ETF5930 Financial Econometrics

Lecture 1

Monash Business School, Monash University, Australia

Unit Information

Education Team

- Chief Examiner and Lecturer: Professor Xibin Zhang
- Tutor: Ms Lu Wang

Teaching Activities

- Seminar: 2-hour face-to-face lecture which is recorded Tuesday 2pm–4pm
- Tutorial: 1-hour face-to-face tutorial Wednesday 11–12 and 12–13
- Workshop: 1-hour online learning to be supervised by the lecturer or tutor Thursday 2pm–3pm

Communication

- xibin.zhang@monash.edu
- lu.wang@monash.edu
- https://handbook.monash.edu/2025/units/ETF5930

Overview

Statistical and econometric tools to

- analyse and model key characteristics of empirical distributions of asset returns;
- model and estimate the simple capital asset pricing model and its extensions; and
- test for various financial market hypotheses.

This unit covers

- modelling, estimating and analysing properties of stationary and non-stationary financial time series;
- modelling and estimating simple and multivariate long-run relationships among financial variables; and
- modelling and estimating ARCH/GARCH volatilities, singleand multiple-factor capital asset pricing models.

Prohibition

ETF3300 (ETF5330) and ETC3460 (ETC5346)

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

Learning Outcomes

- Describe, interpret and critically analyse financial data.
- Apply the simple and multivariate models and theory to model the relationship among financial variables, interpret the results, and conduct reliable statistical inference.
- Test for stationary behaviour of financial time series.
- Model the long-run relationships among financial time series.
- Model and forecast the time-varying volatility of returns on financial assets.
- Be proficient at econometric modelling of financial data using R, which is widely used in statistics and econometrics.

Assessment

- ETF5930 does NOT contain a hurdle requirement that you must achieve to be able to pass the unit.
- Assignment 1 (15%) will be due by the 7th week.
- Assignment 2 (10%) will be due by the 11th week.
- Assignment 3 (15%) will be due by the 12th week.
- Final exam (60%) is an individual exam to be conducted via eExam under supervision.

Submission details

- Turnitin can help you discern when you are using sources fairly, citing properly, and paraphrasing effectively in accordance with University policy. These are skills essential to all academic work.
- More information about Turnitin can be found HERE

Assignments

- Each student will complete all assignments on their own.
 Detailed information on the contents of the assignments will be provided during the semester via the Moodle website.
- You are required to upload your completed assignment answers in PDF through Moodle submission.
- Your assignment can be either
 - entirely handwritten; or
 - entirely typed; or
 - a mixture of handwritten and typed answers.
- You may take photos of handwritten answers and paste them on a Word document, and save it as PDF.

Computing Tool: R

- We will be using R for computing purposes.
- Tutorials of the first two weeks will be focused R.
- It will be exciting to be able to learn R in 2 hours!

What is R?

- A programming language for statistical computing and graphics.
- Open-source and widely used in data science, statistics, and machine learning.
- Developed by Ross Ihaka and Robert Gentleman in 1993
- Supported by a large community with extensive packages and libraries.
- Install R via https://cran.r-project.org/

What is RStudio?

- RStudio is an integrated development environment (IDE) for R.
- Provides features such as:
 - Script editor
 - Console
 - Environment and History panel
 - Plots and Help panel
- Download RStudio at

https://posit.co/download/rstudio-desktop/

Final Examination

- The Final Exam questions are all based on (a) lecture slides; and (ii) tutorial questions.
- Formula sheets will not be provided. Should you need to use formulae, they will be provided in the questions.
- You do NOT need to use R to answer exam questions.
- R commands are not examinable, but you are required to know how to interpret outputs obtained from R.

Materials

- Professional accreditation mandates that the Final Exam for ETF5930 must be a closed-book examination.
- You are not permitted to use any notes, texts, websites or other reference material in answering the questions.
- Students will not be allowed to access Moodle.
- Any physical calculators are permitted in the Final Exam.

Topic 1: Properties of Financial Data

- Asset Return Calculations:
 - Simple returns
 - Continuous compounded returns (log returns)
- R
- Descriptive Statistics: mean and variance
- Introduction to Portfolio Theory

Simple Returns

Consider purchasing an asset (for example, stock, bond, mutual fund, etc.).

- Let *P_t* denote the price of an asset that pays no dividends at time *t*:
- Let P_{t-1} denote the price at time t-1:
- Then the simple return or simple net return (denoted as R_t) on an investment in the asset between t - 1 and t is defined as

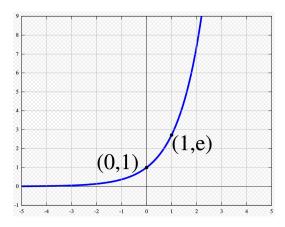
$$R_{t} = \frac{P_{t} - P_{t-1}}{P_{t-1}}$$

An Example

- Consider a one-month investment in Microsoft stock
- Suppose you buy the stock in the month t 1 at $P_{t-1} = \$85$ and sell the stock the next month for $P_t = \$90$
- Assume no dividend is paid during this month
- The one-month simple return is $(90 85)/85 \approx 5,88\%$

Continuously Compounded Returns

Exponential function exp(x) also written as e^x . The exponential function y = exp(x) is always positive and increasing in *x*.



Natural logarithm function ln(x) also written as log(x)

- The computation of continuously compounded returns requires the use of natural logarithm functions.
- The natural logarithm function, ln(x), is the inverse function of exp(x).
- This is to say that $\ln(x)$ is defined such that $x = \ln(\exp(x))$.
- ln(x) is also written as log_e(x) which is often written as log(x) if there is no confusion.

Properties of ln(x)

 $\ln(xy) = \ln(x) + \ln(y)$ $\ln(x/y) = \ln(x) - \ln(y)$

Continuously Compounded Returns

- Let R_t denote the simple monthly return on an investment.
- Continuously compounded monthly return is defined as

 $r_t = \ln(1 + R_t)$

Note that given R_t , we can calculate r_t because

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{P_t}{P_{t-1}} - 1$$

Therefore,

$$r_{t} = \ln(1 + R_{t}) = \ln\left(1 + \frac{P_{t}}{P_{t-1}} - 1\right) = \ln\left(\frac{P_{t}}{P_{t-1}}\right)$$
$$= \ln(P_{t}) - \ln(P_{t-1})$$

r_t is the difference in log prices and usually is called the log return.

Continuously Compounded Returns

To summarise, the the log returns r_t is defined as

 $r_t = \ln(1 + R_t)$, or $r_t = \ln(P_t) - \ln(P_{t-1})$.

Example

- In the earlier example: P_{t-1} =85; P_t =90 and R_t =0.0588
- The monthly log return can be computed in two ways:

$$r_t = \ln(1 + R_t) = \ln(1 = 0.0588) = 0.0571$$

$$r_t = \ln(P_t) - \ln(P_{t-1}) = \ln(90) - \ln(85) = 0.0571$$

• The one-month investment in Microsoft stock yielded a 5.71% per month return.

Coding in R

Where to start?

> getwd()

[1] "\\\ad.monash.edu/home/User069/xzhang/Documents"

```
> setwd("C:\\Users\\xzhang\\R")
```

> getwd()

[1] "C:/Users/xzhang/R"

It is my working directory, where I save coding script file and data

Choose an R Editor

- R Editor: Click on "File/New File/R script"
- RStudio
- Notepad++

Load Data

xdata<-read.csv(file="sp.vix.csv",header=T)
Excel file sp.vix.csv is in the same folder before reading it
Note that the symbol > is the command prompt

Fundamentals

- Any words behind # but in the same row are "comments"
- At this stage, do not worry about "[1]". It is the row number of the result.

Check some special functions

```
> abs(-0.64)
[1] 0.64
> log(10)
[1] 2.302528
> log(exp(0.1989))
[1] 0.1989
> log(exp(0.1989))
[1] 0.1989
> rep(1,10)
> matrix(0,nr=2,nc=3) # What is the output?
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つんの

Working with the loaded data

Check the data structure

> xdata[1:3,] #Print rows 1 to 3

DateSP500VIX110/23/20061377.02100.00210/24/20061377.3899.41310/25/20061382.2298.96

Summary statistics

mean(xdata[,2]) # arithmetic mean of SP500 sd(xdata[,2]) # standard deviation of SP500 median(xdata[,2]) # median of SP500 quantile(xdata[,2],0.25) # 25 percent quantile quantile(xdata[,2],0.5) # 50 percent quantile max(xdata[,2]) # maximum value of SP500 min(xdata[,2]) # minimum value of SP500 range(xdata[,2]) # the smallest and largest values

Time Series Data

Time Series

- Time series data consists of observations collected across time.
- Data may collected:
 - annually (once a year)
 - quarterly (four times a year)
 - monthly (every month)
 - weekly
 - daily

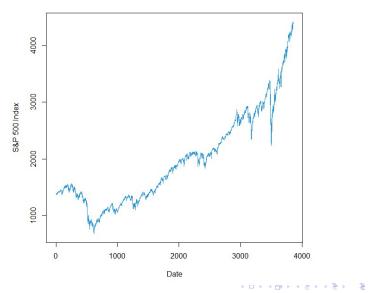
Time Series Plot

xdata<-read.csv(file="sp.vix.csv",header=T)
plot(xdata[,2], typ='l', lty=1, col=4, xlab="Date",
ylab="S&P 500 Index", main="Time Series Plot of S&P
500")</pre>

<ロト <回 > < 回 > < 回 > < 回 > < 回 > < 回

Time series plot of daily closing index of the Microsoft stock

Time Series Plot of S&P 500



20/41

How can we add the dates to the x-axis?
plot(xdata\$Date, xdata[,2], typ='l', lty=1, col=4,
xlab="", ylab="SP 500 Index", main="Time Series Plot
of S&P 500")

xdata\$Date <- as.Date(xdata[,1], format="%m/%d/%Y")
Adjust date format if necessary</pre>

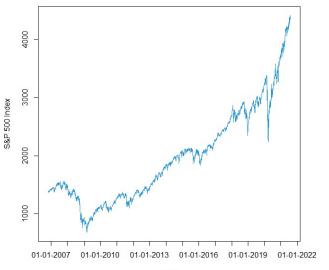
plot(xdata\$Date, xdata[,2], type='1', lty=1, col=4, xlab="Date", ylab="S&P 500 Index", main="Time Series Plot of S&P 500", xaxt='n')

tem=pretty(xdata\$Date, n=15)

```
axis(1, tem, format(tem,"%d-%m-%Y"))
```

Time series plot of daily closing index of the Microsoft stock

Time Series Plot of S&P 500



How to compute simple return series

sp <- xdata[,2] # 2nd column of xdata
n <- length(sp)
rt.sim <- (sp[2:n]-sp[1:(n-1)])/sp[1:(n-1)]*100
element by element operations</pre>

How calculate continuously compounded returns

- If we have calculated simple returns, we can calculate continuously compounded returns as
 rt.cc <- log(1+rt.sim)*100 # ln(1+R_t)
- We can directly calculate continuously compounded returns: rt.cc <- (log(sp[2:n])-log(sp[1:(n-1)]))*100</p>

Summary Statistics

Population measures

Let Y_t denote an asset's return. As it can take any value, we treat Y_t as a random variable.

- The mean of Y_t denoted as $E(Y_t)$, is the expected value of Y_t , which is the average of Y_t .
- The variance of Y_t denoted as $Var(Y_t)$, is defined as

$$\operatorname{Var}(Y_t) = E(Y_t - E(Y_t))^2,$$

which measures the variation of Y_t .

Sample measures

Let $y = (y_1, y_2, ..., y_n)$ denote a sample of observed asset returns.

Sample mean is defined as

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} (y_1 + y_2 + \dots + y_n).$$

Sample variance is defined as

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{1}{n} \left((y_{1} - \overline{y})^{2} + (y_{2} - \overline{y})^{2} + \dots + (y_{n} - \overline{y})^{2} \right).$$

Sample standard deviation is

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2}.$$

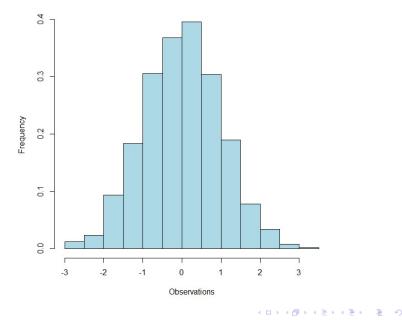
Both mean and standard deviation have the same units as the original data

25/41

Histogram

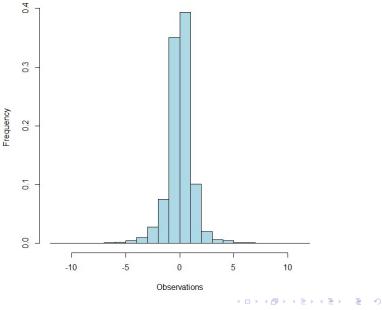
- A histogram describes the shape of the distribution of the data x<-rnorm(1000,0,1) #generate random numbers~ N(0,1) hist(x, breaks=16, col="lightblue", freq=FALSE)
- Can we plot the histogram of simple returns of S&P 500 Index? sp <- xdata[,2] # 2nd column of xdata n <- length(sp) rt.sim <- (sp[2:n]-sp[1:(n-1)])/sp[1:(n-1)]*100 hist(rt.sim, breaks=22, col="lightblue", main="Histogram of S&P 500 returns", freq=FALSE)

Histogram of Normal



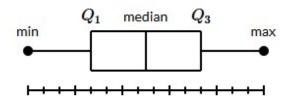
27/41

Histogram of S&P 500 returns



Box and Whisker plot

A box and whisker plot, also known as a box plot, displays the five-number summary of a set of data. The five-number summary is the minimum, first quartile, median, third quartile, and maximum.

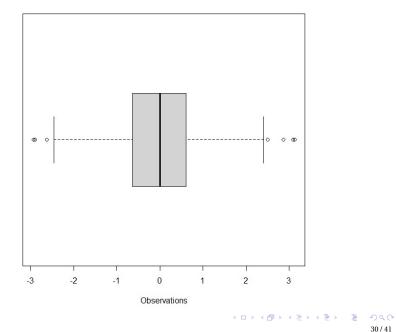


R code

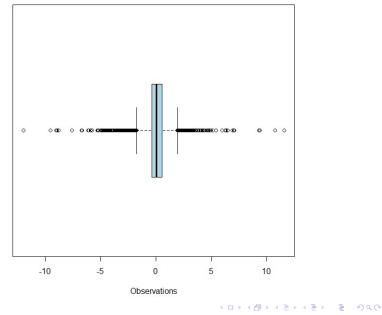
x<-rnorm(1000,0,1)
boxplot(x,xlab="Observations",main="Box Plot of
Normal",horizontal=TRUE)</pre>

イロト イポト イヨト イヨト 一臣

Box Plot of Normal



Box Plot of S&P 500 returns



31/41

Stationarity

A time series Y_t is defined to be stationary if

- $E(Y_t)$ does not depend on t (constant mean)
- $Var(Y_t)$ is finite and does not depend on t
- Cov(Y_t, Y_{t-j}) depends on *j* and not on *t*, for j = 1, 2, ...,

Are financial time series stationary?

- Asset price series (such as Microstft stock and S&P 500 index) do not seem to be stationary as they do not have a constant mean. These asset prices do not have the tendency to return to their means.
- Simple return series or log return series seem to be stationary as they hover around some constant average/mean value over the sample period.
- Unlike asset price series, asset return series has no obvious change in mean over the sample period.

(日)

Introduction to Portfolio Theory

Portfolio theory

- Professor Harry Markowitz developed portfolio theory, which looks at how investment returns can be optimized.
- Economists had long understood the common sense of diversification of a portfolio.
- The expression that "do not put all your eggs in one basket" is certainly not new.
- Markowitz showed how to measure the risk of various securities and how to combine them in a portfolio to get the maximum return for a given risk.

Portfolios of Two Risky Assets

- Imagine a portfolio made up of shares in just two companies: Amazon (denoted as A) and GM (denoted as B).
- Let r_A denote monthly log return on A
- Let r_B denote monthly log return on B.
- We assume to have information about the means, variances and covariances of these two returns.
- The mean of expected value of the returns:

$$\mu_A = E(r_A)$$
, and $\mu_B = E(r_B)$.

These are our best guess for the monthly returns.

Variances

$$\sigma_A^2 = \operatorname{Var}(r_A) = E(r_A - \mu_A)^2 \text{ is the variance of } r_A,$$

$$\sigma_B^2 = \operatorname{Var}(r_B) = E(r_B - \mu_B)^2 \text{ is the variance of } r_B,$$

while standard deviations are $\sigma_A = \sqrt{\sigma_A^2}$ and $\sigma_B^2 = \sqrt{\sigma_B^2}$.

How risky is an asset?

- We say that the higher σ_A is, the riskier the asset A. Why?
- A higher σ_A implies that the asset's returns are more dispersed around the mean, indicating greater uncertainty and potential variability in returns.

Covariance

Population measure

$$\sigma_{AB} = \operatorname{Cov}(r_A, r_B) = E\left[(r_A - \mu_A)(r_B - \mu_B)\right].$$

Sample measure

$$\widehat{\sigma}_{AB} = \widehat{\text{Cov}}(r_A, r_B) = \frac{1}{n} \sum_{i=1}^n (r_{i,A} - \overline{r}_A)(r_{i,B} - \overline{r}_B).$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

Co-movement between two assets

- If Cov(*r_A*, *r_B*) > 0: the two return series tend to move in the same direction.
- If Cov(*r*_A, *r*_B) < 0: the two return series tend to move in opposite directions.
- If $Cov(r_A, r_B) = 0$: the two return series tend to move independently.

Correlation

• It measures the strength of the dependence between the returns r_A and r_B

$$\rho_{AB} = \frac{\sigma_{AB}}{\sigma_A \sigma_B}$$

- If ρ_{AB} is close to one, then the two return series mimic each other closely.
- If ρ_{AB} is close to zero, then the two return series show very little relationship.

Example

This table provides information about two assets' returns

μ_A	μ_A	σ_A^2	σ_B^2	σ_A	σ_B	$ ho_{AB}$
0.175	0.055	0.067	0.013	0.26	0.11	-0.164

- Asset A is the higher risk asset with an annual return of μ_A =17.5% and standard deviation of σ_A =26%.
- Asset B is the lower risk asset with an annual return of μ_B =5.5% and standard deviation of σ_B =11%.
- The two assets are slightly negatively correlated with ρ_{AB} =-16.4%

Portfolios of Two Risky Assets

- Our investment in the two stocks forms a portfolio.
- The relative weights of the two stock holdings in the portfolio are w_A and w_B , which are assumed to be positive.
- Assume that $w_A + w_B = 1$ as all wealth is invested in A or B.

Portfolio Return

• The return on the portfolio is given by

$$r_p = w_A \times r_A + w_B \times r_B.$$

• The mean or expected return of r_p is

$$E(r_p) = w_A \times E(r_A) + w_B \times E(r_B) = w_A \times \mu_A + w_B \times \mu_B.$$

■ The variance of *r_p* is

$$Var(r_p) = w_A^2 \times Var(r_A) + w_B^2 \times Var(r_B) + 2w_A \times w_B \times Cov(r_A, r_B)$$
$$= w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_{AB}$$

- The standard deviation of r_p is the square root of $Var(r_p)$.
- A positive covariance ($\sigma_{AB} > 0$) will tend to increase the portfolio variance.
- A negative covariance ($\sigma_{AB} < 0$) will tend to reduce the portfolio variance.

Diversify risk

- Finding assets with negatively correlation (or negatively covariance) returns can be very beneficial, because risk, as measured by portfolio standard deviation, is reduced.
- If we cannot do that, at least avoid shares whose returns are very highly positively correlated with each other (don't put all eggs in one basket).

Variance of portfolio return

Recall that

$$\rho_{AB} = \frac{\sigma_{AB}}{\sigma_A \sigma_B}$$

The covariance can be expressed as

$$\sigma_{AB} = \rho_{AB} \times \sigma_A \times \sigma_B$$

イロト イポト イヨト イヨト 二日

Variance of portfolio return

The variance of r_p can be expressed as

$$\operatorname{Var}(r_p) = w_A^2 \times \operatorname{Var}(r_A) + w_B^2 \times \operatorname{Var}(r_B) + 2w_A \times w_B \times \operatorname{Cov}(r_A, r_B)$$
$$= w_A^2 \times \sigma_A^2 + w_B^2 \times \sigma_B^2 + 2w_A \times w_B \times \rho_{AB} \times \sigma_A \times \sigma_B$$

Example

• Consider creating some portfolios using the asset information given in an earlier Table.

μ_A	μ_A	σ_A^2	σ_B^2	σ_A	σ_B	$ ho_{AB}$
0.175	0.055	0.067	0.013	0.26	0.11	-0.164

- Assume an equally weighted portfolio with $w_a = w_B = 0.5$
- The Mean of the portfolio is

$$r_p = w_A \times r_A + w_B \times r_B = 0.5 \times 0.175 + 0.5 \times 0.055 = 0.115$$

<ロト <回 > < 回 > < 回 > < 回 > < 回 > < 回

Example: Portfolio variance

$$Var(r_p) = w_A^2 \times Var(r_A) + w_B^2 \times Var(r_B) + 2w_A \times w_B \times Cov(r_A, r_B)$$

= 0.5² × 0.067 + 0.5² × 0.013² + 2 × 0.5 × 0.5 × (-0.164) × 0.26 × 0.11
= 0.0177

The standard deviation of r_p is

$$\sigma_p = \sqrt{\operatorname{Var}(r_p)} = \sqrt{0.0177} = 0.133$$

Comparison among the standard deviations

- Portfolio standard deviation: $\sigma_p = \sqrt{\text{Var}(r_p)} = 0.133$
- Standard deviation of r_A : $\sigma_A = 0.26$
- Standard deviation of r_B : $\sigma_A = 0.11$

Notice that the portfolio risk σ_p is less than the risk of asset A. This reflects risk reduction via diversification.

41/41