Printed in Great Britain. All rights reserved

International Journal of Plésticity, Vol. 13, No. 3, pp. 201213, 1997
Pergamon © 1997 Elsevier Science Ltd
0749-6419/97 $17.00+0.00

PII: S0749-6419(97)00008-9

A CONTINUUM ANALYSIS OF TRANSFORMATION PLASTIC
LOCALIZATION IN CERAMICS

Wen-Yi Yan,! Qing-Ping Sun®* and Keh-Chih Hwang!

'Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People’s Republic of China
Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong

(Received in final revised form 20 January 1997)

Abstract—In the continuum mechanics framework, the transformation plastic localization phe-
nomena observed in zirconia ceramics is analysed by using the micromechanics model of Sun,
Hwang and Yu (Journal Mech. Phys. Solids 1991 39, 507). The condition for the onset of locali-
zation is derived and the orientation of localization is predicted. The analytic results are compared
with the available experimental observations on the localization in ceramics under uniaxial loading
and good agreement is found. © 1997 Elsevier Science Ltd
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I. INTRODUCTION

Localization, an important aspect of material instability, is a deformation pattern invol-
ving one or more intense deformation bands. These bands, which often occur in a wide
variety of solids, e.g. ductile metals, rocks and concrete, are an outcome of material
response rather than a consequence of boundary constraints. Recently, research on
localization became so active that Needleman and Tveergaard (1992) declared that
everybody loves a localization problem. However, with the fast development of new
structural materials, detailed theoretical and experimental investigations on the mechanical
behaviour of structural ceramics have been carried on. It was found that the stress-
induced martensitic transformation can not only enhance the fracture toughness in ZrO,-
containing ceramics (see McMeeking and Evans, 1982) but also can result in inducing
deformation localization in ZrO,-containing ceramics under certain thermomechanical
conditions. For example, Rose and Swain (1988) observed some shear bands near the
crack tip in Ce-TZP ceramics at lower temperature and the bands extended up to 2-3mm
from the crack tip at —40°C. In a four-point bending test of Ce-TZP, deformation band
on tensile surfaces was obtained by Reyes-Morel and Chen (1988).

As the transformation plastic localization is considered to be the outcome of the trans-
formation constitutive behaviours, the analyses about this localization will contribute to
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the research of transformation constitutive theories. Deformation localization is usuaily
the precursor of material rupture. For example, the fracture of uniaxial tensile specimen
was preceded by the appearance of localized bands in the experiment performed by Sun er
al. (1994). Obviously, the analyses of transformation plastic localization to discover the
critical conditions and the evolution laws of the localization will be of great significance
for both the toughening research and the reliability analysis of structural ceramics.

A lot of research on plastic localization in metals has been carried out. In 1992, a spe-
cial supplement of Applied Mechanics Reviews (1992) was published to report the theore-
tical, numerical and experimental results on the subject. Compared to this, the research, in
particular the theoretical research, on deformation localization induced by transformation
is rarely done. In 1983, Budiansky et al. (1983) applied a constitutive model of pure
volume dilatant transformation to derive the condition of onset localization. However,
many investigations (see, for instance, Chen and Reyes-Morel, 1986) show that transfor-
mation plasticity in ZrO,-containing ceramics generally exhibits shear and dilatation
effects of comparable magnitude. Because localization is the result of the constitutive
behaviour of the material, it is important to apply a constitutive model that can reflect the
real transformation behaviour to analyse the localization induced by the transformation.
In 1991, based on micromechanics, thermodynamics and microscale transformation
mechanism considerations, Sun et al. (1991) established a micromechanics constitutive
model that takes into account both the dilatation and shear effects of the transformation.
Using the model of Sun et al. (1991), Stam (1992) derived the condition of the onset of
localization in the case of plane strain under proportional loading.

The purpose of this paper is to perform a continuum mechanics analysis on the locali-
zation condition of ceramics under complex loading history. The analysis is based on the
micromechanics constitutive model developed by Sun er al. (1991). In order to deal with
general cases, the research methods applied in investigating the localization of plastic
deformation in metals is used in this paper. The critical condition for the localization is
derived under complex loading conditions and the orientations of the localized bands
under uniaxial tension and uniaxial compression are calculated. These results are consis-
tent with experimental observations.

II. ANALYSES OF TRANSFORMATION PLASTIC LOCALIZATION

11.1. The localization bifurcation condition

In the continuum mechanics framework, some basic theories for plastic flow localization
have been gradually established by Hadamard (1903), Thomas (1961), Hill (1962) and
Mandel (1966); a comprehensive review is given by Rice (1976). Here we only consider the
infinitesimally deformed and rate-independent ZrO,-containing ceramics.

In a homogeneously deformed material element subjected to quasi-static increments of
deformation, if a localized band with orientation n appears, at the onset of the localiza-
tion, there are two conditions that must be satisfied. First, compatibility requires

AF = qn ()

where A denotes the difference of a field quantity inside and outside the band, (") denotes
differentiation with respect to time, F is the displacement gradient and q represents the




Localization in ceramics 203

amplitude of the jump in the displacement gradient rate. So the corresponding strain rate
jump AF is given by

L]
AE = §(qn + nq). )
Second, the rate equilibrium across the band interfaces implies
n-AY =0, (3)

where  is the stress rate.
If the constitutive model can be expressed by

> =K E, 4)

where K is the tangent stiffness tensor, then substituting eqns (2) and (3) into eqn (4), we
have

[niKyni]q = 0. %

For a non-trivial solution (q # 0), the determinant of the coefficient matrix in eqn (5)
must be zero, i.e. : : :

det[n; Kym] = 0. (6)

Hill (1962) remarked that the localization condition (6) coincides with the loss of ellipti-
city of the equations governing incremental quasi-static deformation.

11.2. The constitutive relation of transformation plasticity

The constitutive model of transformation plasticity established by Sun et al. (1991) is
used in this paper. According to this model, the plastic strain rate during the transfor-
mation is '

= 2QQ:8 ™

where £ is the rate of hardening, which is expressed by

B (14-100E o, 2E
h= 1)[4L5(1+v)(1—v)‘4 15 ®
and Q is expressed as
M
Q= +d—y. )

e

In egns (8) and (9), § is the rank-two unit tensor, E is the Young’s modulus, v is the
Poisson ratio, e?? is the constant lattice volume dilatation during p — m transformation,
A is a dimensionless constant reflecting the transformation shear deformation of the
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microscopic particles, « is a dimensionless hardening factor sM is the average deviatoric

stress in the matrix of the constitutive element and oM 3 sM:sM )]/ 2. The total strain
rate E can be expressed by

E=M: +%QQ:Z':, (10)

where M is the isotropic elastic compliance tensor of both inclusion and matrix.
From egn (10), it is easy to derive the inverse form as

- L:Q)Q: L)}
Y=|L-—>+-— 11
Lot (ah
where L is the isotropic elastic stiffness tensor, which can be expressed by
2v
L = [(Szkaﬂ + 8idjx) g 5u5k1] (12)

in which g is the elastic shear modulus.

I1.3. The critical condition for the onset of transformation localization

According to bifurcation conditions (2) and (3) and applying the research method of
Asaro and Rice (1977), the transformation plastic localization is analysed as follows.

From eqn (11), we have
L:Q)Q: L)] :
Y =|L—~~——T""""1AE. 13
[ hTQ:L:Q =
Multiplying eqn (13) from the left with n- and using eqns (2) and (3), we obtain

1
[n-L-n—m(mL:Q)(Q:L-n)]~q=0. (14)

The inverse (n- L -n)~' of matrix (n- L - n) exists for elastic stiffness tensor L, so eqn (14)
is equivalent to

(Lo (L:QQ:L-n]
[3_ A+Q:L:Q ]‘1‘0' (13)
Denoting
d=@ L-n)'-(n-L:Q), e=Q:L.n, (16)
and multiplying eqn (15) on the left by e-, we have
(- )e-q) = (17)

h+QLQ
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From eqns (2), (7) and (10), we obtain

Q

AEP =;Z'+—m—e'q‘ (18)

As elastic deformation can’t induce localization,
e q#0if q£0. 19)
Thus, from eqn (17) we have

h=e-d-Q:L:Q

=-Q:[L-(L-n)-@-L-n)™" @ L)]:Q. (20
Denoting o
N=L-@L-:n)-(n-L-n)~'-(n-L), 1)
then
h=-Q:N:Q. (22)

As eqn (14) is equivalent to eqn (15), we can prove that the critical condition (22) for
localization is equivalent to the condition (6). However, after such conversion, it is much
simpler to use eqn (22) to analyse the localization.

Asaro and Rice (1977) have proved that N is the incremental elastic stiffness tensor
governing plane stress states in a plane perpendicular to n and

h=-Q:N:Q<0, (23)

where the *“ =" holds if, and only if, Q has no components in the plane perpendicular to n.
Comparing eqn (8) with eqn (23), we can see that the hardening factor & must satisfy

a<l (24)

for the onset of localization. Under the condition of % < 0(x < 1) we can see, from eqn
(7), that the constitutive response is softening. So the localization can only possibly
appear in the ZrO,-containing ceramics with perfect plasticity or strain softening.

By using eqns (8), (9), (12) and (21), the critical condition (22) becomes

A2

2 MM A M
EJT)Z[(,‘z,.njsf.}f) —2(1 = vymis? skj] = 21 +0) sl |
e : : 25

+%A2 + a[lt%’/ﬁ +2(1+ v)(spd)Z] =0.

From eqn (25), we can see that the critical condition for the onset of localization not only
M

depends on ;’q but also depends on material parameter 4, ¢ and &”?, which characterizes

the loading history.
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For the transformation of pure volume dilatation, 4 = 0. From eqn (25), in this case,
the condition for the onset of localization is

2E | a2
=% () (26)
and the orientation n of the localization is not defined. From eqn (10), it is easy to obtain
that the slope of the curve of the hydrostatic stress with respect to the volume strain %’1
is —% w. This conclusion is in agreement with that of Budiansky et al. (1983). '
In another special case, if the transformation has no volume dilatation (679 = 0), the
critical condition (25) becomes

a=0 or h=-—

16-20v 14—10v _
45 Y95 T

1
— [(n,vn,-s,-,)2 — 21 = V)mrs)sit ] + 0. 7

()

Obviously, it doesn’t depend on the material parameter 4.
In general, as both A and ¢?¢ are material constants, for convenience in mathematics
treatment, a new material constant $, is defined as

A =3B, (28)
Thus, eqn (25) is simplified as
98° My2 M M s
(G—éw)i[(ﬂtnjszj )" = 2(1 — vmensy; Skj] —6p(1+ U)? 29)

+of2(1 +v) +2.8 — 208 + (32— 4v)p* = 0.

At the onset of the localization, the material parameters v, 8 and « must satisfy eqn
(29). At the same time, for given material parameters and loading history, the orientation
n of the localized band can be calculated from (29). For proportional loading, Sun et al.
(1991) have proved that

== (30)

where S is the macroscopic applied deviatoric stress tensor and 2, = (3S: S) 12,

Substituting eqn (30) into eqn (29), we can obtain the critical condition for the onset of
localization under proportional loading as:

982 neyS
2 LS, = 201 = vymgniSySy] — 6801+ ) K

+a[2(1 +v) + (28 - 2] + 32— 4)p> =0.

(29)

In the following, detailed analyses are given for the cases of uniaxial tension and uniaxial
compression.
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IL4. Analysis of localization in uniaxial tension and compression

IL.4.1.  Uniaxial tension. Uniaxial tension belongs to the case of proportional loading.
If the tensile axis is selected as the x; axis of the coordinates and the tensile stress is Xy,
the non-zero components of the applied deviatoric stress S are

2 1
511=5211, Szz=533=—5211 (31)
and the equivalent stress is
. =X (32)

From eqns (9), (10), (30), (31) and (32), the incremental stress—strain relation can be
expressed as S

. 1 1 —v)(1 +2B)? :
En=—={1+ (=) +26) Iy
E 14— 10v ,
2+§TI§ﬁ (¢—1)
f - (33)
Ezz=—1- (1 =v){1 +2801 - B) v |EL
E <2+14_10Uﬁ2>(a—1)
L 5(1+v) N
Substituting eqns (31) and (32) into eqn (29'), the critical condition becomes
98°n — 6[(2 — v)B* + (1 + B + (2.2 — 2w)p? G4
+2(1+v)B+ a[2(1 +1)+ (2.8~ 2v)52] =0,
where #; is the component of orientation n along the x| axis.
Denoting T
a=9p
b=—6[(2—v)*+ (1 +v)B] N ES)

c=(22-20)8+2(1+v)B+ of2(1 + v) + (2>.8 —>21g)/32>],

as —1<n <1, for the onset of localization, the material parameters v, # and o must "satisfy "
the following condition ’ - :

b2 —dac >0 IS
—b+ /b —dac (36)
1 > T > 0. . S

Substituting eqn (35) into eqn (36), for any given Poisson ratio, the domain of « and g for
the onset of localization under uniaxial tension can be obtained. These domains for
v=0.3 and v=0.5 are drawn in Figs 1(a) and (b), respectively.
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Fig. 1. The range of « and 8 for the onset of localization under uniaxial tension with different v. (a) v= 0.3 and
{(b)v=0.5.

(a)

¢4 a

Fig. 2. The variation of the orientation n; with respect to the parameter « for different given 8 and v under
uniaxial tension. (a) v = 0.3 and (b) v = 0.5 (because of the symmetry, here only the positive »; is considered).

In these domains, it is easy to obtain the orientation n; for any given material parame-
ters &, B and v, by solving eqn (34). The variation of the orientation »;, for different given
v and B, with respect to « is shown in Fig. 2.

11.4.2. Uniaxial compression. In the case of uniaxial compression, the relation (29) still
holds. If the compressive stress axis is selected as x| axis and the compressive stress is Xy
(<0), the non-zero components of the deviatoric stress and the equivalent stress are

2 1
Sn=3Zi, Snp=Sp=-3In, Xe=—X G
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and the incremental stress—strain relation is expressed as

- -
—_ —_ 2 .
En =—é-. I+ (}4 —U)I(Olv 2P =n
(2 R ’32)(“ -]
- - (38)
E,, =% (1 —12)(_1 1—055)(1 +8 b lEL
(2 +———52>(a— 1)
L 5(1 +v) )
Substituting eqn (37) into eqn (29'), we obtain
96°n — 6[2 — VB> — (1 + )] + (2.2 — )P 39
=21+ v)B+afl2(1+v)+ 28 - 2v)p*] = 0.
Denoting
a; =9p° :
by=—6[2—v)p—(1+ws . (40)

er = (2.2 =208 = 201 + V) + 21 +v) + (2.8 — 218,
the condition for eqn (39) to have a solution for n; € [~1, 1] is

b%—4a10120 o

—by /b3 —4dayc (41)
> 1 1 1 120_

- 2a;

Substituting eqn (40) into eqn (41), we can also draw the domain of o and B for the onset
of localization under uniaxial compression at different given v. These domains are shown
in Fig. 3. In comparison with Fig. 1, the hyperbolic domain in uniaxial compression is
much smaller than that in uniaxial tension. That means for some material, localization
may not appear under uniaxial compression although it appears under uniaxial tension.
From Fig. 3, we can also see that strain softening does not certainly lead to the onset of
localization. For example, for v = 0.25 and g = 1.5, the range of « for the onset of loca-
lization is & € [0, 0.236]. The stress—strain curves corresponding to a = 0 ~ 0.236 is sche-
matically illustrated in Fig. 4. Figure 4 shows for materials with « € [0,0.236], a very
sharp load drop will happen during the transformation and the tangential modulus is
positive during the load drop. By solving eqn (39), the variation of the localized orienta-
tion n with respect to o, for different given v and g, are shown in Fig. 5.

IL.5. Comparison between theory and experiment

Recently, a uniaxial tensile experiment of Ce-TZP has been carried out by Sun et al.
(1994). The measured stress—strain curve in their experiment is shown in Fig. 6. From
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Fig. 6 and eqn (33) we can determine the material parameters «, 8 and v. According to the
curves of axial stress—axial strain and axial stress—radial strain during the elastic defor-
mation, we have v =0.42. As there exists a stress plateau during transformation, the
material can be approximated as elastic-perfectly plastic, i.e. @ = 1. From Fig. 6, we can
also see that Ey» << Eij, by eqn (33), which means 8 — 1. In the special case of o =1
(h =0), from Fig. 1 and Fig. 2, we obtain that the localization can only happen when
B =1 and the orientation of the localization is n; = 1, i.e. the localized band is perpendi-
cular to the tensile direction. By further analysing eqn (34), it shows that this result is
independent of parameter v. In their experiment, two band-like regions, one of which is
shown in Fig. 6, normal to the tensile stress axis are observed. The above analysis is in
agreement with the experimental observations.

(a) (b) y=03

4
8 2
©
S
- g -
elliptic @ 2- B elliptic
1 -
1 1 0 L 1 1 1
08 0.8 1 0 0.2 0.4 0.6 0.8 1
a ¢3

Fig. 3. The range of ¢ and 8 for the onset of localization under uniaxial compression with different v (a)v = 0.25,
(b)y = 0.3.

le

~
) =0.236
a=0

>
Ell

Fig. 4. Schematical illustration of the stress—strain curve for the onset of localization under uniaxial compression
(v=10.25and 8= 1.5).
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—p=05
—B=15
.- B=30

0.4 08

Fig. 5. The variation of the orientation n; with respect to the parameter « for different given B and v under
uniaxial compression. (a) v = 0.25, (b)v = 0.3 (because of the symumetry, here only the positive #; is considered).

o (MPa)

] 1 L
0 0.2 0.4 0.6
€ (%)

Fig. 6. Stress-strain curve in uniaxial tensile experiment.

Fig. 7. One of the localized band perpendicular to the tensile direction in the experiment of Sun er al..
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Table 1. Theoretical prediction for the localization
orientation under uniaxial compression

v B o Theoretical prediction n;

0.25 1.5 0~0.236 0.078~0.778

Under uniaxial compression, the localized bands in ZrO-containing ceramics were also
observed experimentally by Reyes-Morel and Chen (1988). According to their experiment,
the angle between the band and the compression axis is 33°C (i.e. n) = 0.545). They
observed that the occurrence of macroscopic shear localization is preceded by a sharp
load drop, which is qualitatively consistent with the above analysis. It is easy to obtain v
from the measured stress-strain curve during the elastic deformation and 8 can be
obtained from the ratio of axial transformation plastic strain to radial transformation
plastic strain by egn (38). In their experiment, v = 0.25 and 8 = 1.5. However, we are
unable to directly determine the parameter « from their measured stress—strain curve. For
B=1.5 and v=10.25, the possible values of o (Fig. 3(a)) are @ =0 ~ 0.236, the corre-
sponding value of n; = 0.078 ~ 0.778 (see Table 1). We can see that the measured locali-
zation orientation rn; = 0.545 falls within the above range of theoretical prediction.

I11. CONCLUSION

Stress-induced transformation may induce plasticity localization in ZrO,-containing
ceramics under certain loading conditions. The main characteristic of stress-strain curves
during localization is the strain softening. For any given loading history, we can judge
whether localization may appear or not and determine the orientation of the localization
band. These analyzed results are in acceptable agreement with available experimental data
under uniaxial tension and uniaxial compression. The theoretical analyses in the paper
provide a basis for the numerical simulation and further investigating the postlocalization
behavior and the evolution of the localization in ceramics.
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