simple example

Suppose you have an initial savings $Y_0 = 1000 in cash. In every month $t + 1$, $t = 0, 1, ...$,

vou spend 80% of your savings in the last month *t*; and vou receive an income \$5000 in cash For simplicity, we assume interest rate is $r = 0$.

Y^t = your savings in \$ at the end of month *t*.

We have a recurrence relation

 $Y_{t+1} = (1 - 0.8) \cdot Y_t + 5000, \quad t = 0, 1, \ldots$

13 / 27

K ロ K K 御 K K 著 K K 著 K の

and an initial condition $Y_0 = 1000$.

Your savings (in \$) at the end of month *t*:

$$
Y_{t+1} = 0.2 \cdot Y_t + 5000, \quad t = 0, 1, \ldots
$$

. . .

14 / 27

メロトメ 御 トメ 君 トメ 君 トー 君

with $Y_0 = 1000$.

 \blacksquare It is neither an arithmetic nor a geometric sequence

$$
Y_1 = 0.2 \cdot 1000 + 5000 = 5200
$$

$$
Y_2 = 0.2 \cdot 5200 + 5000 = 6040
$$

$$
Y_3 = 0.2 \cdot 6040 + 5000 = 6208
$$

$$
Y_4 = 0.2 \cdot 6208 + 5000 = 6241.6
$$

First-order linear difference equation

A first-order linear difference equation

$$
Y_{t+1}=aY_t+b
$$

- *a*, *b* and *Y*₀ are given
- **First-order:** Y_{t+1} is fully determined by the 1-period lagged value *Y^t*
- Linear: $Y_{t+1} = f(Y_t)$, where $f(x) = ax + b$ is a linear function
- Our example: $a = 0.2$ and $b = 5000$.
- If $a = 1$, the sequence would be an arithmetic sequence $Y_t = Y_0 + t \cdot b$

Solve our example

From sequence equation to difference equation

 $Y_{t+1} = 0.2 \cdot Y_t + 5000, \quad t = 0, 1, \ldots$

with $Y_0 = 1000$. Can we solve Y_t , for all $t = 1, 2, \ldots$?

1) Rewrite the difference equation

$$
\underbrace{Y_{t+1} - 6250}_{\widetilde{Y}_{t+1}} = 0.2 \cdot \underbrace{(Y_t - 6250)}_{\widetilde{Y}_t}
$$

2) Let $\tilde{Y}_t = Y_t - 6250$, which is a geometric sequence:

 $\widetilde{Y}_t = 0.2^t \widetilde{Y}_0 = 0.2^t \cdot (1000 - 6250) = -5250 \cdot 0.2^t$

Example continued

3) Write $Y_t = \overline{Y}_t + 6250 = -5250 \cdot 0.2^t + 6250$. Now we can compute all *Y^t* 's:

\n- \n
$$
Y_1 = -5250 \times 0.2 + 6250 = -1050 + 6250 = 5200
$$
\n
\n- \n $Y_2 = -5250 \times 0.04 + 6250 = -210 + 6250 = 6040$ \n
\n- \n $Y_3 = -5250 \times 0.008 + 6250 = -42 + 6250 = 6208$ \n
\n- \n $Y_{12} = -5250 \times 0.000000004096 + 6250 \approx 6249.99998$ \n
\n

 \blacksquare . . .

 $Y_{t+1} = 0.2Y_t + 5000$ with $Y_0 = 1000$

重

イロトス個 トメ ヨトメ ヨト

Equilibrium State: Example

In Excel sheet: We find that $Y_t = 6250$ for $t \ge 11$

- This is **not true** mathematically: *Y^t* is simply too close to 6250, and Excel has rounded off the error.
- After 11 months, your wealth will remain almost constant at the level 6250.
- Precisely, as $t\to\infty$, 0.2 $^t\to$ 0 and thus

 $Y_t = -5250 \cdot 0.2^t + 6250$ $\rightarrow -5250 \cdot 0 + 6250 = 6250$

We call this level \$6250 an **equilibrium state**, or a **stationary state**, of the difference equation in this example.

Solving $Y_{t+1} = aY_t + b$ with $a \neq 1$

Rewrite the difference equation

$$
Y_{t+1}-C=a\cdot(Y_t-C)
$$

with some constant *C*. What is the value of *C*? The above difference equation is equivalent to

$$
Y_{t+1} = a \cdot Y_t + (1-a)C
$$

Noting that $1 - a \neq 0$, so

$$
(1-a)C = b \quad \Leftrightarrow \quad C = \frac{b}{1-a}
$$

20 / 27

K ロ → K 御 → K 差 → K 差 → … 差

Solving $Y_{t+1} = aY_t + b$ with $a \neq 1$

1) Rewrite the difference equation

$$
\underbrace{Y_{t+1} - \frac{b}{1-a}}_{\widetilde{Y}_{t+1}} = a \cdot \underbrace{(Y_t - \frac{b}{1-a})}_{\widetilde{Y}_t}
$$

2) $\widetilde{Y}_t = Y_t - \frac{b}{1-a}$ is a geometric sequence

$$
\widetilde{Y}_t=a^t\,\widetilde{Y}_0=a^t\left(Y_0-\frac{b}{1-a}\right)
$$

3) Write
$$
Y_t = \tilde{Y}_t + \frac{b}{1-a} = a^t \left(Y_0 - \frac{b}{1-a} \right) + \frac{b}{1-a}
$$

メロトメ部 トメミトメミト 一番 21 / 27 Solution: $Y_{t+1} = aY_t + b$

When $a \neq 1$,

$$
Y_t = \widetilde{Y}_t + \frac{b}{1-a} = a^t \left(Y_0 - \frac{b}{1-a}\right) + \frac{b}{1-a}
$$

In our example $a = 0.2$, $b = 5000$, $Y_0 = 1000$, so

$$
Y_t = 0.2^t \left(1000 - \frac{5000}{1 - 0.2} \right) + \frac{5000}{1 - 0.2}
$$

= -5250 \cdot 0.2^t + 6250

22 / 27

すロチオ個 トメミトメミト 一番

Equilibrium State: $Y_{t+1} = aY_t + b$

A point *y* ∗ is an equilibrium/stationary state if

$$
Y_{t_0} = y^* \quad \text{ and } \ Y_t = y^* \text{ for all } t \geq t_0
$$

Recall $Y_{t+1} = f(Y_t)$ with $f(y) = ay + b$. An equilibrium/stationary state *y* ∗ is a solution of the equation

$$
y = f(y) \iff y = ay + b
$$

When
$$
a \neq 1
$$
: $y^* = \frac{b}{1-a}$

When $a = 1$ but $b \neq 0$: no equilibrium state

When $a = 1$ but $b = 0$: any $y^* \in (-\infty, \infty)$

The difference equation

$$
Y_{t+1}=aY_t+b, \quad a\neq 1,
$$

has only an equilibrium state $y^* = \frac{b}{1-a}$. When $Y_0 = \frac{b}{1-a}$ 1−*a*

■
$$
Y_1 = aY_0 + b = a \cdot \frac{b}{1-a} + b = b \cdot \frac{a+(1-a)}{1-a} = \frac{b}{1-a}
$$

\n■ $Y_2 = aY_1 + b = a \cdot \frac{b}{1-a} + b = b \cdot \frac{a+(1-a)}{1-a} = \frac{b}{1-a}$

When $Y_0 \neq \frac{b}{1-b}$ 1−*a*

- As $t \to \infty$, can we have $Y_t \to \frac{b}{1-a}$?
- Does Y_t converge to the equilibrium state $\frac{b}{1-a}$ in long run? **■** Recall that

$$
Y_t = a^t \left(Y_0 - \frac{b}{1-a}\right) + \frac{b}{1-a}
$$

Yes if $a^t \to 0$ that means $|a| < 1.$ The difference equati[on](#page-0-0) is globally asymptotically stable, or s[om](#page-22-0)[e](#page-24-0)[ti](#page-22-0)[m](#page-23-0)e[s](#page-0-0) [st](#page-26-0)[ab](#page-0-0)[le](#page-26-0).

An Example: A "divergent" sequence

 $Y_{t+1} = 2Y_t + 10$ with $Y_0 = 10$

イロト イ部 トイヨ トイヨト つくへ

25 / 27

An Example: A "constant" sequence

 $Y_{t+1} = 2Y_t + 10$ with $Y_0 = -10$

イロトス 御 トス ヨ トス ヨ トー 目 26 / 27

An Example: Convergence with oscillation

K ロ ト K 母 ト K ヨ ト 27 / 27