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Abstract

Based on a work by Knothe et al. (Wear 189 (1995) 91-99) a fully analytical solution for the temperature field, produced by sliding
contact on the surface of a halfplane, is presented applying the Laplace transform technique. Further, the stress state in the halfplane under
plane strain is analysed. A full solution is presented for the whole stress state as well as its extrema. All results are given in dimensionless
form depending only on two parameters (dimensionless thermal penetration depth, Poisson’s ratio). © 1997 Elsevier Science S.A.
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1. Introduction

Recently, Knothe and Liebelt published in Wear, [1], a
detailed study on the temperature field due to the sliding
contact in a wheel-rail system. They derived the following
boundary value problem for the temperature 7 described with
respect to an x—z coordinate system moving in the x-direction,
positioned at the leading edge of the contact zone with a
length of 2a; see Fig. I:

oT T
x=0: T=0for0<z<w : (1.2)

oT |
z=0: —A—=g(x) for0<x<2a :
& (1.3)
T .
Pl 0 for x>2a
Heat conduction is ignored in the longitudinal x-direction.

v is the forward velocity of the rolling wheel axis, « the
thermal diffusivity, A the thermal conductivity. 4 is the heat
flow rate due to the rolling/sliding contact being proportional
to the contact pressure p(x),

g=aup(xjr, (1.4)

& is the heat partitioning factor, w the coefficient of friction
and ¢ the sliding velocity.

Knothe and Liebelt demonstrated, that there exists only a
small difference in the maximum surface temperature 7,
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Fig. 1. Coordinate system fixed to the wheel at the contact interface.

heat input

if the contact pressure shows an ellipsoidal or constant dis-
tribution. Finally, they evaluated the temperature T, as

—
T = 1.25 “—"a—’;“—p (2)
L)

Po is the maximum contact pressure (the average pressure
p=mp,/4).
The surface temperature in the interval [0,2a] is

T=T,Wx/2a z=0 0<x<2a (3.1)

/2
Introducing a thermal penetration depth §= 2K leads
v
jie]

2 8
=10 (3.2)
Y A

. va . .
Since the Peclet number P,=— is often used in the liter-
ature, P, is related to the 8 as

Ty
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Knothe and Liebelt [ 1] gave neither explicit relations for
the temperature field 7(x,z) nor expressions for the stresses
due to this temperature field.

Therefore, it is the aim of this short paper to demonstrate
that under the assumption of a constant surface contact pres-
sure p=const, an analytical expression for the temperature
field can be found. Furthermore, the according stress state
will be evaluated.

A review on the literature published with respect to the
temperature field due to friction can be found at the end of
Section 2.

Finally, two theoretical aspects are discussed:
® Since the differential equation is of a parabolic type, an

infinite velocity of the propagating thermal wave results.

This may lead to an erroneous temperature distribution

for a very high velocity v. In this case a temperature

wave must be considered originating from an extended

Fourier heat conduction law leading to an add1t1onal term

O*T/dx>.
® The problem formulation does not include thermoelastlc

coupling. In this case a dilatation rate term must be added

to the right side of Eq. (1). However, thermoelastic cou-
pling influences the temperature distribution only very lit-
tle for metals like steel as it has been shown in a recent

study by Tsuji et al. [2] for a moving heat source on a

plate.

2. Temperature field

As in Ref. [1], the Laplace transform technique is used,
however, for a dimensionless problem formulation. Introduc-
ing the reduced coordinates

x=2af z=06( 4
the problem to be solved is
T *T __
ag agz ©(42)
§<0: T=0for0<{<®» LTTO(43)
9 )
{=0: a—:g=—gxf0r0£§sl .
' (4.4)
T
>
8§ =0 for £>1

The Laplace transform L(7) = 7(s) is applied with respect
to the reduced x-coordinate £ and yields

J s o
L(CI/\)TE - (5.1

L(4d/A) is the Laplace transform of the function

5
QX[H(@—H(&—I)] (5.2)

H(&-&,) is the Heaviside step function with H(£—£)) =0
foré<& and H(E— &) =1for é= &, )

Employing the convolution theorem and takmg the step
function as the function with the shifted argument £—u, we
obtain for the temperature field

5
T(£0) = f q’%nv z(ie-\/?é) diufor0<é<l (6.1)
) Vs

£
8 1
T(&ED = fq‘—lnv L(—e"/;-[)du for 1 <é<ee (6.2)
S s

The inverse of the Laplace transform of ( 1/\,/;)e" Ve is:

1 \/s_;) 1
—¢ = €
v L{ - ~

It is possible to give analytical expressions for both the inte-
grals Eqs. (6.1) and (6.2) by substituting the integration
variable i by w via the relation £€2/4u=w". After some cal-
culations one obtains

T(£0) = T{VE exp(f

45)—@;[1 - i@ﬂ}

for0<é<1 (7.1)

— 2 —_— -2
T( gag) = Tmax{\/g eXp(Tg) - é:_ 1 exp( El))

Efli A

for 1 < é<e. N , (7.2)

—2/4u (6.3)

erf( &) is the well-known error function

&

erf(g) = e~ dr

\/_

for details see e.g. Abramovitz and Stegun [3], chapter 7.
A simple expression exists for the surface temperature
T(£L=0):

T(EL=0) =T, WEé for0<é<l (8.1)

TTUEL=0) =T (VE—VE—1) for 1 <é<o (8.2)

1
T(£0=0)=T,,—= for &> 1 (8.3)
We

The temperature is continuous along the surface, although
not differentiable at £=1. With respect to the variation of T
with the depth one obtains for the temperature T at £=1 as

L
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Fig, 2. Temperature profiles for various depths,

A graph of the reduced temperature T( £,0) / T, can be taken
from Fig. 2.

The solution Egs. (7.1) and (7.2) can easily be handled
for technical applications since all input parameters are
“‘packed’’ into the maximum temperature T,,.

Carslaw and Jaeger presented in their famous book [4],
§29 the same solution as Egs. (7), although in a slightly
different notation. Their results go back to the research by
Jaeger done on heat flow involving moving sources of heat
fifty years ago. However, they express the temperature field
T{&{) in an integral formulation by using the line source
solution given in §10.7 of their book and refer with respect
to the integral to a numerical evaluation. An integral formu-
lation for Eqgs. (7.1) and (7.2) can also be found in the
surface mechanics literature; see Ref, {5], chapter 2A.

To the knowledge of the authors the first detailed discus-
sion on the heat flow during wheel-rail contact was presented
by Tanvir in 1980 in Wear [6]. However, this paper contains
two shortcomings:
® In the first part of the paper [6], Tanvir analysed the

temperature fleld for the interval 0 < &< 1 (in the current

notation). However, the *‘step’” character of the heat input

(see Eq. (5.2)) was omitted.
® In the second part of the paper [6] the *‘step” character

of the heat input is considered for the interval 1 < <o,

However, the inverse of the Laplace transform is obviously

wrong, since the expression with the erf function (part of

Egs. (7.1) and (7.2) is missing). This error does not

influence the surface temperature, which agrees fully with

Egs. (8.1) and (8.2).

Recently a Chinese group. [7], published the same resuits as
Tanvir, [6], more or less copying Tanvir’s results.

Yuen published in 1988 also an approximate solution for
T(£) [8], however, losing the error function contribution
in Egs. (7.1) and (7.2).

The surface temperature Egs. (8.1) and (8.2) can be found
in the contact literature, too, also for various Peclet numbers;
see K.L.. Johnson's book, [9], chapter 12 and in the tribology
literature; see e.g. Williams’ book, [ 10], chapter 3.8.

Finally it should be noted that Mow and Cheng published
a Fourier transform of the temperature field (in an analogous
way to Egs. (6.1) and (6.2}) already 30 years ago; see Ref.
[11]. However, they did not present the temperature field
itself as given in Egs. (7.1) and (7.2).

The authors, however, did not find any publication, where
the explicit temperature field is given as expressed by Egs.
(7.1) and (7.2).

3. Stress field

Thermoelastic contact problems with frictional heating are
scarcely treated in the literature. For a short review the reader
is referred to a recent paper by Yevtushenko and Kulchytsky—
Zhyhailo [ 12], dealing with the frictional contact of a curved
punch on a halfspace and a paper by Levytskyi and Onysh-
kevych [13], considering the problem of a frictional strip
contact. One major difficulty for this kind of problems exists
in the fact that the change in geometry of the actual config-
uration due to thermal expansion may influence significantly
the contact area as well as the contact pressure. Very recently,
Yevtushenko and coworkers published an integral equation
concept; see Refs. [ 14-16], which allows the calculation of
the unknown pressure distribution taking into account also
the thermal deformation field. Such a difficulty does not
appear in the case at hand, since a constant contact pressure
is assumed and all parameters are hidden in one single param-
eter T,,... The problem at hand reduces to a thermoelastic
one.

The heating of the rail is restricted to a small area in the
railhead. A preliminary three-dimensional finite element
study with an actual rail configuration has shown that the
heated area is clamped by the surrounding head like by a pair
of tongs. A comparison calculation revealed that the thermal
stresses can be reproduced with sufficient accuracy by aplane
strain model, if one considers a section through the rail and
represents it by the halfplane —o <x <o, 7>0. Therefore,
we consider an elastic halfplane under plane strain conditions,
to which the temperature field Egs. (7.1) and (7.2) is applied.
The reference temperature T,.,= 0. We introduce the modulus
of elasticity E, Poisson’s ratio v and the integral thermal
expansion coefficient a.

To find the stress field in the halfplane one may follow the
well-known concepts of thermoelasticity; see e.g. Parkus
[17].

The generalized Navier equations are

0. 2(1+v) oT
Azti-i-l_zvadw(uj):ﬁag;
= 5= i +83+E)2 (9.1)
RN TR Ty '

where u; is the displacement vector in the x, y, z directions.
Introducing the reduced coordinates

x=2af y=2am =6,
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and the reduced temperature 8=7T/T,,,, leads e.g. for i=1
(x-direction) to -

Pu, u, 4a® Fu, 1 6211[ Fuy | 2a Fuy
Sttt vy
g7t & ¥ 1-2v\0g ofdn 6 3L
2(1 +v) 96
a2 Tmax— 9.2
=2y CCHmuge ©.2)

The transformation ¢ = (2a/8) £ leads to a set of differen-

tial equations which is equwa entto Eq. (9.1), althoughwith

i= § 7 g
A corresponding stress component is e.g.
_E 1 [%_{_ v (%_}_61@_}_@ 8113)
T 02a 0 " 1—2v\ag 8n 8 oL
1+
-7 aQaTmax0:| (10)
—2v

Since the displacements «; are proportional to a2aT,,,,, the
stress components are proportional to a7 .y, too!

The stress problem is, therefore, solved in the & 7, Z space
for the dimensionless stress o' = 0/ EaT .. Two para-
meters appear in the solution, namely the Poisson’s ratio v
and the dimensionless thermal penetration parameter 5=
8/2a. v appears in the generalized Navier Eq. (9), 6/2a in
the function T=T,...0(&, {) after substituting £ by (2a/8)Z.

A proper analytical technique to find the stress field in the
plane strain case is the establishment of a thermoelastic poten-
tial (& m, D) see Ref. [17], chapters 2.4 and 3.1, leading
to o

Ap=1T2 =T, (1L1)

and the corresponding Airy stress function

——((# ®) (11.2)

¢ is a particular solution of the differential Eq. (11.1).
According to the Neuber—Papkowch concept, i is repre-
sented as

=&+ LU

W, Yy are two harmonic functions which must be selected so
that the stress boundary conditions are fulfilled which are

(11.3)

(=0: o'yg=0 7g=0 (11.4)
The reduced stress components are
= (= $)
TET Iy ap
(U= ) REEY
a$ 1+v afz lf/
! l :

TaT o 1+yagag

Exactly this concept was followed already by Mow and

_ Chen, [11], in the Fourier transform space and later by Ling
—in [57. Tsujietal. [2], followed a similar technique applying

both a Laplace transformation and a generalized Fourier
transformation. However, the inverse of the Laplace trans-
formation can only be found by applying numerical tech-
niques. Finally, the work by Goshima et al., e.g. Ref. [ 18],
should be mentioned, which is based on the Muskhelishvili
complex stress functions and the temperature field due to
Mow and Chen [11].

Since the temperature field is defined in piecewise manner
(see Egs. (7.1) and (7.2)) the authors do not see an analyt-
ical way to solve the problem for stresses in closed form.
Therefore, the authors prefer the finite element method as

- numerical concept since this method requires only first

derivatives of the interpolation functions for the calcula-
tion of the stresses instead of second derivatives; see
Eq. (12). Further, the finite element method has become
a well established concept with effective error control
algorithms.
The finite element method is now employed to find a full
solution field of the thermoelastic problem, for which the
_relevant parameter is the dimensionless thermal penetration
depth

~ 0 _ /| K
8—2—\’& (13)

Considering steel with k=9.1 X 107® m? s 7! and realistic
dataforaand v (¢a=10"?m, v=100kmh~'=28ms™")
leads to §~0.004. This means that, due to {=8¢/2a, the
coordinate 7 is only 0.004. Relative to this entity the heat
input interval 0 < £< 1 is very long. Therefore, an extremely
fine mesh must be applied near the surface of the halfplane.
Rectangular elements with a linear displacement field are
used with length A £=0.0025 and a height of AZ=0.0005.
In one element column 20 elements are applied in the ’
direction. In the area — 1 < ¢<4, 0<{<0.01 a total number

-of 40 000 elements is used. Outside of this area infinite ele-
ments are attached to represent the halfplane —»<
< —1.0, 4<é<®, 0.01 < <. The program ABAQUS
Standard [19] is used. The relative temperature 6(§, 5 in
each nodal point is generated by a preprocessor. The calcu-
lations were performed for plane strain conditions as
explained above. The total calculation time to gain one solu-

---tion set ( parameters 8, v) is about 7 min of CPU on an IBM-

3BT RS/6000 workstation.

4. Results

For the stress state the following can be stated (see Figs. 3—
5 which are drawn for = 8/2a=0.004, v = 0.3 and the plane
strain state):
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v
-— 0
¢ ¢=1.0
Contact area
¢=0.0
Oix VALUE
1 ~1.07E+00
2 -9.61E-01
3 ~8,518-01 0
4 -7,428-01
5 -6.332-01 ~
3 ~5,238-01 6:0.004
7 -4,148-01
8 -3.05E-01 V=O3
9 -1.956-01
10 -B.50E-02
(=0.04
Fig. 3. Isolines for the dimensionless compressive stress component ¢ ., §=0.004, v =0.3: plane strain; magnification in £ direction 50:1.
A
—0
£ £10
Contact area
(=00
J
Oxx VALUE
1 +2.22E-16
2 +1.00E-03
3 +2.00E-03
4 +3.00E-03
5 +4,00E-03
{=0.04

Fig. 4. Isolines for the dimensionless tensile stress component o'y §=0.004, v =0.3; plane strain; magnification in & direction 50:1.

A%
-—0
£ &L0
Contact area
=0.0
|
s
Tyy VALUE
1 +2.22E-156 —
2 +5,33E-04 6_0004
3 #1,07E-03 1/——0.3
4 +1.60E-03
| ) )
1
2
=0.04

Fig. 5. Isolines for the dimensionless transverse stress component 'y §=0.004, » =0.3; plane strain; magpification in £ direction 50:1.

® A maximum compressive longitudinal stress component ® A tensile longitudinal stress components o', occurs
O (0 =0/ (EaT ) ) occurs near the trailing end of beneath the trailing end of the contact area; see Fig. 4. Its
the contact area in the region £€=0, Fig. 3, at the surface. maximum appears in a depth of £~ 0.02.
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Fig. 6. Maximum compressive dimensionless stress component ¢’ as func- -

ion of Poi '« ratio v d di he di onless th I . tion of Poisson’s ratio v depending on the dimensionless thermal penetration
tion of Poisson s ratio » depending on the dimensionless thermal penetration depth &. Actual stresses are found by multiplication with EaT,.

depth &. Actual stresses are found by multiplication with Ea7 ...
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0.005 ¢ (Z 0.002
o 6=0.004
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v Fig. 9. Maximum tensile dimensionless stress component o', as function
Fig. 7. Maximum tensile dimensionless stress component o', as function of Poisson’s ratio v depending on the dimensionless thermal penetration
of Poisson’s ratio v depending on the dimensionless thermal penetration depth 5. Actual stresses are found by multiplication with EQT s

depth 5. Actual stresses are found by multiplicaiion with EaT ..
Figs. 8 and 9 give the corresponding values for o’'y,.

® Contours of the tensile transverse stress component It is also interesting to note that the stress components
oy, (0, =0,/ (EaTy,,)) can be seen in Fig. 5. Their o, are very small, even zero. This can be checked by the
maximum appears in a depth of £~ 0.02. o',y isaprincipal equilibrium conditions for a volume element keeping in
normal stress. T mind that due to the plane strain state 7, =7,.=0. The
It should be noted that the actual stress state is confined following relations hold: -

to in a very thin layer near the surface. Therefore, a mag- e -0 %2

nification of 50:1 has been applied for the coordinate axis ay ax

z, { in Figs. 3-5. o a7 Ao -
Fig. 6 presents a diagram for the maximum compressive ——= —E=——= (14.1)

surface stress o', as a function of v for various 5. Heﬁée o o ax
Fig. 7 demonstrates, in the same way, the maximum ¥o,, Fo,

Oy =0, (%,2) (14.2)

tensile surface stress o' .. e a2
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An inspection of o, along a line z=constant reveals
that o, can be well approximated by straight line seg-
ments. Hence, 3¢ ,/9z° is zero nearly everywhere. Since
o, must be zero at the surface, it takes only very small
values elsewhere.

For sake of comparison the authors shortly comment on
the results by Yevtushenko and Chapovska [14]. They
investigated the plane strain case for a circular and a par-
abolic punch. Their analysis only yields compressive stress
components o ,. Furthermore, they reported small, how-
ever, not zero o, components.

5. Conclusion

An analytical solution {or the temperature distribution due
to the sliding contact of a wheel-rail system in a coordinate
system moving with the contact area can be given in a dimen-
sionless form. The corresponding stress field in an elastic half
plane as well as the extremes of the stress components are
calculated by applying the finite element method for plane
strain conditions. Diagrams are presented which allow the
user to gain an immediate estimate of the stress state by
multiplication of the reduced stress components by EaT

max-
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Appendix A. Nomenclature

a half contact width in forward direction (mm)

E Modulus of elasticity (MPa)

F Airy stress function (N)

D Do contact pressure (MPa), p, its maximum

g heat flow rate (W mm™2)

T temperature (K)

T ax maximum contact temperature (K)

u; displacement component in the x, y, 7 direction

v forward velocity (ms™")

Uy sliding velocity {(ms™')

x & coordinates along the surface of the x—z-halfplane

»n coordinates orthogonal to the x—z-halfplane

o6 ¢ coordinates in the x—z-halfpiane orthogonal to the
surface

thermal expansion coefficient (K™')

heat partition coefficient { 1)

dimensionless temperature (1)

thermal penetration depth (mm)
dimensionless thermal penetration depth (1)
Peclet number ( 1)

thermal diffusivity (m*s™!)

a

AV R

A thermal conductivity (Wm ™' K™

b, i parts of the Airy stress function

o’ stress component {( MPa)

oy dimensionless stress component (1),
o' y=0,EaT

i coefficient of friction (1)

v Poisson’s ratio (1)
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