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a b s t r a c t

The application of the indentation method to measure the elastic modulus of particles embedded in a
composite is theoretically investigated in this paper by finite element simulation. The Oliver–Pharr
method, which is widely used in commercial nanoindentation instruments, is used to probe the elastic
modulus of the particle from the simulated indentation curve. The predicted elastic modulus is then com-
pared with the inputted value. Two cases are studied, that of a stiff particle embedded in a soft matrix and
a soft particle embedded in a stiff matrix. In both of these cases, there exists a particle-dominated depth.
If the indentation depth lies within this particle-dominated depth, the Oliver–Pharr method is able to be
applied to measure the particle’s elastic modulus with sufficient accuracy if the real contact area is used.
This could lead to an experimentally-convenient method of determining the primary properties of indi-
vidual particle, providing they can be well dispersed in the polymeric matrix.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In an instrumented indentation test, the so called nanoindenta-
tion test, a diamond indenter is pressed into the surface of a spec-
imen to depths ranging from nanometers to micrometers. The
curve of the indentation force versus the indentation depth is
recorded, and used to extract the specimen’s mechanical proper-
ties, such as elastic modulus and hardness. Due to its simplicity,
convenience and the increasing availability of commercial nanoin-
dentation instruments, such as Hysitron Triolab™ and MTS Nano
Indenter� system, the nanoindentation test becomes a popular
experimental method to probe the mechanical properties of differ-
ent materials [1–6]. With regards characterization of nanomateri-
als and nanostructured materials, studies have looked at the
mechanical properties of graphite flakes and spherulites in cast
iron [7], AlN nanoparticle-reinforced nanocrystalline Al matrix
composites [8], carbon nanotube/nanofiber-reinforced polymer
composite [9] and graphene reinforced polymer composites [10].

The theory for using instrumented nanoindentation to probe
the elastic modulus was developed by Oliver and Pharr in 1992
[11]. However, the Oliver–Pharr method is only suitable for mono-
lithic and isotropic materials. When it is applied to nanocompos-
ites, the measured elastic modulus is a function of the elastic
properties of both the nanoparticle and the matrix. In particular,
the influence of the matrix should be understood in order to under-
ll rights reserved.
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stand and use the measured data. Additionally, the method
described by Oliver–Pharr to predict the projected contact area, a
prerequisite step to determine the elastic modulus and hardness,
is only suitable for the indentations which display the deformation
phenomenon of ‘‘sink-in’’, where the surface around the indenter
sinks in. If the opposite indentation deformation phenomenon of
‘‘pile-up’’ occurs (the surface of the sample around the indenter
being at a greater level than its surrounds), the elastic modulus
and hardness can be significantly underestimated [12]. In this
paper, an indentation of a particle embedded in a matrix is numer-
ically simulated by the finite element method. The Oliver–Pharr
method is then applied to probe the elastic modulus of the particle
from the simulated indentation force versus indentation depth
curve. The objective of the study is to investigate if the Oliver–
Pharr method can be applied directly to measure the elastic mod-
ulus of the particles in a composite.
2. Methodology

2.1. Investigation model

A composite material system of particles embedded in a matrix
was chosen in this research and is similar in morphology to many
new particle reinforced composites [7–10]. For the reason of sim-
plicity, an idealised semi-spherical particle embedded in the surface
of a semi-infinite matrix is considered in this work, as shown in
Fig. 1. A conical indenter with 70.3� was pressed at the centre of
the semi-spherical particle. This configuration is equivalent to a
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Fig. 1. Schematic illustration of the theoretical indentation model.
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Fig. 2. Axisymmetric finite element model to simulate the indentation test with a
rigid conical indenter: (a) entire finite element mesh and boundary conditions; (b)
fine mesh near the indenter tip.
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sharp Vickers or Berkovich indenter [13], which is commonly used in
commercial indentation instruments.

The illustrated indentation in Fig. 1 was simulated in a virtual
fashion by using an axisymmetric finite element model, see
Fig. 2. The commercial finite element package Abaqus was utilised
for the simulations. As demonstrated in Fig. 2b, a very fine mesh
was employed in the contact zone beneath the indenter tip to en-
sure the accuracy of the numerical results. The model contains a
total of 7997 four-noded, axisymmetric elements. The output
indentation force versus the indentation depth curve was then
used to predict the elastic modulus of the particle by strictly fol-
lowing the Oliver–Pharr method, which duplicated the procedure
conducted by a nanoindenation instrument in a real, physical test.
For this purpose, the Oliver–Pharr method is first briefly discussed
below.

2.2. Oliver–Pharr method

The Oliver–Pharr method is the most common method for
establishing the projected contact area and predicting the elastic
modulus of ordinarily materials. This method begins by fitting
the unloading portion of the indentation graph data to the
power–law relation as below [11,14],

F ¼ Bðh� hf Þm ð1Þ

where B and m are fitting parameters and hf is the final indentation
depth after complete unloading. From this data the initial unloading
slope, i.e., contact stiffness, S, can be estimated by analytically dif-
ferentiating Eq. (1) and evaluating the result at the maximum
indentation depth, i.e.,

S ¼ dF
dh

� �
h¼hmax

¼ Bmðhmax � hf Þm�1 ð2Þ

The obtained contact stiffness from Eq. (2) is then used to esti-
mate the contact depth hc under the maximum indentation force,

hc ¼ hmax � e
Fmax

S
ð3Þ

where e is a constant which depends on the indenter geometry. For
conical indenters, e has been suggested to be 0.72 [14]. The pro-
jected contact area, A, under the maximum indentation force for a
sharp conical indenter is determined by the indenter tip’s included
angle, h, which is 70.3o in our study and the estimated contact depth
hc from Eq. (3), that is,
A ¼ pðhc tan hÞ2 ð4Þ

Finally, in the case of a rigid indenter, as assumed here, the elas-
tic modulus of the particle, Em

p , can be calculated by:

Em
p ¼

1
b

ffiffiffiffi
p
p

2
Sffiffiffi
A
p ð1� v2

pÞ ð5Þ

where vp is the Poisson’s ratio of the particle and b is a correction
factor. A value of 1.05 for b was recommended by Oliver and Pharr
[14] and used in this investigation.

It is evident that estimation of the projected contact area at the
maximum indentation force is a key step in measuring the elastic
modulus of the particle. Eq. (5) is strictly suitable only for measur-
ing the elastic modulus of monolithic and isotropic specimens, and
Eq. (3) is based strictly on the indentation phenomenon of sink-in,
where the surface around the indenter is lower than the sample as
a whole, as illustrated in Fig. 3a. In the case of sink-in, the contact
depth hc is always smaller than the maximum indentation depth
hmax, which is demonstrated by Eq. (3). When the Oliver–Pharr
method is applied to probe the elastic modulus of the particle in
a composite, as illustrated in Fig. 1, the difference of the matrix’s
properties might affect the measured result and pile-up (illustrated
in Fig. 3b) might occur in such a system. These two issues are the
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Fig. 3. Schematics of sink-in (a) and pile-up (b).
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Fig. 4. Results of the probed elastic modulus of the particle as a function of the
indentation depth for Case One.
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focus of our current investigation. Numerical results from our case
studies are presented and discussed in the following section.
Particle Matrix 
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3. Results and discussion

3.1. A stiff particle embedded in a soft matrix

In the numerical simulation of the indentation test shown in
Fig. 1 for our first case study, we chose a stiff particle embedded
in a soft matrix. The material properties for the particle and the
matrix are listed in Table 1, which corresponds to aluminium
nitride (AlN) nanoparticles reinforced aluminium [8]. The radius
of the particle was taken as 40 nm.

The virtual indentation tests were carried out at different max-
imum indentation depths, hmax. As in reality, the indentation force
versus indentation depth curve can be obtained from every simu-
lation and this curve was then applied to predict the elastic mod-
ulus of the particle by strictly following the Oliver–Pharr method,
which was described in previous section. The solid line with filled
triangle marks in Fig. 4 shows the predicted elastic modulus nor-
malised by the input real particle’s elastic modulus, Em

p =Ep, as a
function of the normalised maximum indentation depth, hmax/R.
This can be compared to the dashed line, which represents the
accurate value of the particle’s elastic modulus, when
hmax=R � 0:02, the predicted values Em

p =Ep are very close to the
ideal value of 1.0, with the error less than 10%. For greater inden-
tation depths, the numerical curve decreases rapidly, indicating
the increasing influence of the matrix with the increase in indenta-
tion depth. Due to the fact that the matrix has a much lower value
of elastic modulus than that of the particle, the effect of the matrix
leads to the decrease in the predicted indentation modulus.

Fig. 4 also shows that the predicted value by using the Oliver–
Pharr method reaches a value even less than 0.21, which equals
to the normalised matrix’s modulus (see Table 1), when the nor-
malised maximum indentation depth is over 0.225. This predicted
result is clearly unacceptable. Further investigation indicates that
such unacceptable results were due to the fact that Eqs (3) and
Table 1
The mechanical properties of the stiff particle and the soft matrix applied in Case One.

Elastic modulus (GPa) Poisson’s ratio Yield strength (MPa)

Particle 330 0.3 2100
Matrix 70 0.3 50
(4) used to estimate the projected contact area in the Oliver–Pharr
method is only suitable for the indentations where the surround-
ing matrix displays sink-in behaviour. As shown in Fig. 5, pile-up
happens in the indentation for this case. Additionally, the particle
has a large rigid body motion due to the large deformation of the
matrix surrounding the particle and this contributes a large
amount to the indentation depth. Due to these two facts, Eqs (3)
and (4) cannot be applied to estimate the projected contact area
with sufficient accuracy. In our finite element simulations, the pro-
jected contact area can, however, be obtained accurately from the
numerical results. Fig. 6 shows the normalised predicted contact
area from Eqs (3) and (4) as a function of the normalised maximum
indentation depth, compared with the results obtained directly
from the finite element simulations. It is evident that the predic-
tion of the contact area from Eq. (4) is reliable only when
hmax=R � 0:08. At greater depths, the error of the prediction
increases with increase in indentation depth. It is worth mention-
ing that the projected indenter contact area under the maximum
indentation force can be measured from imaging techniques, such
as SEM and AFM, in a real physical test.

Using the real contact area shown in Fig. 6, Eq. (5) was applied
to predict the elastic modulus of the particle and the results were
plotted in Fig. 4, marked by the ‘‘x’’ symbol. The value became con-
stant for values of hmax=R � 0:1, still some 42% less than the actual
input modulus value, which shows that the predicted elastic mod-
ulus from the indentation test by using the Oliver–Pharr method is
a combined result that also involves the influence of the matrix.
Fig. 5. Deformed particle and the surrounding matrix at the indentation depth of
hmax/R = 0.25 for Case One, which shows local pile-up around the indenter and large
rigid-body motion of sink-in of the particle.
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Fig. 6. The normalised predicted contact area as a function of the normalised
maximum indentation depth from Eq. (4) for Case One, compared with the results
obtained directly from the finite element simulations.

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15
h/R

F/
(R

2 E
p)

 X
 1

0
-3

Particle embeded in matrix

Monolithic particle phase

Particle -
dominated depth 

Fig. 8. Comparison of the indentation curves from the monolithic particle phase
indentation and the composite indentation to confirm and to define the particle
dominated depth for Case One.

Table 2
The mechanical properties of the soft particle and the stiff matrix applied in Case Two.

Elastic modulus (GPa) Poisson’s ratio Yield strength (MPa)

Particle 35 0.126 120
Matrix 210 0.29 300
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Figs. 4 and 6 demonstrate that the influence of the matrix on the
indentation can be negligibly small if the indentation depth is suffi-
ciently small. Conversely, the influence of the matrix is significant if
the indentation depth is reasonable large. This effect can also be ob-
served from the indentation force versus indentation depth curve, as
shown in Fig. 7. Referring to Figs. 4, 6 and 7, the indentation curve
can be divided into a narrow particle-dominated depth and a major
matrix-influenced depth. When the indentation depth is within the
particle-dominated depth, the predicted indentation modulus is
close to the elastic modulus of the particle and indentation method
can still be applied to measure the particle’s elastic modulus.
According to Fig. 4, the particle dominated depth corresponds to val-
ues of hmax=R � 0:02. When the indentation depth is within the ma-
jor matrix-influenced depth (where hmax/R > 0.02), the predicted
indentation modulus can be significantly different from the parti-
cle’s elastic modulus. In the current studied case, the difference
can reach to 42% according to Fig. 4. Theoretically, the particle-dom-
inated depth can be confirmed and defined by comparing the
numerical indentation curves from both the monolithic particle
phase indentation and the composite indentation experiments,
and the comparison for this case is shown in Fig. 8. It confirms that
the matrix starts to affect the indentation curve of the composite
when hmax/R > 0.02 and thus the particle-dominated depth is
hmax=R � 0:02. To effectively apply the indentation method to mea-
sure the elastic modulus of a particle embedded in a matrix in prac-
tice, it is important to understand the limits of the particle
dominated-depth, so as to make sure that the indentation displace-
ment remains within this depth. In the case of measurement of the
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Fig. 7. Normalised indentation curve with unloading at different values of the
maximum indentation depth, hm for Case One. This curve can be divided into a
narrow particle dominated depth and a major matrix influenced-depth.
elastic modulus of a thin film deposited on a substrate using an
indentation method, the thin film-dominated depth is 10% of the
film thickness [5,13].
3.2. A soft particle embedded in a stiff matrix

In our second case study, we chose a soft particle embedded in a
stiff matrix. The material properties for the particle and the matrix
are shown in Table 2, which corresponds in this example to graph-
ite defects embedded in a cast iron [7]. The radius of the particle
was taken as 40 lm.

Fig. 9 shows the deformed particle and the surrounding matrix
at the indentation depth of hmax/R = 0.25. There exist double pile-
ups of the soft particle material around the indenter and around
the interface between the particle and the matrix, showing signif-
icantly different behaviour from Case One of a stiff particle embed-
ded in a soft matrix. This deformation involving double pile-up is
Particle Matrix

Fig. 9. Deformed particle and the surrounding matrix at the indentation depth of
hmax/R = 0.25 for Case Two, which shows double pile-up of the soft particle material
around the indenter and around the interface between the particle and the matrix.
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Fig. 11. Results of the probed elastic modulus of the particle as a function of the
indentation depth for Case Two.
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due to the different properties of the particle and the matrix. Fur-
ther research is being carried out to investigate the origin and
influences on this mode of deformation in some detail.

As expected, Eq. (3) will not be able to accurately estimate the
contact depth and the projected contact area due to this different
deformation morphology. Fig. 10 compares the predicted contact
area from Eq. (4) with the real contact area obtained directly from
the simulations. It confirms that the prediction of the contact area
from Eq. (4) is only reliable when hmax=R is very small, and the error
of the prediction increases with any increase of the indentation
depth.

As for Case One, the elastic modulus of the soft particle was pre-
dicted by using the projected contact area from Eq. (4) and the real
contact area obtained from the simulation, respectively and these
predicted results are shown in Fig. 11. The results show that the
predicted elastic modulus determined using the Oliver–Pharr
method is always larger than that predicted from the real contact
area, at different depths. The predicted values increase with the
indentation depth continuously due to the influence of the stiff ma-
trix. However, the most important finding from Fig. 11 is that there
exists a particle-dominated depth and when hmax=R � 0:025, the er-
ror of the predicted elastic modulus from the real contact area is
less than 10%. Therefore, if the indentation depth is within the par-
ticle dominated depth, the Oliver–Pharr method can still be applied
to predict the elastic modulus of the soft particle. Instead of using
Eq. (4), the real contact area should be used in the prediction.

4. Summary

Finite element simulations were applied to investigate the
indentation of particles embedded in composites and to validate
the applicability of the Oliver–Pharr method to measure the elastic
modulus of the particles. Two cases, a stiff particle and a soft par-
ticle, have been considered in this investigation. Our case study
indicates that Oliver–Pharr method cannot be applied to accurately
estimate the contact area due to complicated pile-up deformation.
In addition, the real contact area is necessary to accurately deter-
mine the elastic modulus. Furthermore, in each case there exists
a particle-dominated depth, and if the indentation depth is within
this particle-dominated depth, the Oliver–Pharr method can still
be applied to measure the particle’s elastic modulus with sufficient
accuracy, provided that the real contact area is used. In a true prac-
tical experimental sense the real contact area under the maximum
indentation force for a sharp conical indenter can readily be
obtained from imaging techniques, such as SEM and AFM. A para-
metric study is being carried out to understand the particle-domi-
nated depth for different composite systems.
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