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Abstract—Either pure cooling induced martensitic transformation or pure stress assisted martensitic
transformation in constrained zirconia in two materials with homogeneous (PSZ) and heterogeneous
(ZTA) elastic and thermal properties is investigated by the finite element method. The morphology of the
martensite (number of twin bands, relative thickness) determines the strain energy caused by the
transformation which contributes to the mechanical transformation barrier. In the case of small particles
the interface energy enters the transformation barrier, whereas for large particles it can be neglected. The
thermodynamic existence condition predicts that the martensitic microstructure that is most likely to occur
for the selected applied loading stress states is in good agreement with the experimental observations. ©
1997 Acta Metallurgica Inc.

Zusammenfassung—Die thermische und spannungsinduzierte Martensitbildung in Zirkonoxid-Keramiken
mit elastisch-thermisch homogenen (PSZ) und heterogenen (ZTA) Eigenschaften wird mit Hilfe der
Methode der finiten Elemente untersucht. Die Verzerrungsenergie zufolge der Phasenumwandlung hingt
von der Morphologie des Martenits (Anzahl der Zwillings-bénder und deren Dickenverhdltnis zueinander)
ab. Die Umwandlungsbarriere setzt sich aus der Verzerrungsenergie und der Grenzflichenenergie
zusammen, wobei der zweite Beitrag fiir groBe Korner vernachlidssigt werden kann. Die verwendete
thermodynamische Existenzbedingung erlaubt, abhingig vom Belastungszustand die energetisch
giinstigste Martensitstruktur in guter Ubereinstimmung mit experimentellen Beobachtungen zu

bestimmen.

1. INTRODUCTION

The transition from the tetragonal to the monoclinic
(t—m) phase of zirconia is known to be a
martensitic transformation [1-4]. The martensitic
transformation of tetragonal zirconia (t-ZrQ,) can be
triggered by sufficient cooling or by mechanical
loading. The latter is called stress induced martensitic
transformation. This transformation occurring in
ceramics containing t-ZrO, greatly enhances the
toughness of the material 5, 6]. According to their
microstructure, ceramics containing t-ZrQ, are
mainly classified into three groups: tetragonal
zirconia polycrystals (TZP), partially stabilized
zirconia (PSZ) and zirconia toughened ceramics
(ZTC). TZP, such as CeO--stabilized tetragonal
zirconia polycrystals, usually show a microstructure
of homogeneous tetragonal grains [7]. The PSZ
ceramics, such as Mg-PSZ, Ca-PSZ and Y-PSZ,
consist of relatively large grains of cubic ZrO,
(c-ZrO,) containing coherent submicrometre sized
tetragonal precipitates [8]. In ZTC, t-ZrO, particles
are dispersed in a second phase, e.g. A,O; (ZTA) [9].
Transformed ZrO, particles are known to consist of
alternative twin bands [10,11]. The piecewise
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homogeneous twin layering has been studied recently
by Truskinovsky and Zanzotto in a semianalytical
way for one-dimensional elasticity (displacement u)
[12]. These researchers modelied the straining of the
embedding material by a “Winkler” bedding. They
could show, by a special minimization technique of
the free energy, that one specific number of layers is
most likely to occur at a given elongation of the
elastic bar.

In the case of a unique transformation strain within
the inclusion, the Eshelby solution applies. However,
distinct transformation strains cannot be dealt with
by Eshelby’s method [13]. Therefore, the finite
element method is used to explore the influence of the
microstructure on the driving force of martensitic
transformation in constrained, two-dimensional
t-ZrO; particles, corresponding to PSZ and ZTC. The
thermodynamic approach following an existence
condition allows us to calculate the mechanical
driving force of martensitic transformation induced
either by pure cooling or by a load stress state and
to predict microstructural features, such as the
number of twin bands and the relative thickness of
the bands.

The present paper has been stimulated by N. K.
Simha, PhD, Caltech, who has been working on the
size effect on the martensitic transformation in ZrO,
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[14]. His valuable contribution to the problem
formulation is gratefully acknowledged by the
authors.

2. MICROMECHANICAL MODEL

2.1. Thermodynamic approach

Choosing the temperature and the stress state as
independent external state variables to describe a
system, the Gibbs free energy is the appropriate state
function, which can be expressed as

CG=W+Gupem + 5. (1)

W denotes the mechanical potential energy, Geen the
chemical free energy and S the surface energy. The
deformation caused by the martensitic transform-
ation in ZrQO; is mainly accommodated by elastic
deformation. Thus, plasticity is not considered in the
present model. A thermodynamical approach based
on an existence condition is extensively used by
applying thermodynamics to phase transformation
phenomena (see for example, [6,15,16]). The
difference in Gibbs free energy of the transtormed
state and the untransformed state corresponds to the
driving force of the transformation and is given by

AG = G* — G* = AW + AGuen + AS. (2)

The superscript @ denotes the transformed state and
the superscript b the untransformed one. A linear
approximation of the change in chemical free energy
1s commonly used (e.g. [6]):

AGaem = k(Ty — TV, k < 0. (3)

V1 corresponds to the volume of the transformed
material, 7, denotes the stress free equilibrium
transformation temperature and k is a material
constant. For the tetragonal to monoclinic marten-
sitic transformation in ZrO., k is determined to be
—150 [kJ/m*K] [17].

AS can be further expressed as

AS = 4D} + A, (4)

where Ay’ is the change of the specific interface
energy, 7' denotes the specific twin boundary energy.
A' and A4' denote the surface area of the monoclinic
phase and the twin boundary area, respectively.
Dividing equation (2) by V), we obtain the change in
Gibbs free energy per transformed unit volume (i.c.
change in specific Gibbs free energy)

Ag = Aw + Agchem + As. (5)

The necessary condition for transformation is a
decrease of the Gibbs free energy, see for example
[16]:

Ag =Aw + Agchcm + As < 0. (6)

— Ag is the driving force for the martensitic
transformation per unit volume.
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2.2. Geometrical model

In PSZ and ZTC ceramics, transformable t-ZrO,
particles are dispersed in untransformable material,
such as ¢ZrO, or ALO:. For the numerical
simulations, a single t-ZrQ, particle is considered in
an infinite, untransformable matrix. The geometrical
model is depicted in Fig. 1, where the x, axis is
parallel to [100], and the x-» axis is parallel to [001],.
A load stress state can be applied at infinity. In the
finite element analysis at hand, the infinite matrix is
approximated by a finite (but large compared with
the particle) matrix in such a way that a deviation of
1.5% from the exact Eshelby solution is encountered
regarding the energy caused by a homogeneous
eigenstrain within the particle.

The transformation strain parallel to the [010},
direction is known to be very small in some ceramics
[18]. As an approximation we consider our model to
be a plane strain problem. Thus, a cylindrical shape
of the t-ZrO, particle is assumed. After transform-
ation the inclusion consists of parallel layers
representing a twinned microstructure. The relative
thicknesses of a pair of twin bands are denoted by 4
and 1 — 7, respectively. The number of bands is
denoted by N, which is 8 in Fig. 1.

The martensitic transformation is modeled by
attaching the stress free transformation strain ¢* to
the inclusion The value of the transformation strain
tensor ¢* is taken from [2]:

&= (7

—-0.00149 +0.08188

+0.08188 0.02386 |
The positive value of the shear strain applies for the
bands of relative thickness £ and the negative value
for the bands of relative thickness 1 — /. The
mismatch of the coefficients of thermal expansion and
elastic constants of matrix and inclusion material is
small in the case of PSZ and is, therefore, neglected
in our model. However, this is not the case for ZTC
(e.g. ZTA).

N

2ttty
/774 /e
.‘.\f(.\\\\\\\\\\\\- s

L . A

\\\\\\\\\\\\\\\\\\\

"7/ /////I///// /7,

\V \\\\\\\\\\‘

Fig. 1. Hlustration of the micromechanical model.
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In the following calculation, all the material is
assumed to be isotropic. For ZrO,, E = 195 GPA
(Young’s modulus), r =0.3 (Poisson ratio) and
oz = 13.2 x 107* K~! (thermal expansion coefficient).
For ALO;, E=400GPa, ¢=025 and
oa = 8.2 x 107 K~'. These data are taken from [19].
Martensitic transformation can be induced not only
by cooling but also by applying stress. In our
simulations we have considered both pure cooling
induced and stress induced martensitic transform-
ation in PSZ ceramics as well as in ZTA ceramics.

3. RESULTS AND DISCUSSION

3.1. PSZ ceramics, pure cooling induced transform-
ation

In this case, no external forces are applied. The
potential energy (w) equals the elastic strain energy,
ie. w=u (u is the ratio of the total elastic strain
energy per unit of transformed volume). Before
transformation, a homogeneous thermal strain is
induced due to cooling. There is no internal stress in
the model. So

ut =0, (8)

After transformation, the shape change of the
inclusion due to the transformation strain is
accommodated by elastic deformation. This induces
an internal stress field g and the elastic strain energy
u“, which can be calculated by [20]

i A= — | g
u'=Aw = 2V{jg.g__dV. &)

According to equations (6) and (8), «“ is a kind of
energy barrier for the transformation. The larger u*
is, the smaller the transformation driving force —Ag.
Quantitatively, u* depends not only on ¢* but also on
the microstructure in the transformed particle, i.e. on
the number of twin bands N and on the relative band
thickness 2.

The results of the finite element simulations of the
influence of the twin band number N on #“ and the
contribution of the interface energy As are depicted
in Fig. 2 for 2 = 0.5. The formation of twin bands
(N > 0) considerably reduces u*. This is consistent
with the experimental observation that transformed
particles have a twinned microstructure [3, 11]. »*
decreases with increasing number of bands N. This
dependence is very pronounced for the first few bands
(N < 10). However, for larger numbers of bands
(N > 16) the influence becomes very small.

According to equation (6), the other two
contributions to the transformation driving force
stem from Aguem and As. Aguen only depends on
temperature and is independent of the microstruc-
ture. As correlates to the specific interface area per
unit transformed volume and increases with increas-

MICROMECHANICAL STUDY ON MORPHOLOGY

1971

450

.+Ua
- U2+ As;a=0.05sm
{-Uu?+As;a=0.5um

400 §
350

300
250

150

specific energy(MPa)

100 |

50

Fig. 2. The influence of the twin band number N on u* and
the summation of ¥ and As for PSZ ceramics with relative
band thickness 2 = 0.5.

ing N and decreasing particle radius a. For fixed N,
As is inversely proportional to a.

In Fig. 2, As is calculated for pertinent interface
energy densities Ay’ x 7' > 0.5 [J/m?} [15] and two
selected particle sizes (a = 0.05 yum and a = 0.5 ym).
For large particles the contribution of As to the
transformation driving force can be neglected as can
be seen from the curve for a = 0.5 um, while for small
particles As has a remarkable influence. In the case of
a=0.05 um as pertinent for Ca-PSZ [15], the total
energy barrier takes on a minimum value for N = 10.
This predicted value is close to the experimental
observation that most of the transformed precipitates
in Ca-PSZ show eight bands [15]. The minimum of the
energy barrier is lowered and shifted to larger values
of N with increasing particle size. Thus, the model
predicts that larger particles are less stable against
martensitic transformation than smaller ones, which
is consistent with experimental results [9]. However,
no experimental evidence on the dependence of the
band number on the particle size has been reported
yet.

Figure 3 shows the influence of the relative band
thickness on u“ for N =4 and N = 8. Irrespective of
the number of bands, the minimum value of u* is
obtained for the symmetric case of 4= 0.5 corre-
sponding to the maximum transformation driving
force since quantitative analysis indicates that the
influence of 2 on As can be neglected.

Let u“(r) denote the elastic strain energy per unit
volume of transformed particle stored in the
concentric, cylindrical domain with relative radius »
(r = R/a). In Fig. 4, the dependence of u“(r) on r is
depicted. u“(r) grows drastically with r increasing up
to r = 3. So most of the elastic strain energy induced
by transformation is stored in a domain with a radius
of three times the particle radius. For example,
u(3)ju* =97.3% for N =4 and u“(3)/u* = 97.2% for



1972 YAN et al.:

350 [

300 %

250 |

200 |

u®(MPa)

150 |

100

1 1 1

01 02 03 04 05 06 07 08 09

50 L . ‘

A

Fig. 3. Relation between the elastic strain energy #“ and the
relative twin band thickness 4 for PSZ ceramics.

N = 8. The result indicates that the influence of the
transformed particle is mainly limited to this domain.

3.2. PSZ ceramics, stress induced transformation

If external forces are applied to the matrix, the
difference of the potential energies after and before
transformation can be calculated by [16, 20]:

W — wh = —~—J‘ a.e*dV — lj ag’:e*dV.
by ¥y

(10)

g’ is the homogeneous stress if external force acts
alone and no transformation occurs. g in the above
equation denotes the internal stress field induced by
the transformation strain without external force. So
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Fig. 4. The distribution of the elastic strain energy u* with
the radius r of a concentric cylinder (4 = 0.5).
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—1/2V:{y,g:£*dV in equation (10) is identical to u* in
equation (9). For the biaxial stress state due to the
applied forces (see Fig. 1), g” can be expressed as
o | 03 cosi(8) + o3 sin¥(B) (o) — a3)sin(B)cos(0)
Z 7| (6% — ad)sin(@)cos(8) ! sin¥(B) + of cosH(B) |

(1n

6 represents the relative orientation between the twin
band boundary and the direction of o} (see Fig. 1).

In the case of biaxial tension (¢! = o) = c%),
equation (10) yields, by inserting equations (7) and
(11),

!
A wh= — | gieXdV —0.022370°. (12
W w 27, J,g & o’ (12)

From equation (12), we can see that Aw linearly
decreases with increasing ¢°. Since the second term on
the right-hand side of equation (10) yields a constant
value of —0.02237¢° irrespective of the microstruc-
tural parameter A, referring to the discussion in
Section 3.1, the transformation morphology with
identical band spacing (i.c. A = 0.5) is most likely to
appear.

For uniaxial tension (i.e. ¢ = 0 and ¢! = ¢°) the
transformation driving force becomes

—Ag(a", AN 0)y= —k(Ty—T) + —j g:.*dV

+ [ef cos*(0) + €5 sin’(0)
+ €%(22 — 1)sin(26)]6°

— As. (13)

/ is approximated as the relative volume fraction of
the twin bands with relative spacing 4. The average
error is about 2.5% due to the approximation for
N = 8. First, let us neglect the influence of the
interface energy As, which corresponds to the big size
tetragonal particles discussed in Section 3.1. Taking
N =8and (T, — T) = 500 K, the group values of the
minimum ¢, for given different A values satisfying
the transformation condition Ag =0 are listed in
Table 1. From Table 1 we can see the minimum value
of %, in the group being 565 MPa if 2= 0.5 and
§ = 90°. This means that the transformation leading
to twin bands with identical thickness and being
perpendicular to the external force is most likely to
occur during uniaxial tension. For the small size
particles, the influence of the interface energy As
cannot be neglected. Let us still consider @ = 0.05 pm
as an example. The group values of oy, are listed in
Table 2. Now the minimum value of 6%, in the group
has increased to 2544 MPa with 4=0.7 and
# = 55.1°. Comparing the results for the two particle
sizes we conclude that reduction of the particle size
not only hinders transformation but also affects the
resulting microstructure.
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Table 1. The group of the minimum applied stress o3, for transformation under uniaxial tension with different 7 and
neglecting As for PSZ (N = 8§)

7. 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9
g 90.0° 90.0 90.0 90.0° 90.0 643 55.1 514 49.6
Gmin (MPa) 8588 5023 2346 1059 565 792 1208 1935 2630

Table 2. The group of the minimum applied stress ¢%;, for transformation under uniaxial tension with different 4 and grain
size @ = 0.05 pm for PSZ (N = §)

2 0.1 02 03 04 0.5 0.6 0.7 0.8 0.9
[4 90.0 90.0 90.0 90.0 90.0 64.3 55.1 51.4 49.6
O (MPa) 11,128 7455 4615 3490 2994 2611 2544 2872 3375

Table 3. The group of the minimum applied stress a5, for transformation under pure shear with different 4 and neglecting
As for PSZ (N =8)

’ 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
g 90.0 90.0 90.0 90.0 90.0 643 551 514" 49.6
Omin (MPa) 8087 4761 23711 997 374 610 854 1181 1535

Table 4. The group of the minimum applied stress ah;, for transformation under pure shear with different % and grain size

a=0.05 pm for PSZ (N =18)

1973

; 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 90.0 90.0 90.0 90.0 90.0 64.3 55.1 51.4 496
o (MPa) 10,479 7066 4677 3286 2820 2011 1680 1753 1990
In the case of pure shear, i.e. 6) = —o7 = ¢ the calculated in Table 3 (neglecting As) and in Table 4

transformation driving force becomes

—Ag(e® A, N O)y= —k(T,—T) + %J‘ a:c*dV
~V1 v,
+ [(ef — ¢¥)cos(28)
+ 2¢8(24 — 1)sin(20)]e®
— As. 14)

Similarly, the group minimum shear stress ob;,
satisfying the transformation condition Ag =0 is

550
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Aw(MPa)

0 10 20 30 40 50
N

Fig. 5. The variation of the transformation energy barrier
Aw with number of twin bands N for ZTA (/. = 0.5).

(considering As with ¢ = 0.05 um) for N =8 and
(To — T) = 500 K. If the contribution of the interface
energy can be neglected in the case of big particles,
ol yields its minimum value of 374 MPa for identical
twin band thickness (4 = 0.5) and a perpendicular
orientation with respect to the first axis of the
applied stress (8 =90"). For small particles
(¢ =0.05 um, Table 4), oy, is significantly higher
than for large ones due to the interface energy.
Among the studied microstructures the lowest a3,
1s obtained for a relative twin band thickness
4=0.7 and 6 = 55.1°.
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Fig. 6. The variation of the transformation energy barrier
Aw with twin parameter 4 for ZTA.
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3.3. ZTA ceramics, pure cooling induced transform-
ation

In ZTA ceramics the size of the particles is
relatively large [15, 19]. Hereafter, the influence of the
interface energy As is neglected in ZTA ceramics. In
the case of pure cooling, no external force is applied.
The elastic strain energy becomes the potential
energy. i.e. w = u.

Due to the mismatch of the thermal expansion
coefficients and the elastic constants between the
particle and the matrix, internal stress state and
elastic strain energy are induced by cooling from a
temperature Ty corresponding to a stress free state.
The difference of the thermal expansion between the
particle and the matrix is determined by

Ac™™ = (27 — aa W (Ty — T) = AxAT. (15)
In the following analysis, we choose AT = 1000 K,
which is a reasonable value [19, 21].

The non-homogeneous thermal strain will interact
with the transformation strain after transformation.
By using the finite element method we can easily
obtain the transformation energy barrier Aw. The
influence of the microstructure parameter N and / on
Aw is depicted in Fig. 5 (4~ =0.5) and Fig. 6,
respectively. The formation of a twinned structure
reduces Aw markedly, especially if N varies from 0
to 10. Figure 6 indicates that a microstructure
with twin bands of identical thickness exhibits the
lowest transformation energy barrier. Quantitatively
comparing Fig. 5 with Fig. 2, we can see that the
energy barrier for the transformation in the
considered region 0 < N < 10 is higher in ZTA than
in PSZ, which is due to the different thermal
expansion coefficients and the elastic constants’
mismatch.

400
350
300
250 |

200

AW(MPa)

150

100

50 :
0.1 0.2 0.3 0.4 0.5
A

Fig. 7. The variation of the transformation energy barrier
Aw with twin parameter 4 for ZTA under biaxial tension
6" = 500 MPa, N = 8.
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Fig. 8. The variation of the transformation energy barrier
Aw with twin parameter 4 for ZTA under uniaxial tension
6" = 500 MPa for selected 6, N = 8.

3.4. ZTA ceramics, stress induced transformation

In this case, we are considering a material subjected
to an external force with a mismatch of the elastic
constants of the particle and the matrix. Referring to
[20], the potential energy variation with appearing
eigenstrain ¢” in the particle is

L
Vi

(o]

|
= - pdV — - P
An 17 ‘[vg ("dV ﬁlg erdV,  (16)

where g and g“ denote the stress fields before and
after the eigenstrain ¢ appears in the particle,
respectively. In the present case, not only a
transformation strain but also a thermal mismatch
strain Ae'™™/ ([ is the identity tensor) will occur in the
particle. In order to obtain the potential energy
change during the transformation, we need to
consider the following three cases yielding w*, w? and
w, respectively.

(a) Both the transformation strain ¢* and thermal
mismatch strain Ae™™[ appear in the particle
under external force.

(b) Only the thermal mismatch strain Ae"™™[ appears
in the particle under external force.

(c) No eigenstrain appears in the particle under
external force.

From equation (16), we have

Wt — _L Y therm *
w W= 17 ﬁig (Ae™ ™ + ¢X)dV

1

P, c. therm
37, jg (Acvm] + ¢)dV - (17)



YAN et al.:

J gb:AElhcrml dV

361

1 c. therm
~2Vlﬁg.Ae dv. (18)

Subtracting equation (18) from equation (17), the
potential energy change during the transformation is
obtained as

Aw =

_L i therm *
7, ﬁg (Aet ™+ eXydV

_L co Kk L b. therm
7 Lg .f:dV-f-ZVIjg ‘AetmIdY. (19)

Similarly, the three loading cases (biaxial stress,
uniaxial tension stress and pure shear stress) with
AT = 1000 K are analysed by using equation (19) and
the finite element technique. Taking N = 8 is also a
reasonable choice in ZTA according to experimental
observation [6]. The orientation relation between
external force and twin bands is described by 6. The
results of the calculations are illustrated in Figs 7, 8
and 9. Similar conclusions can be drawn for PSZ.
Twin bands with identical thickness will most likely
appear under the three loading cases. For uniaxial
tension the twin bands are likely to be perpendicular
to the external force although Aw is not significantly
distinguished for different orientation #. For pure
shear, the twin bands are likely to be perpendicular
to the tensile principle stress axis due to the external
stress state.

Figure 10 shows the variation of Aw with
increasing applied force for N =8 and 2 =0.5. We

450

400 |
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300 |
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Aw(MPa)

200

150

100

50 ° :
0.1 0.2 0.3 0.4 0.5

Fig. 9. The variation of the transformation energy barrier
Aw with twin parameter 4 for ZTA under pure shear
a° = 500 MPa for selected 6, N = 8.
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Fig. 10. The variation of the transformation energy barrier
Aw with applied stress ¢° for ZTA (N =8, .~ =0.5 and
0 = 90 for uniaxial tension. biaxial tension and pure shear).

can see that Aw diminishes almost linearly with
increasing applied force irrespective of the loading
case. The transformation driving force is, therefore,
nearly proportional to the applied force. In contrast
to the load case sensitivity for PSZ (see Tables 1 and
3), the mechanical driving force for ZTA is virtually
equal for the studied three loading cases as long as the
loading magnitude ¢" is kept constant.

4. CONCLUSIONS

[t can be concluded from the finite element analysis
at hand that the formation of a twinned structure can
greatly reduce the transformation energy barrier. The
size effect is confined to small t-ZrO, particles due to
the inversely proportional dependence of the
interface energy on the particle size. In big particles,
where the interface energy can be neglected, an
identical twin band thickness will most likely appear
in both PSZ and ZTA irrespective of the presence of
a load stress state. For both types of ceramics, twin
bands tend to be perpendicular to the external force
in the case of uniaxial tension, while in the case of
pure shear, twin bands tend to be perpendicular to
the applied tensile principle stress axis. No load case
sensitivity of the transformation behavior was found
for ZTA.
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