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a b s t r a c t

Metallic foams are a new class of functional materials. They have found their applications as sandwich
cores in lightweight structures and as implant materials in bioengineering. To characterize the mechan-
ical properties of these materials becomes an interesting and relevant research topic. In the mean time,
indentation method has been well accepted as a simple and effective way to measure the mechanical
properties of solid materials. We believe that it is possible to study the averaged mechanical properties
of a metallic foam from a spherical indentation test. In this paper, theoretical investigation to understand
the spherical indentation responses of metallic foams is presented. Based on the dimensional analysis,
several scaling relationships in the indentation of metallic foams with a spherical indenter are obtained.
Numerical results from the finite element simulations are used to examine the dependence of the inden-
tation response on the basic material parameters, such as the porosity, the work hardening exponent and
the shape factor, which characterizes the plastic deformation of metallic foams due to hydrostatic load-
ing. Our numerical results show that the maximum indentation force has a linear relationship with the
indentation depth for different shape factor values. It is therefore proposed to calibrate the shape factor

value from the slope of the maximum indentation force versus the indentation depth from a spherical
indentation test, instead of a complicated hydrostatic loading test. We also find that the spherical inden-
tation hardness varies about 11% within the examined indentation depths. The range of the ratio of the
hardness to the yield strength of metallic foams is from 2.17 to 2.95, which is different from that of solid
materials. Our study provides the basis for applying a simple spherical indentation test to investigate the

meta
mechanical properties of

. Introduction

Metallic foams were introduced about 40 years ago [1]. They
an be divided into two categories, open cell foams and closed
ell foams. The major difference between foam materials and solid
aterials is their microstructure. A large amount of cells or pores

re present in foam materials and their microstructure can be
magined as sponge. Connections of these porous areas range from
he near-perfect order of bee’s honeycomb to disordered, three-
imensional networks of sponges [2]. Therefore, a metallic foam is
haracterized microstructurally by its cell topology, relative den-
ity, cell size and cell shape. The term, porosity, is a parameter used
t the macroscopic scale to indicate the proportion of porous area
n foams.

Presence of pores results in metallic foams to be lighter in

eight, have lower density and lower stiffness. Due to these

haracteristics, metallic foams are finding an increasing range of
pplications in structural engineering. Alporas, the trade name of an
luminium alloy foam, has been applied as sound absorbers along

∗ Corresponding author. Tel.: +61 3 99020113; fax: +61 3 99051825.
E-mail address: wenyi.yan@eng.monash.edu.au (W. Yan).
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llic foams.
© 2010 Elsevier B.V. All rights reserved.

motorways and other busy roads in Japan [3]. In aerospace industry,
Boeing has evaluated the use of large titanium foam sandwich parts
and aluminium sandwiches with aluminium foam cores for tail-
booms of helicopters [3]. Additionally, many potential application
concepts are under research and development, e.g. metallic foams
as implant materials in bioengineering. In this new area, the most
promising application is in orthopedic surgery as load-bearing scaf-
folds. The Young’s modulus of a metallic foam can be tailed easily
by choosing a proper porosity so that the stiffness of a foam based
implant can match that of the surrounding bone. Such a match can
not only avoid bone shrinkage (so called stress shielding problem)
after surgical operation but also stimulate bone growth. Another
advantage is open cell foam allows possible ingrowth of substantial
bone. This would greatly improve the bone–implant interface and
may allow for efficient soft tissue attachment [4–6]. As a successful
example, titanium foam is used as an interbody fusion device for
the human lumbar spine (PlivioPoreTM) [7].

For a successful application as structural components, knowl-

edge of the plastic yield surface and subsequent plastic flow
behaviour of a metallic foam is very important. In contrast to solid
metals, metallic foams can yield under hydrostatic loading in addi-
tion to deviatoric loading [8]. Therefore, the yield criterion depends
on both the von Mises equivalent stress and the mean stress. Two

http://www.sciencedirect.com/science/journal/09215093
http://www.elsevier.com/locate/msea
mailto:wenyi.yan@eng.monash.edu.au
dx.doi.org/10.1016/j.msea.2010.01.068
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henomenological yield criteria have been used to describe the
ehaviour of metallic foams [9,10]. Based on the model of Desh-
ande and Fleck [10], the contribution of the mean stress (pressure
tress) on the yield function is realized through a material parame-
er known as shape factor. It defines the aspect ratio of the elliptical
ield surface in the stress plane of von Mises stress versus pressure
tress. This shape factor quantitatively distinguishes the plastic
ehaviour of metallic foams from solid metals. Generally, the shape
actor should be determined by performing a hydrostatic compres-
ion test, which is relatively complicated.

In the mean time, indentation method has been well accepted
s a simple and effective way to study the mechanical properties
f solid materials. For example, the hardness and Young’s modu-
us of a material can be obtained from the peak load and the initial
lope of the unloading curves using the method of Oliver and Pharr
11,12]. More recently, indentation tests have been used to probe
he mechanical properties of some advanced materials and biolog-
cal materials [13–17]. We believe that indentation test should be
ble to provide an alternative to study the averaged mechanical
roperties of metallic foams. To develop an indentation method, it

s a prerequisite to understand the effects of material properties on
he indentation responses, which is the aim of present study.

Spherical indenter is chosen in our investigation for the purpose
f examining the averaged mechanical properties of metallic foams,
hich obtain the constitutive model developed by Deshpande and

leck [10]. The finite element method is applied to simulate the
pherical indentations. The effects of the basic material properties
uch as shape factor, porosity and work hardening exponent on
he maximum indentation force, initial unloading slope and the
ardness analysis are examined from the numerical results.

. Material model for metallic foams

The experimental stress versus strain curves under uniaxial
ompression for aluminium foams can be found in [1] and for pure
itanium foams in [7]. Like ordinal solid metals, a linear elastic
egion exists at the beginning of the loading. With the increase
f external loading, plastic deformation can be observed from the
acroscopic stress versus strain curve, as illustrated in Fig. 1(a). At

he microscopic scale, this plastic deformation corresponds plastic
uckling of cell walls in the foam. Previous research found that
he Young’s modulus of an open cell metallic foam, Ef, and its
nitial yield strength, Yf, can be estimated, respectively from the
oam’s porosity, pt, and the Young’s modulus, Es, and the initial
ield strength, Ys, of the corresponding solid material by [1,2]:

f = C1Es(1 − pt)
2, (1)

f = C2Ys(1 − pt)
3/2, (2)

here the porosity, pt, is defined as:

t = 1 − �f

�s
. (3)

f and �s are the density of the foam and the solid, respectively. C1
nd C2 are the constants. More complicated formulas for closed cell
orms can be found in [2]. Eqs. (1) and (2) are used in our current
tudy with a value of 1.0 for C1 and 0.33 for C2 as suggested by
ibson and Ashby [2].

For the purpose of general parametrical study in this inves-
igation, the hardening function under uniaxial compression is
ssumed to obey the power law:
= Kεn, (4)

here n is the work hardening exponent and K is the work harden-
ng rate determined by K = Yf (Ef /Yf )n. Following this power law,
he material hardening is defined by the work hardening exponent
Fig. 1. Illustration of the constitutive model for metallic foams: (a) uniaxial
stress–strain curves under compression with different hardening exponents; (b)
yield surfaces in the stress plane of von Mises stress versus mean stress.

n, see Fig. 1(a). If n is equal to zero, there is no hardening and it is
called perfect plasticity. For a same solid material, the hardening
exponent value can be different for different porosities. The exper-
imental curves in [7] show that the value of n increases from about
0.13 to 0.45 for titanium foams when the foam porosity decreases
from 78.7% to 51.5%.

Under three-dimensional loading conditions, a three-
dimensional isotropic crushable foam constitutive model was
developed and verified by Deshpande and Fleck [10], which was
built in the finite element package Abaqus [18] and applied in
current study. According to this model, the yield function is:√

�2
eq + ˛2�2

m

1 + (˛/3)2
− Y = 0, (5)

where �eq is the von Mises equivalent stress and �m is the mean
stress. Y is the material hardening function. Eq. (5) represents an
elliptical surface in the stress plane of von Mises stress versus mean
stress, as illustrated in Fig. 1(b). The contribution of the mean stress
on the macroscopic plastic deformation is quantified by the shape
factor ˛ in Eq. (5), which is the aspect ratio of the ellipse. As von
Mises stress is a non-negative parameter, only half of the ellipse is
illustrated in Fig. 1(b). The influence of the mean stress on the plas-
tic yield of metallic forms increases with the increase in the value
of the shape factor. If the shape factor is equal to zero, the von Mises
yield criterion is recovered. To avoid negative plastic Poisson’s ratio,

the reasonable range of ˛ should be between 0 and 2.06. Practically,
the shape factor can be calibrated from a hydrostatic compression
test. If the ratio of the initial yield stress in uniaxial compression to
the initial yield stress in hydrostatic compression is h, the value of

˛ is 3h/
√

9 − h2 [18]. Deshpande and Fleck [10] utilized a complex
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igh pressure triaxial testing system to probe the yield surfaces of
wo aluminium alloy foams and validated this model. This material

odel has been successfully applied in different problems related
o aluminium foams, e.g. [19–22]. Recent study indicates that this

odel can also be applied to titanium foams [23].
The indentation process is simulated numerically by using the

nite element package Abaqus. As mentioned before, a spherical
ndenter is considered in this study for the purpose of examining
he averaged macroscopic properties of metallic foams. Practically,
he size of the indenter tip should be reasonably large compared to
he size of the cells/pores in the specimen and the indentation depth
hould also be reasonably large so that the indentation response
oes reflect the averaged material behaviours, which are described
y the aforementioned constitutive model. In reality, the size of
he cells varies significantly from foams to foams. For aluminium
oams, the cell size is in the range of 2–10 mm [1]. The pore size
f the titanium foams studied by Imwinkelried [7] is in the range
f 0.1–0.5 mm. In our simulations, the radius of the indenter tip is
xed as 30 mm. In addition, the Young’s modulus of an indenter

s normally much larger than that of metallic foams, we assume
hat the indenter is rigid in our theoretical analysis. As the inden-
ation depth and the size of the indentation area are much smaller
han the size of the foam specimen, the specimen is treated as a
emi-infinite body. Previous studies found that friction has no sig-
ificant influence on the indentation if the included angle is equal
o or higher than 60◦, which includes spherical indenter [24,25].
herefore, a frictionless assumption is made between the indenter
nd the specimen in our simulations.

Due to the symmetry of this problem, a 2D axisymmetric model
s constructed. Fig. 2 illustrates the finite element model. The size of
he entire model is much larger than the radius of the indentation
ip. The bottom of the model is therefore constrained in both the
adial and axial directions. As demonstrated in Fig. 2(b), a very fine
esh with the shortest element side of 0.025 mm is employed in

he contact zone beneath the indenter tip to ensure the accuracy
f the numerical results. The model contains a total of 47,049 four-
oded axisymmetric elements. Testing results for elastic contact
re verified by comparison with the Hertz contact theory.

. Dimensional analysis and numerical results

.1. Maximum indentation force

The indentation force during loading depends on the mechanical
roperties of the material quantified by the parameters, Ef, Yf, �, n,
, as well as the indentation depth, h, and the indenter radius, R,

.e.:

= Z1(Ef , Yf , �, n, ˛, h, R). (6a)

In order to investigate the influence of porosity, pt, on the
ndentation response, referring to Eqs. (1) and (2), this functional
elationship to determine the indentation loading force can be rear-
anged as:

= Z2(Es, Ys, pt, �, n, ˛, h, R). (6b)

The parameters, pt (porosity), ˛ (shape factor), n (work hard-
ning exponent) and � (elastic Poisson’s ratio), are dimensionless.
ccording to Buckingham � theorem for dimensional analysis,
oung’s modulus, Es, and the indentation radius, R, can be chosen
s the primary quantities in this physical problem with two fun-

amental dimensions, length and force. Therefore, a dimensionless
elationship for the indentation loading force can be expressed as:

F

R2Es
=

∏
1

(
Ys

Es
, pt, �, n, ˛,

h

R

)
. (7a)
Fig. 2. Axisymmetric finite element model to simulate indentation test with a rigid
spherical indenter: (a) entire finite element mesh and boundary conditions; (b) fine
mesh near the indenter tip.

The dimensionless function of the maximum indentation force,
which is corresponding to the maximum indentation depth, hm, can
be presented by:

Fm

R2Es
=

∏
1

(
Ys

Es
, pt, �, n, ˛,

hm

R

)
. (7b)

We are interesting in the influence of the shape factor and poros-
ity as well as the work hardening exponent on the indentation
response. The elastic Poisson’s ratio, �, is kept constant as 0.3 in
this study. Numerical results of the above dimensionless Eq. (7b)
are shown in Fig. 3.

Fig. 3(a) shows the relationship between the normalized maxi-
mum indentation force and the work hardening exponent under a
given shape factor and a given normalized indentation depth. For

metallic materials, the work hardening exponent varies between 0
and 0.5. Fig. 3(a) indicates that the normalized maximum indenta-
tion force increases with the value of the work hardening exponent
almost linearly in all the cases. A higher value of the work hardening
exponent means the material is stiffer during plastic deformation
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Fig. 3. (a) Relationship between the normalized maximum indentation force,
Fm/(R2Es), and the work hardening exponent, n, for different porosities, pt . In all the
cases, Ys/Es = 0.00852, ˛ = 0.83, hm/R = 0.0133, � = 0.3. (b) Relationship between the
normalized maximum indentation force, Fm/(R2Es), and shape factor, ˛, for different
porosities, pt . In all the cases, Ys/Es = 0.00852, n = 0.15, hm/R = 0.0133, � = 0.3. (c) Rela-
t 2
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The linear function (8) is observed from our numerical simula-
ionship between the normalized maximum indentation force, Fm/(R Ea), against
orosity, pt , for different values of shape factor, ˛. In all the cases, Ys/Es = 0.00852,
= 0.15, hm/R = 0.0133, � = 0.3.

s illustrated in Fig. 1(a). Therefore, the indenter requires a larger

ndentation force to reach the same indentation depth. This effect is

ore significant for materials with a lower porosity (pt < 70%). Gen-
rally, when porosity increases, the influence of the work hardening
xponent on the maximum indentation force reduces.
gineering A 527 (2010) 3166–3175 3169

Fig. 3(b) indicates that the normalized maximum indentation
force decreases with the increase in the value of the shape factor
for different porosities under a given normalized indentation depth.
The shape factor represents the contribution of hydrostatic stress
on plastic deformation. A higher shape factor value means plastic
deformation due to hydrostatic stress can occur more easily in the
foam. Therefore, a lower indentation force is required for a given
indentation depth. Fig. 3(b) also shows that the influence on the
normalized maximum indentation force is mainly significant when
the shape factor lies between 0.2 and 1.8 for all the cases with dif-
ferent porosities. When the shape factor is about 0.7, we have the
highest decreasing rate of the normalized maximum indentation
force. If the shape factor is higher than 1.8, the influence can be
neglected. Fig. 3(b) also indicates that influence of the shape factor
on the normalized maximum indentation force is more significant
in lower porosity foams (pt < 70%) than that in higher porosity foams
(pt > 70%).

The influence of the porosity on the normalized maximum
indentation force is further examined in Fig. 3(c) for different ˛
values. It shows again that the normalized maximum indentation
force decreases with the increase in the porosity under these given
conditions. This can be explained by the fact that a higher poros-
ity foam has a lower elastic stiffness and a lower yield strength
according to Eqs. (1) and (2).

Referring to Eq. (7b), the maximum indentation force is also a
function of the maximum indentation depth, hm. Our numerical
results indicate that the foam is under pure elastic deformation
when the indentation depth is below 0.1–0.15 mm for differ-
ent porosities. Therefore, the range of the indentation depth of
0.2–0.5 mm is chosen to study its influence on the maximum inden-
tation force. The numerical results for porosity 40%, 60% and 90%
are shown in Fig. 4.

Fig. 4(a) shows the relationship between the normalized maxi-
mum indentation force and the normalized maximum indentation
depth, hm/R, for porosity 40%. It indicates that the normalized max-
imum indentation force increases with the normalized maximum
indentation depth linearly for different shape factors. It is not a sur-
prise that the indenter requires a larger indentation force to reach
a larger maximum indentation depth for the same material. It is
the linearity sounds interesting. Such linear relationships can also
be found from the numerical curves for porosity 60% and 90% with
different shape factor values, as shown in Fig. 4(b) and (c). Further-
more, the linear relationship still holds for different work hardening
exponent, n, in the examples shown in Fig. 4(d). Fig. 4(e) indicates
that such a linear relationship is also true for different ratios of yield
strength to Young’s modulus, Ys/Es.

According to the numerical curves presented in Fig. 4, one can
deduct that the normalized maximum indentation force could be
related to the normalized maximum indentation depth by a linear
function in general cases, i.e.:

Fm

R2Es
= k × hm

R
, (8)

where the slope k is a function of Ys/Es, pt, �, n, ˛ according to Eq.
(7b). Therefore:

k = k
(

Ys

Es
, pt, �, n, ˛

)
. (9)
tions, where significant plastic deformation occurs. The maximum
equivalent plastic strain in the indentation cases presented in Fig. 4
is in the range of 4–20%. In the case of pure elastic contact under
small indentation loading condition, an explicit function can be
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Fig. 4. (a) Relationship between the normalized maximum indentation force, Fm/(R2Ea), and the normalized maximum indentation depth, hm/R, for different values of shape
factor, ˛. In all the cases, Ys/Es = 0.00852, n = 0.15, � = 0.3, pt = 0.4. (b) Relationship between the normalized maximum indentation force, Fm/(R2Ea), and normalized maximum
indentation depth, hm/R, for different values of shape factor, ˛. In all the cases, Ys/Es = 0.00852, n = 0.15, � = 0.3, pt = 0.6. (c) Relationship between the normalized maximum
i for di
p 2Ea) a
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m odulu

f
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e

ndentation force, Fm/(R2Ea) and the normalized maximum indentation depth, hm/R
t = 0.9. (d) Relationship between the normalized maximum indentation force, Fm/(R
xponent, n. In all the cases, Ys/Es = 0.00852, � = 0.3, ˛ = 0.83, pt = 0.4. (e) Relationsh
aximum indentation depth, hm/R for different ratio of yield strength to young’s m

ound from Hertz contact theory and it shows [26,27]:

Fm

R2Es
∝

(
hm

R

)1.5

. (10a)
If a spherical indentation response is dominated by plastic
eformation, the following relationship has been derived for solid
lastic–plastic materials under the conditions of neglecting elastic
fferent values of the shape factor, ˛. In all the cases, Ys/Es = 0.00852, n = 0.15, � = 0.3,
nd the normalized maximum indentation depth, hm/R for different work hardening
tween the normalized maximum indentation force, Fm/(R2Ea) and the normalized
s of ordinary solid material, Ys/Es . In all the cases, n = 0.3, � = 0.3, ˛ = 0.83, pt = 0.6.

effect and considering small deformation [28,29]:

Fm

R2Es
∝

(
hm

R

) 2+n
2

. (10b)

Even if elasticity and finite deformation are considered, numer-

ical results further indicate that Eq. (10b) still holds under
the condition that hm/R is smaller than about 0.02 for solid
elastic–plastic materials [29]. For materials with a weak work hard-
ening, i.e., n has a small value (see Fig. 1(a)), Eq. (10b) can be
approximated by the linear Eq. (8). In fact, published spherical
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ndentation loading curves of solid materials from experimental
ests demonstrate the linear relationship after an initial nonlin-
ar stage, which is dominated by elastic deformation, e.g. [30,31].
herefore, besides our numerical results, previous theoretical,
umerical and experimental studies on spherical indentation of
olid materials do support the linear Eq. (8) under the condition of
ignificant plastic deformation, which means that the indentation
epth should be significantly large. Of course, future experimental
erification of this linear relationship for metallic foams is required.

Figs. 4(a)–(c) confirm that there is a strong influence of the shape
actor, ˛, on the slope, k. In fact, these curves show that k reduces
ith the increase of ˛. We might be able to determine the shape

actor, ˛, of the foam from the measured slope, k, from spheri-
al indentation tests on the material, if we could find the inverse
elationship of Eq. (9), i.e.:

= ˛
(

Ys

Es
, pt, �, n, k

)
. (11)

For a given solid material, the ratio, Ys/Es is known and assume
hat the Poisson’s ratio is a constant, say 0.3. If the porosity, pt and
ork hardening exponent, n, are known, the relationship (11) can

e found numerically and used to estimate the shape factor, ˛. As
xamples, for a given n = 0.15, the numerical relationship (11) for
ifferent porosities is shown in Fig. 5. Here, all the set of data for
ifferent porosities can be fitted by the following rational functions:

= 0.8332k5 + 1.299k4 + 10.46k3 − 1.122k2 + 0.03327k − 2.632

k4 − 19.8k3 + 0.7987k2 − 0.003035k − 5.411 × 10−5

= 0.3081k5 + 1.105k4 + 8.562k3 − 0.5021k2 + 0.007907k − 3.33

k4 − 21.08k3 + 0.4823k2 − 0.001977k − 2.591 × 10−6

= 0.1366k5 + 0.7212k4 + 0.09278k3 − 2.953k2 + 0.006196k − 2

k4 + 0.7058k3 − 2.361k2 + 0.006006k − 3.09 × 10−

It is worthy to mention that these three equations or Fig. 5 are
nly valid for the corresponding porosity, 40%, 60% and 90% and for
given n = 0.15.

For a given porosity 40%, the relationship (11) for different val-
es of work hardening exponent can also be found numerically, as
hown in Fig. 6. These curves can be fitted by the following rational
unctions:

= 0.7237k5 + 0.2012k4 + 3.101k3 − 0.5284k2 + 0.02237k − 2.53

k4 − 4.306k3 + 0.177k2 + 0.002665k − 8.897 × 10−5

= 0.6469k5 + 0.05951k4 − 0.486k3 − 8.296k2 + 0.5271k − 5.611
k4 − 1.382k3 − 12.76k2 + 1.071k − 0.02013

Eqs. (15) and (16) are only valid, respectively, for n = 0.3 and
= 0.5 for porosity 40%. Future experimental test is required to
alidate the linear relation (8) and the accuracy of this proposed
ethod to calibrate the shape factor from a spherical indentation

est.

.2. Initial unloading slope

When the spherical indenter reaches the maximum indentation
epth in an indentation test, the loading process is finished and it is
hen followed by an unloading process. During the unloading, the
ndenter is returning to its original position and elastic deformation
n the material is recovering. At the initial unloading stage, plastic
eformation will not occur. Our numerical results have confirmed
hat the plasticity-related parameters, the shape factor, ˛, and the

ork hardening exponent, n, do not affect the initial unloading

lope. Therefore, a functional relationship can be obtained:

S

REs
=

∏
2

(
Ys

Es
, pt, �,

hmax

R

)
, (17)
gineering A 527 (2010) 3166–3175 3171

4
for pt = 40%, (12)

0−5
for pt = 60%, (13)

× 10−6
for pt = 90%. (14)

0−4
for n = 0.3, (15)

−3
for n = 0.5. (16)

where S is known as the initial unloading slope and is defined as:

S = dF

dh
|h=hmax . (18)

The influence of the porosity on the normalized initial unloading
slope is numerically shown in Fig. 7. The normalized initial unload-
ing slope decreases with the increase in the porosity. According to
Eq. (1), a higher porosity material has a lower Young’s modulus.
Therefore, a larger proportion of elastic deformation recovers at
this initial unloading stage, which leads to a lower initial unloading
slope value. Fig. 7 indicates that the normalized initial unload-
ing slope will also be influenced by indentation depth and it
increases with the maximum indentation depth. When the nor-
malized maximum indentation depth increases from 0.01 to 0.017,
the normalized initial unloading slope is increased by 31.3% for the
porosity 40% and by 33.7% for the porosity for the porosity 90%
materials.

The initial unloading slope is also known as the elastic unloading
stiffness, which can be applied to measure the Young’s modulus of
the specimen for ordinary solid materials via [11]:

Ef = 1
ˇ

√
�

2
S√
A

(1 − �2), (19)

where A is the contact area and ˇ is a constant and a value of 1.05
was suggested [12].

The numerical results of the Young’s modulus predicted by
Eq. (19) are shown in Fig. 8 and compared with the input data
determined by Eq. (1). Fig. 8 clearly shows that the predicted

results of the Young’s modulus of the metallic foams agree very
well with the input data. The largest difference is not more than
2%, which can be neglected practically. Therefore, we can conclude
that Eq. (19) can still be applied to predict the Young’s modulus
of metallic foams from the initial unloading slope of a spherical
indentation curve. It is worth mentioning that the contact area
A is estimated from finite element output in our numerical pre-
dictions not from analyzing the initial unloading slope using the
Oliver–Pharr’s method. As we know, Oliver–Pharr’s method to pre-
dict the contact area is only suitable for the cases of “sinking-in”.
Practically, if “piling-up” of the surface around the indenter occurs,
one should use Oliver–Pharr’s method with caution. If “piling-up”
is large, the image should be used to measure the contact area as
suggested by Hay and Pharr [32].
For solid elastic-plastic materials, the degree of “sinking-in” or
“piling-up” depends on the plastic yield stress and the level of the
strain-hardening [33]. Here, we can numerically examine the influ-
ence of foam properties on the spherical indentation phenomenon
of “sinking-in” or “piling-up”. If the dimensionless contact depth
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Fig. 6. Numerical relationship between the shape factor and the slope of Fm/(R2Ea)
versus hm/R curve for n = 0.15, 0.3 and 0.5. In all the cases, Ys/Es = 0.00852, pt = 0.4,
� = 0.3.

H =
A

, (20)

where Fm is the maximum indentation force and A is the corre-
sponding projected contact area under the maximum indentation
force. According to this definition, the influence of the material’s
ig. 5. Numerical relationship between the shape factor and the slope of Fm/(R2Ea)
ersus hm/R curve for Ys/Es = 0.00852, n = 0.15, � = 0.3 and (a) pt = 0.4; (b) pt = 0.6; (c)
t = 0.9.

c/hm is smaller than 1.0, then we have “sinking-in”. Otherwise, it
s “piling-up” [34,35]. The dependences of hc/hm on the shape factor,
, the porosity, pt, and the work hardening exponent, n, are shown

n Figs. 9(a), (b) and (c), respectively. As we can see, in all the studied
ases, the dimensionless contact depth, hc/hm, is smaller than 1.0.

e will expect “sinking-in” of the surface around the indenter in a
pherical indentation test of a metallic foam. Therefore, we can use
liver–Pharr’s method to predict the contact area and the Young’s
odulus of the foam.
.3. Spherical indentation hardness

Measurement of material’s hardness is one of the major
urposes of an indentation test. Hardness indicates material’s resis-
Fig. 7. Relationship between the normalized initial unloading slope,
1/(REs)(dF/dh)|h=hmax and the porosity, pt , for different normalized maximum
indentation force, hm/R. In all the cases, Ys/Es = 0.00852, � = 0.3, ˛ = 1.06 and
R = 30 mm.

tance to plastic deformation and can be defined as:

Fm
Fig. 8. Comparison between input data of the Young’s modulus from Eq. (1)
for different porosities and the predicted values from Eq. (19). In all the cases,
Ys/Es = 0.00852, � = 0.3 and hm/R = 0.0133.
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Fig. 9. Dependence of the degree of “sinking-in”, i.e., hc/hm < 1, on the foam properties: (a) shape factor, ˛, with Ys/Es = 0.00852, n = 0.15, � = 0.3, hm/R = 0.0133; (b) porosity,
pt , with Ys/Es = 0.00852, n = 0.15, � = 0.3, hm/R = 0.0133 and (c) work hardening exponent, n, with Ys/Es = 0.00852, ˛ = 0.83, � = 0.3, hm/R = 0.0133.

Fig. 10. (a) Relationship between the normalized hardness, H/Es , and the work hardening exponent, n, for different porosity values. In all the cases, Ys/Es = 0.00852, ˛ = 0.83,
� = 0.3, hm/R = 0.0133. (b) Relationship between the normalized hardness, H/Es , and the shape factor, ˛, for different porosity values. In all the cases, Ys/Es = 0.00852, n = 0.15,
� = 0.3, hm/R = 0.0133. (c) Relationship between the normalized hardness, H/Es , and the porosity values, pt , for different values of shape factor. In all the cases, Ys/Es = 0.00852,
n = 0.15, � = 0.3, hm/R = 0.0133. (d) Relationship between the normalized hardness, H/Es , and the normalized maximum indentation depth, hm/R, for different values of shape
factor. In all the cases, Ys/Es = 0.00852, n = 0.15, � = 0.3, pt = 0.4.
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ig. 11. Relationship between the ratio of hardness to yield strength of foam mate-
ials, H/Y, and the normalized maximum indentation depth, hm/R. In all the cases,
= 0.15, � = 0.3 and ˛ = 0.61.

asic parameters on the hardness can be expressed by the following
imensionless function:

H

Es
=

∏
3

(
Ys

Es
, pt, �, n, ˛,

hm

R

)
. (21)

The numerical results of above dimensionless function are
hown in Fig. 9. Fig. 10(a) indicates that the normalized hardness,
/Es, increases with the work hardening exponent. Furthermore,

his influence decreases with the increase of the porosity value.
ig. 10(b) shows the relationship between the normalized hard-
ess and the shape factor. It indicates that the normalized hardness
ecreases with the increase in the shape factor value. Referring to
he material model discussed in previous section, a higher shape
actor value means that the plastic deformation due to hydrostatic
ressure is more significant, which leads to a lower resistance to
lastic deformation and a smaller hardness value. Fig. 10(b) also
hows that significant influence occurs when the shape factor lies
etween 0.2 and 1.5. The maximum decreasing rate occurs when
he shape factor value is about 0.8. After this point, the decreas-
ng rate reduced and the normalized hardness settles down to a
table value when the shape factor is larger than 1.8. Furthermore,
he graph shows that there is more demonstrative influence on the
ormalized hardness for lower porosity values (pt < 70%) than that

or higher porosity values (pt > 70%).
Fig. 10(c) further demonstrates the relationship between the

ormalized hardness and the porosity. It clearly shows that the
ormalized hardness decreases with the increases of the poros-

ty. This is due to the fact that a higher porosity material has a
ower plastic yield strength according to Eq. (2). Fig. 10(d) shows the
elationship between the normalized hardness and the normalized
aximum indentation depth. It indicates that the influence of the

ormalized maximum indentation depth on the normalized hard-
ess is not significant. For all the examined cases, the maximum
ardness increase is about 11% when the normalized maximum

ndentation depth changes from 0.0067 to 0.017. Therefore, for a
iven metallic foam, the spherical indentation hardness can still be
reated roughly as a constant.

Previous study on ordinary elastic–plastic materials found that
he hardness (H) is about 2.4–2.8 of the yield strength (Y) for

/E < 0.02 and it approaches 1.7 for Y/E > 0.06 [36]. The numeri-
al ratios of the hardness to the yield strength of metallic foams
re shown in Fig. 11. In all these cases, Yf/Ef < 0.01. As we can see,
/Yf varies from 2.17 to 2.45 for pt = 0.9 and from 2.65 to 2.95 for
t = 0.4. The range of this ratio is different from that of the solid
lastic–plastic materials.

[
[
[

[
[
[
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4. Conclusions

Dimensional analysis and finite element simulations were
employed to study the spherical indentation of metallic foams. Sev-
eral scaling functions were derived to describe the relationships
between the indentation responses and the material properties.
Our numerical results revealed the influences of the porosity, the
shape factor and the work hardening exponent on the indenta-
tion responses. The maximum indentation force decreases with
the increase of the shape factor and/or the porosity. These influ-
ences are more demonstrative for low porosity foams than that
for high porosity foams. Furthermore, the maximum indentation
force has a linear relationship with the indentation depth for dif-
ferent shape factor values. The slope of such linear curves depends
on the shape factor, the porosity, the work hardening exponent
and the Poisson’s ratio. It is proposed to calibrate the shape fac-
tor from the measured slope value from a spherical indentation
test if all the other parameters are known or measured from other
tests.

Initial unloading slope was also examined in our study. It
decreases with the increase of the porosity. Moreover, our numer-
ical results confirmed that the initial unloading slope method for
ordinary solid materials can also be applied to calibrate the Young’s
modulus of metallic foams. The influences of both the shape fac-
tor and the porosity on hardness are similar to the influences on
the maximum indentation force. We also found that the spheri-
cal indentation hardness varies about 11% within the examined
indentation depths for the foams with different porosities, shape
factors and work hardening exponents. Therefore, the spherical
indentation hardness of a metallic foam can still be treated as a
constant. The ratio of the hardness to the yield strength of metallic
foams varies from 2.17 to 2.95, which is different from that of solid
elastic–plastic materials.
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