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Instrumented indentation test has been extensively applied to study the mechanical
properties such as elastic modulus of different materials. The Oliver–Pharr method to
measure the elastic modulus from an indentation test was originally developed for single
phase materials. During a spherical indentation test on shape memory alloys (SMAs), both
austenite and martensite phases exist and evolve in the specimen due to stress-induced
phase transformation. The question, “What is the measured indentation modulus by using
the Oliver–Pharr method from a spherical indentation test on SMAs?” is answered in this
paper. The finite element method, combined with dimensional analysis, was applied to
simulate a series of spherical indentation tests on SMAs. Our numerical results indicate
that the measured indentation modulus strongly depends on the elastic moduli of the two
phases, the indentation depth, the forward transformation stress, the transformation
hardening coefficient and the maximum transformation strain. Furthermore, a method
based on theoretical analysis and numerical simulation was established to determine the
elastic moduli of austenite and martensite by using the spherical indentation test and the
Oliver–Pharr method. Our numerical experiments confirmed that the proposed method
can be applied in practice with satisfactory accuracy. The research approach and findings
can also be applied to the indentation of other types of phase transformable materials.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Instrumented indentation techniques have been widely applied to characterize the mechanical behavior of elasto-plastic
materials at small scale (Nix and Gao, 1998; Hay and Pharr, 2000; Oliver and Pharr, 2004; Cheng and Cheng, 2004). More
recently, indentation tests have been extended to study the mechanical properties of multi-phase functional materials
(Ni et al., 2002, 2003; Yan et al., 2006a, 2006b, 2007; Qian et al., 2006; Feng et al., 2008, etc.) and biological materials (Zysset
et al., 1999; Ebenstein and Pruitt, 2006; Oyen and Cook, 2009; Ishimoto et al., 2011, etc.).

Shape memory alloys, represented by NiTi, are well known smart materials due to their unique super-elastic and shape
memory properties, and have found many engineering applications such as actuators, biomedical devices and implants
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Table 1
Summary of austenite elastic modulus Ea and martensite elastic modulus Em reported in literature.

Ea (GPa) Em (GPa) Em/Ea Reference

70 45 0.64 Zaki and Moumni (2007)
72 45 0.63 Kang et al. (2009)
61.2 27.6 0.45 Wang and Yue (2007)
70 30 0.43 Popov and Lagoudas (2007)
67 26.3 0.39 Dye (1990)
47 17 0.36 Auricchio (1995)
31 20 0.65 Sun and Li (2002), Li and Sun (2002)
33 21 0.64 Feng and Sun (2006)
43 22 0.51 Qian et al. (2006)
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(see Duerig et al., 1999; Humbeeck, 1999; Fu et al., 2004). There is a growing interest in probing the micro- and nano-scale
mechanical properties of SMAs using indentation techniques since these alloys are also used as thin films and micro-devices
in micro-electro-mechanical systems (Gall et al., 2001; Ni et al., 2002; Qian et al., 2004; Zhang et al., 2006; Amini et al.,
2011). The micro- or nano-indentation response of SMAs is more complicated than that of single phase materials because
transformation occurs between two phases, austenite and martensite, during indentation loading and unloading. There is a
remarkable difference in the elastic moduli of the austenite and martensite phases. Experimental results published in
literature, summarized in Table 1, show that the ratio of the martensite elastic modulus to that of the austenite varies from
0.36 to 0.65.

The Oliver–Pharr method (Oliver and Pharr, 1992) is the most frequently adopted method in instrumented indentation
testing to probe the elastic modulus of materials. However, this method was originally developed and therefore is valid only
for single-phase materials. When applied to SMAs where two phases of different moduli coexist during indentation, the
question, “What does the measured indentation modulus mean?” arises. The answer to this question will not only advance
our understanding of the indentation response of SMAs or other phase transformable materials, but may also lead to a new
way of characterizing the elastic modulus of the martensite phase and/or the austenite phase at very small scales. These two
issues form the objectives of the present study.

The structure of this paper is as follows. The isothermal constitutive model of SMAs is briefly described in Section 2.1.
In Section 2.2, a theoretical analysis of the spherical indentation modulus of SMAs obtained from the Oliver–Pharr method is
presented. A numerical model is described in Section 3.1 and applied in Section 3.2 to examine the indentation modulus and
to identify the contribution of individual phases and indentation depth on the indentation modulus. In Section 3.3, a
weighting factor is introduced and numerically examined to develop the relationship between the indentation modulus and
the elastic moduli of the austenite and the martensite phases and the indentation depth. Following the results of Section 3.3,
a spherical indentation method to predict elastic moduli of both austenite and martensite of SMAs is presented in Section
3.4. Section 3.5 describes a set of numerical experiments performed to validate the proposed method. Conclusions are given
in Section 4.
2. Theoretical analysis

2.1. Constitutive model of SMAs

The super-elastic behavior and shape memory effect of SMAs can be illustrated by stress–strain curves under a uniaxial
loading–unloading cycle. Idealized tensile stress–strain curves from a super-elastic SMA and an SMA with the shape
memory effect are shown in Fig. 1(a) and (b), respectively.

Super-elastic behavior can be observed during the loading and unloading process above the austenite finish
temperature and is associated with the stress-induced martensite transformation and the reverse transformation during
unloading (Fig. 1(a)). Different from a super-elastic SMA, reverse transformation does not happen in the unloading process
below the austenite start temperature for an SMA with the shape memory effect, and the residual strain can only be
recovered by increasing the temperature to above the austenite finish temperature (Fig. 1(b)). As shown in Fig. 1(a) and
(b), ssf and sef are the start and end stresses for the forward transformation, respectively; ssr and ser are the start and end
stresses for the reverse transformation, respectively; linear transformation hardening is considered by setting sef 4ssf . Ea
and Em are the elastic moduli of the austenite and the martensite, respectively; εm is the maximum transformation strain.
Additionally, va and vm are the elastic Poisson's ratios of austenite and martensite, respectively. εv is the transformation
volume strain.

A phenomenological 3D constitutive model (Auricchio et al., 1997; Auricchio and Taylor, 1997) describing the
macroscopic super-elastic and shape memory effect of SMAs has been verified and implemented into Abaqus (2010).
The implemented model is based on general inelastic frame, the total strain ε can be decomposed into elastic strain εe and
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Fig. 1. Idealized stress–strain curves of SMAs under uniaxial loading: (a) super-elasticity, including forward transformation and reverse transformation
with transformation hardening; (b) shape memory effect, only forward transformation occurs, the residual strain can be recovered by increasing the
temperature.
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transformation strain εtr , i.e.,

ε¼ εe þ εtr ð1Þ
The plastic deformation of the martensite under a high stress level (e.g., 1600 MPa, see Qian et al., 2006) is neglected in

the implemented model. Therefore, the deformation response in our current study is limited to elasticity and phase
transformation under the indentation of a spherical indenter.

The elastic strain is assumed to be related to the stress by the effective elastic modulus tensor DamðzÞ:
r¼DamðzÞ : εe ¼Dam : ðε−εtrÞ ð2Þ

where z is the martensite volume fraction. The effective modulus DamðzÞ is obtained from the Reuss scheme (Auricchio and
Sacco, 1997a, 1997b)

1
Dam

¼ 1
Da

ð1−zÞ þ 1
Dm

z
� �

ð3Þ

where DA and DM are the austenite and martensite elastic modulus tensors, respectively. The expression for the effective
modulus Dam allows a description of the elastic modulus of a mixture of the austenite and martensite phases.
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The model is constructed from the basic assumption that the martensitic transformation mechanism is associated to an
active reorientation process, described by the following equation:

εtr ¼ εmz
∂Fðr; TÞ

∂r
ð4Þ

where Fðr; TÞ is a stress r and temperature T dependent loading function, which drives the martensitic transformation
process. To model a different material response between traction and compression, Drucker–Prager type loading functions
are introduced for the forward and the reverse transformation:

Fðr; TÞ ¼ jjsjj þ 3αp−CaT ð5aÞ

Fðr; TÞ ¼ jjsjj þ 3αp−CmT ð5bÞ
where s¼ r−pI is the deviatoric stress tensor and p¼ 1

3r : I is the hydrostatic pressure, I is the second rank unit tensor.
Parameter α reflects the anisotropic transformation responses in tension and compression. The quantities Ca and Cm are the
Clausius–Clapeyron constants for the forward and the reverse transformation, respectively.

It should be noted that the implemented model can predict uniaxial behavior of NiTi SMA very well since the material
parameters of the model are mainly obtained from uniaxial tests (Auricchio et al., 1997; Auricchio and Taylor, 1997). The
model has also been validated by simulating three-point and four-point bending tests, the biaxial non-proportional loading
of a flat sheet and the Luders-band effect (Auricchio et al., 1997). In the present study, the loading at a material point due to
indentation is three-dimensional and non-proportional. Our investigation indicates that this Abaqus built-in material model
for SMAs has the capacity to predict not only the uniaxial and but also the nonproportionally multiaxial response of NiTi
SMA. Details of the study are presented in Appendix A.

2.2. Indentation modulus of an SMA from Oliver–Pharr method

The Oliver–Pharr method (Oliver and Pharr, 1992) was originally developed to measure the hardness and elastic modulus
of a single phase elasto-plastic material from the indentation load–depth curve with sharp indenters, such as a pyramidal
Berkovich tip. It has been proven that this method can also be applied in any axisymmetrical indenter geometries including
a sphere (Oliver and Pharr, 2004).

The Oliver–Pharr method begins by fitting the unloading portion of the indentation load–depth data to the power-law
relation shown below:

P ¼ αðh−hf Þm ð6Þ

where α and m are the fitting parameters. Originally, hf has the physical meaning of the final depth after complete
unloading. Practically, when the Oliver–Pharr method is applied, hf becomes a fitting parameter and only the upper
unloading data are used to fit Eq. (6) through regression analysis (Oliver and Pharr, 1992, 2004).

As shown in Fig. 2, our numerical results confirm that the power law Eq. (6) can also be applied to well fit the upper
unloading curve of a spherical indentation curve from an SMA either with shape memory effect (Fig. 2(a)) or with super-
elasticity (Fig. 2(b)), although the deformation mechanism is different for these two types of SMAs. Only elastic deformation
of the austenite and the martensite, transformed from the indentation loading, occurs during unloading for SMAs with
shape memory effect, while the entire unloading process of the super-elastic SMA consists of three stages: elastic unloading
of a mixture of austenite and martensite, reverse transformation and pure austenite elastic unloading. Pm and hm, displayed
in Fig. 2, are the maximum indentation load and the maximum indentation depth, respectively. It is worth commenting that
the fitted hf is close to the residual indentation depth, its original physical meaning, for SMA (Fig. 2a) with shape memory
effect, which is similar to elasto-plastic materials, while the fitted hf has lost this physical meaning and become a purely
fitting parameter for super-elastic SMA (Fig. 2b).

Once the three fitting parameters α, m and hf in Eq. (6) are obtained, the contact stiffness S, which is defined as the slope
of the unloading curve at the maximum indentation depth, can be computed from

S¼ dP
dh

jh ¼ hm ¼ Bmðhm−hf0 Þm−1 ð7Þ

The contact depth of the spherical indentation hc can be calculated by following the Oliver–Pharr method as

hc ¼ hm−0:75
Pm

S
ð8Þ

“Pile-up” (hc=hm41) and “sink-in” (hc=hmo1) phenomena are usually observed in ordinary elasto-plastic materials, and
the degree of “pile-up” and “sink-in” depends on the plastic yield stress and the level of strain-hardening (Giannakopoulos
and Suresh, 1999). Eq. (8) is only suitable for “sink-in” due to the positive indentation load Pm and contact stiffness S.
Numerical studies show that “pile-up” does not occur in SMAs with a high martensite plastic yield stress over 1300 MPa
(Kang and Yan, 2010). As mentioned above, plasticity is excluded in this study, i.e., the martensite plastic yield stress can be
treated as infinite. Therefore, Eq. (8) can be used to obtain the contact depth in all the cases studied in this paper. The
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Fig. 2. Typical spherical indentation load–depth curve (obtained from FE simulations) with the upper unloading curve fitted by Eq. (6) for (a) an SMA with
shape memory effect and the unloading process consisting of elastic unloading of mixed austenite and martensite phases; (b) a super-elastic SMA with the
unloading process consisting of three stages: the elastic unloading of a mixture of austenite and martensite phases, reverse transformation and austenite
elastic unloading.
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contact area Ac can be computed directly from the contact depth hc and the radius of the indenter tip R

Ac ¼ πð2Rhc−h
2
c Þ ð9Þ

The contact stiffness S from Eq. (7) and the contact area Ac from Eq. (9) are used to calculate the reduced modulus

Er ¼
ffiffiffi
π

p

2β
Sffiffiffiffiffi
Ac

p ð10Þ

where β is a dimensionless correction factor which accounts for the deviation in stiffness due to the lack of axisymmetry of
the indenter tip with β¼ 1:0 for axisymmetric indenters, β¼ 1:012 for a square-based Vickers indenter, and β¼ 1:034 for a
triangular Berkovich punch (King, 1987). For spherical indentations, β is taken as unity in this work.

After obtaining the reduced modulus Er from Eq. (10), the indentation modulus from the Oliver–Pharr method can be
finally determined by

Eop ¼
1−v2s

ð1=ErÞ−ðð1−v2i Þ=EiÞ
ð11aÞ

where vs is Poisson's ratio of the specimen, Ei and vi are respectively the elastic modulus and Poisson's ratio of the indenter.
For ordinary single phase materials, the indentation modulus obtained from Eq. (11a) is the elastic modulus of the specimen.
If the indenter's elastic modulus Ei is much larger than that of the specimen (e.g., SMAs), the indenter can be treated as a
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rigid body and Eq. (11a) can be simplified as

Eop ¼ ð1−v2s ÞEr ð11bÞ
In a spherical indentation test on a SMAwith the assumption of a rigid indenter, the indentation modulus Eop depends on

SMA's material properties Ea, Em, ssf , s
e
f , s

s
r , s

e
r , εm, εv, vs, as well as the maximum indentation depth hm, the indenter tip

radius R and the friction coefficient μ, i.e.,

Eop ¼ f 1ðEa; Em; ssf ; sef ; ssr ; ser ; va; vm; εm; εv;hm;R; μÞ ð12aÞ

Different from the elastic indentation of non-homogeneous material systems such as a thin film-substrate system, where
the two phases are fixed and analytical methods can be applied (Gao et al., 1992), indentation of SMAs with the evolving of
the two phase volumes is very complex and numerical methods are required to obtain the indentation response in a
theoretical study. Recently, the finite element method was successfully applied to study the mechanics of indentation of
plastically graded materials (Choi et al., 2008). The finite element method was applied here to simulate the spherical
indentation on SMAs. The finite element model is discussed in Section 3.1.

Our numerical results indicate that the reverse transformation during indentation unloading for a super-elastic SMA
has a negligible influence on the indentation modulus. For example, the change of the normalized reverse stress ssr=Ea
from 0.001 to 0.004 only results in the difference of less than 1.2% in the indentation modulus. Consequently, ssr and ser ,
the start and end stress for the reverse transformation, can be removed from Eq. (12a). More importantly, it indicates that
all the results presented afterwards can be applied to both super-elastic SMAs and the SMAs with shape memory effect.

Assuming a linear transformation hardening, the hardening coefficient η can be formulated as η¼ ðsef−ssf Þ=ðεmEaÞ.
Poisson's ratio vs(¼va¼vm) of SMAs is generally set as a constant. The transformation volume strain εv for NiTi SMAs is
around −0.39% (Holtz et al., 1999; Jacobus et al., 1996), which is much smaller than the transformation shear strain
components (�5%). It was found that its influence on the load–depth curve can be neglected (Yan et al., 2008). Our
numerical investigation concludes that the influence of the transformation volume strain on indentation modulus is
negligibly small (o0.57%). Additionally, the friction coefficient has a negligible influence on the indentation modulus. For
example, our numerical results show that the maximum difference in indentation modulus is less than 1.6% if the friction
varies from 0 to 0.3. Thus a frictionless assumption is made between the indenter and the sample. Based on these
considerations, Eq. (12a) can be further simplified as

Eop ¼ f 2ðEa; Em; ssf ; η; εm;hm;RÞ ð12bÞ

According to dimensional analysis (Cheng and Cheng, 1999, 2004), the dimensionless indentation modulus Eop=Ea can be
expressed as

Eop
Ea

¼∏1
Em
Ea

;
ssf
Ea

; η; εm;
hm
R

 !
ð13Þ

Eq. (13) clearly indicates that the indentation modulus depends on not only the mechanical properties of the two phases but
also the indentation depth. It is evident that when the indentation depth is very small, i.e., hm=R-0, the specimen is of a single
austenite phase and Eop=Ea ¼ 1. With the increase in the indentation depth, phase transformation from austenite to martensite
occurs and the transformation zone increases gradually. As a result, the normalized indentation modulus Eop=Ea varies with the
normalized indentation depth hm=R. Eventually, Eop=Ea will approach Em=Ea. How indentation depth hm=R affects indentation
modulus Eop=Ea in SMAs with different material properties is examined numerically by the finite element method in the following
section.

3. Numerical investigation

3.1. Finite element model

The commercial finite element package Abaqus (2010) was applied to perform the numerical simulations. Considering that
the indenter tip is normally made of diamond, which has a much higher elastic modulus than those of SMAs, a rigid spherical
indenter is used in the numerical analysis. As shown in Fig. 3(a), the spherical indentation was modeled as a 2D axisymmetric
problem using a total of 8157 four-node linear axisymmetric elements (CAX4). Roller boundary condition is imposed on the
symmetric axis of the sample and the bottom is constrained in both the radial and axial directions, the size of the sample is 30
times larger than the radius of the indenter to avoid the influence of the boundaries introduced in the numerical model (see
Fig. 3(a)). A refined mesh is used in the area beneath the indenter tip and load P is applied in the reference point as illustrated in
Fig. 3(b).

A preliminary mesh sensitivity analysis was performed to ensure that the mesh is fine enough such that the simulated
results are insensitive to the element size in the indenter tip region. The minimum element size near the contact surface was
finally determined as 0.15% of the indenter radius. Because the contact stiffness is calculated from the slope of the unloading
curve, the elastic modulus obtained from the Oliver–Pharr method is only related to the unloading process at the initial
stage. To accurately obtain the unloading data by using Abaqus, 2000 increments were employed for a single unloading



Fig. 3. Finite element model for the indentation tests with a spherical indenter: (a) the entire model and (b) the fine mesh near the indenter tip.
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simulation. In all the simulations, Poisson's ratios va and vm were fixed at 0.3, which is reasonable for SMAs. The austenite
elastic modulus was set as a constant (Ea ¼ 100 GPa). To obtain an accurate indentation modulus Eop in computational
simulations, a key factor is to accurately calculate the contact stiffness S. Readers are referred to the Appendix B for details
on this issue.
3.2. Numerical results of indentation modulus Eop

Referring to Eq. (13), the effect of the ratio Em=Ea on the indentation modulus Eop=Ea is firstly examined. Fig. 4 shows the
relationship between the indentation modulus Eop=Ea obtained from the Oliver–Pharr method and the maximum
indentation depth hm=R with different ratios of Em=Ea from 0.4 to 0.7, where the maximum transformation strain εm, the
forward transformation stress ssf =Ea and the transformation hardening coefficient η are set as 0.08, 0.005 and 0.0,
respectively. It can be seen clearly that when the maximum indentation depth is very small (e.g., hm=R≤0.001), the
indentation modulus Eop=Ea remains almost a constant at unity, which means that the indentation modulus is the same as
that of the austenite due to the fact that phase transformation has not occurred yet and the sample is in the austenite phase.
With the further increase of hm=R, Eop=Ea decreases. As the transformed martensite zone increases with the indentation
depth, Eop=Ea is approaching the lower bound value of Em=Ea (Dashed lines and arrowheads show the corresponding
relations between Eop=Ea and Em=Ea in Fig. 4.) It is worth noting that the martensite elastic modulus Em cannot be simply
obtained at a very large indentation depth. The first reason is that the sample will never become a single martensite phase
material, no matter how large the indentation depth is. The second reason is that the Oliver–Pharr method cannot provide



E
op

/ E
a

hm R

Fig. 4. Relationship between the normalized indentation modulus Eop=Ea and the normalized maximum indentation depth hm=R with different ratios of
Em=Ea (ssf =Ea¼0.005, εm¼0.08, η¼0.0).

Fig. 5. Relationship between the normalized indentation modulus Eop=Ea and the normalized maximum indentation depth hm=R with different values of
the normalized forward transformation stress ssf =Ea (Em=Ea¼0.6, εm¼0.06, η¼0.0).
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enough accuracy at very large ratios of hm=R (see Fig. B1 in Appendix B). Additionally, Fig. 4 indicates that for a given
indentation depth, Eop=Ea increases with Em=Ea.

The effect of ssf =Ea on Eop=Ea versus hm=R relationship is shown in Fig. 5, where ssf =Ea varies from 0.005 to 0.008, which is
the practical range for most SMA materials. In all the cases, the values of Em=Ea, εm and η are fixed as constants (Em=Ea ¼ 0:6,
εm ¼ 0:06 and η¼ 0:0). The calculated results in Fig. 5 show that the indentation modulus Eop=Ea decreases from 1.0 to
approaching 0.6 due to a fixed Em=Ea of 0.6. This confirms further that when the maximum indentation depth is very small
(e.g., hm=R≤0.001), the indentation modulus Eop=Ea remains almost a constant at unity, while it decreases with hm=R.
As shown in Fig. 5, for a given maximum indentation depth hm=R, Eop=Ea increases with an increase in ssf =Ea due to the
decrease in the volume of transformed martensite.

The effect of the transformation hardening coefficient η on Eop=Ea is shown in Fig. 6, where η varies from 0.0 to 0.1,
while Em=Ea, ssf =Ea and εm are taken as constant values of 0.6, 0.005, and 0.06, respectively. Similarly, when
hm=R≤0.001, Eop=Ea ¼ 1:0. With the increase in hm=R, Eop=Ea decreases. It is seen that the transformation hardening
coefficient η also has influence on the indentation modulus Eop=Ea, which cannot be neglected when hm=R is larger
than 0.01.

The effect of εm on Eop=Ea is shown in Fig. 7, where εm ranges from 4% to 10%, while Em=Ea, ssf =Ea and η are fixed as 0.6,
0.005 and 0.0, respectively. The dependency of Eop=Ea on hm=R is confirmed again in all the cases shown in Fig. 7: Eop=Ea is
around unity at very small hm=R ratios (e.g., hm=R≤0.001) and decreases with hm=R. It is seen that compared with other
parameters, εm has a relatively small effect on Eop=Ea. For a given hm=R, Eop=Ea increases slightly with εm.

Based on all the numerical results presented in Figs. 4–7, it can be concluded that the indentation modulus Eop obtained from a
spherical indentation test of SMAs by using the Oliver–Pharr method is neither the elastic modulus of the martensite nor the elastic
modulus of the austenite. Eop=Ea depends on the indentation depth hm=R as well as other material parameters (Em=Ea, ssf =Ea, η and
εm). A semi-empirical relationship between Eop, Ea and Em will be established by introducing a weighting factor in the next section.



Fig. 7. Relationship between the normalized indentation modulus Eop=Ea obtained from the Oliver–Pharr method and the normalized maximum
indentation depth hm=R with different values of the maximum transformation strain εm(Em=Ea¼0.6, ssf =Ea¼0.005, η¼0.0).

Fig. 6. Relationship between the normalized indentation modulus Eop=Ea and the normalized maximum indentation depth hm=R with different values of
the transformation hardening coefficient η (Em=Ea¼0.6, ssf =Ea¼0.005, εm¼0.06).
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3.3. Weighting factor θ

The austenite and martensite phase zones in the specimen beneath the indenter tip can be identified by the distribution
of the martensite volume fraction, z, obtained from a finite element simulation, as shown in Fig. 8 for a typical SMA. It is
noted that the martensite volume fraction z is calculated at every integration point. It only depends on the material model
and the loading including loading history at the point. It is seen that the material evolves in three stages with the increase in
the indention depth: a single austenite phase at the initial stage (Fig. 8(a)), a partial transformation zone (A–M) at the
second stage, which is surrounded by the austenite phase (Fig. 8(b)) and a fully transformed martensite zone at the final
stage, which is surrounded by a partially transformed zone enclosed by the austenite phase (Fig. 8(c)).

Due to the three-stage phase evolution during a spherical indention test, the indentation specimen should be considered
as a non-homogeneous material and the level of the non-homogeneity varies with the indentation depth. To develop a
relationship between the indentation modulus Eop and the elastic modulus Ea and Em of the two phases, a weighting factor θ
which characterizes the effect of the martensite phase is introduced. It is noted that the sample is in a pure austenite phase
when indentation depth is very small, and we have Eop ¼ Ea. In contrast, the contact zone is dominated by the martensite
phase at a very large indentation depth, therefore, we expect Eop-Em. So, the weighting factor θ must satisfy the conditions:
Eop ¼ Ea when θ¼ 0 and Eop-Em if θ-1. One option is to choose θ by following the form of the Reuss scheme in dealing
with composite materials, which is expressed as

1
Eop

¼ 1
Ea

ð1−θÞ þ 1
Em

θ ð14Þ

The weighting factor θ in Eq. (14) represents the effect of the transformed martensite phase on the measured indentation
modulus from the Oliver–Pharr method. It is worth commenting that the weighting factor θ is different from the martensite



Fig. 8. Evolution of the material phases during a typical spherical indentation test with three stages, represented by the distribution of the martensite
volume fraction z: (a) single austenite phase (A); (b) mixed austenite and martensite zone (A–M) enclosed by pure austenite phase and (c) pure martensite
zone (M), mixed phase zone (A–M) and pure austenite phase zone (A).

Fig. 9. Relationship between the weighting factor θ and the normalized maximum indentation depth hm=R with different ratios of Em=Ea (ssf =Ea¼0.005,
εm¼0.08, η¼0.0).
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volume fraction z in Eq. (3). The weighting factor θ is always smaller than one, i.e., 0≤θo1, as the indentation specimen will
never become a single martensite phase material while the martensite volume fraction z at any point can vary from zero to
one, i.e., 0≤z≤1.

According to Eqs. (12b) and (14), the dimensionless weighting factor θ is a function of the ratio Em=Ea, the normalized
forward transformation stress ssf =Ea, the transformation hardening coefficient η, the maximum transformation strain εm and
the normalized maximum indentation depth hm=R, i.e.,

θ¼Π2
Em
Ea

;
ssf
Ea

; η;
hm

R

 !
ð15Þ

Similar to the study of Eop in the previous section, the relationship Eq. (15) can be examined numerically, as shown in
Figs. 9–12. It can be concluded from the numerical results that the modulus ratio Em=Ea, forward transformation stress ssf =Ea,



Fig. 10. Relationship between the weighting factor θ and the normalized maximum indentation depth hm=R with different values of the normalized
forward transformation stress ssf =Ea (Em=Ea¼0.6, εm¼0.06, η¼0.0).

Fig. 11. Relationship between the weighting factor θ and the normalized maximum indentation depth hm=R with different values of the transformation
hardening coefficient η (Em=Ea¼0.6, ssf =Ea¼0.005, εm¼0.06).

Fig. 12. Relationship between the weighting factor θ and the normalized maximum indentation depth hm=R with different values of the maximum
transformation strainεm (Em=Ea¼0.6, ssf =Ea¼0.005, η¼0.0).
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transformation hardening coefficient η, maximum transformation strain εm and the maximum indentation depth have
significant influence on the weighting factor θ. In all the simulated cases, it can be observed that the weighting factor θ is
zero at very small hm=R ratios (e.g., hm=R≤0.001) due to single phase elastic contact and it subsequently increases
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exponentially with hm=R. Based on the numerical results, a semi-empirical formula is proposed to quantify the relationship
between θ and hm=R as follows:

θ¼ 1−e−γ 〈hm−h0〉=Rð Þ ð16Þ
where h0 is the critical indentation depth for the commencing of the phase transformation during an indentation loading
test. 〈x〉 is McCauley’s bracket and it means: 〈x〉¼ 0 for x≤0; and 〈x〉¼ x for x40. The parameter γ controls the evolution
of the weighting factor θ and it depends on material properties Ea, Em, ssf , ε

tr and η. It can be seen from Eq. (12) that when hm
is smaller than h0, the value of θ equals 0.0. The specimen is a single phase material with pure austenite. With the increase in
hm=R, the specimen consists of two phases due to stress induced martensitic transformation and θ increases exponentially
with hm due to the martensite phase zone increase, which describes well the numerical results in Figs. 9–12.

Eq. (16) has in fact separated the influence of the maximum indentation depth hm=R on the indentation results from the
other material parameters. Such a treatment provides a basis to establish a semi-empirical method with a simple
experimental procedure to determine Ea and Em, which are discussed in the following subsection.

3.4. Indentation method to predict Ea and Em

Substituting Eq. (16) into Eq. (14), we obtain

1
Eop

¼ 1
Ea

e−γ 〈hm−h0〉=Rð Þ þ 1
Em

1−e−γ 〈hm−h0〉=Rð Þ� �
ð17Þ

The semi-empirical formula Eq. (17) explicitly relates Eop from the Oliver–Pharr method with hm. Consequently, a
spherical indentation method to measure the elastic moduli of SMAs can be proposed and it is described below.

First, the elastic modulus of the austenite Ea and the critical elastic indentation depth h0 can be determined based on
previous studies. According to Hertzian elastic contact theory, the elastic indentation load before forward phase
transformation is determined by (Hertz, 1896)

P ¼ 4
3ð1−v2aÞ

R1=2h3=2Ea ð18Þ

The austenite elastic modulus Ea can be directly calculated from the load–depth curve by Eq. (18). Our numerical results
show that the austenite elastic modulus Ea obtained from Eq. (18) has a maximum error of 1.99% when the maximum
indentation depth hm=R is less than 0.001. Additionally, the elastic limit load P0 at the onset of phase transformation is
related to the forward transformation stress ssf through (Yan et al., 2006a)

P0

EaR
¼ 17:92

ssf
Ea

 !3

ð19Þ

Eq. (19) can be directly used to determine the forward transformation stress ssf in theory. Practically, it is difficult to identify
the elastic limit load P0 because the transition from pure elastic deformation to martensitic transformation is very smooth and
is not an abrupt change in the load–displacement curve. Yan et al. (2006a) shown the accuracy of locating the transition point,
and therefore, the accuracy of determining the forward transformation stress ssf , can be significantly improved by using the
indentation slope curve instead of the indentation curve. Furthermore, they found the accuracy of the predicted ssf depends on
the transformation hardening behavior. If the hardening is small or zero, the accuracy can be very high.

Combining Eqs. (18) and (19), the critical elastic indentation depth of austenite h0 can be obtained

h0
R

¼ 5:31
ssf
Ea

 !2

ð20Þ

To validate Eq. (20), a finite element simulation was carried out and the material parameters chosenwere Ea¼50 GPa and
ssf ¼500 MPa. The radius of indenter R was 100 μm. The value of h0 from FE simulation has only a difference of 0.9% from the
one obtained by Eq. (20) (52.6 nm versus 53.1 nm).

After determining Ea and h0 from the stage of elastic spherical indentation, there are only two unknown parameters Em
and γ left in Eq. (17) and they can be determined mathematically from a set of Eop versus hm=R data with different
indentation depths by regression analysis.

Detailed steps for predicting the elastic moduli of both austenite and martensite of SMAs by the Oliver–Pharr method are
summarized as follows:
(1)
 A set of indentation tests with different indentation depths is firstly carried out.

(2)
 The austenite elastic modulus Ea can be obtained from the Oliver–Pharr method or directly from Eq. (18) at a small

indentation depth (e.g., hm=R≤0.001), and the forward transformation stress ssf can be determined according to Eq. (19)
from the spherical indentation test. Then, the critical elastic depth of austenite h0 can be obtained by Eq. (20).
(3)
 The relationship between elastic modulus Eop and the ratio ðhm−h0Þ=R can be obtained from load–depth curves with
different indentation depths by using the Oliver–Pharr method.



Fig. 13. Load–depth curves at different maximum indentation depths of an SMA with Em=Ea¼0.7, ssf ¼500 MPa, η¼0.0 and εm¼0.04.
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(4)
 The martensite elastic modulus Em and the parameter γ can be determined from a set of 1=Eop vs. ðhm−h0Þ=R data by
employing regression analysis according to Eq. (17).
3.5. Numerical experiments

In order to validate the proposed method to predict the elastic moduli of both austenite and martensite, a set of
numerical experiments have been performed. As an example, Fig. 13 shows the load–depth curves of a super-elastic SMA
simulated under repeated loading–unloading at different maximum indentation depths from 10 nm to 400 nm. The values
of the material parameters used in the finite element simulations were chosen as Em=Ea¼0.7, ssf ¼500 MPa, ssr¼300 MPa,
η¼0.0, and εm¼0.04, the radius of indenter R was 10 μm. The value of austenite elastic modulus was fixed as 100 GPa. It can
be observed that well-defined hysteresis loops are produced during each loading and unloading cycle. Such hysteresis loops
are due to the intrinsic super-elasticity of this material.

A set of simulations with reasonable values of material parameters for different SMAs were carried out. The elastic
moduli of both austenite and martensite can be obtained by the steps described in Section 3.4. Table 2 provides a
comparison between the input elastic modulus in the FEM simulations and the predicted elastic modulus from the
indentation curves. It is found that the predicted moduli are good agreement with the input moduli. It is known that the
stability of the solution is very important and has been discussed in similar inverse problems of indentation (Cao and Lu,
2005; Zhao et al., 2006; Buljak and Maier, 2012). In the present study, the errors are caused by three aspects: the first is the
error in obtaining indentation curves by FE simulations; the second is the error in calculating indentation modulus by using
the Oliver–Pharr method, and the last is the fitting error by Eq. (17). The errors can be evaluated by comparing the predicted
elastic moduli of both austenite and martensite phases with those input ones:

Error¼ jEinput−Epredictionj
Einput

ð21Þ

It is shown that the maximum error for the prediction of the austenite elastic modulus is only 1.99% and 12.62% for
martensite, which would be satisfactory in real indentation tests of SMAs. Very large or very small ratios of the elastic
modulus Em=Ea result in large errors (e.g., 12.19%, 9% for Em=Ea¼0.8, 0.4, respectively, (see Table 2)). A high forward
transformation stress (e.g., ssf 4600 MPa) also causes a large error (11%, 12.62% for ssf ¼700, 900 MPa, respectively). In other
cases, the error for the martensite elastic modulus Em is less than 6.2%.

It is noted that the error sensitivity analysis discussed above corresponds to the idealized numerical problem, that is, a
numerical experiment of a spherical indentation. In practice, the non-idealized indenter tip and the smoothness of the
experimental curves will impose some additive errors on the proposed method, which needs the real indentation
experiments to validate the proposed method.

4. Conclusions

Theoretical analysis and finite element simulation were performed to investigate the measured indentation modulus by
applying the Oliver–Pharr method in a spherical indentation test on SMAs. The effects of the elastic modulus of the
transformed martensite, the indentation depth, the forward transformation stress, the maximum transformation strain and
the transformation hardening coefficient on the measured indentation modulus were discussed. Our numerical results
clearly indicate that the indentation modulus is neither the elastic modulus of the martensite nor the elastic modulus of the



Table 2
Comparison between input elastic moduli in FE simulations and predicted elastic moduli by the proposed method (Ea¼100 GPa and ssr¼300 MPa as input
values in all cases).

Input parameters in Abaqus Ea (GPa) Error (%) Em (GPa) Error (%)

Em (GPa) ssf (MPa) ssr (MPa) η εm εv μ

40 500 300 0.0 0.08 0.0 0.0 99.57 0.43 43.60 9.00
50 500 300 0.0 0.08 0.0 0.0 99.35 0.65 54.10 8.20
60 500 300 0.0 0.08 0.0 0.0 99.76 0.24 62.52 4.20
70 500 300 0.0 0.08 0.0 0.0 100.12 0.12 70.32 0.46
60 500 300 0.0 0.04 0.0 0.0 99.85 0.15 61.56 2.60
70 500 300 0.0 0.04 0.0 0.0 99.52 0.48 66.19 5.44
80 500 300 0.0 0.04 0.0 0.0 99.31 0.69 70.25 12.19
60 500 300 0.0 0.06 0.0 0.0 98.99 1.01 62.32 3.87
60 600 300 0.0 0.06 0.0 0.0 98.36 1.64 63.53 5.88
60 700 300 0.0 0.06 0.0 0.0 98.49 1.51 66.60 11.00
60 900 300 0.0 0.06 0.0 0.0 98.62 1.38 67.57 12.62
60 600 400 0.0 0.06 0.004 0.0 99.44 0.56 64.45 7.53
60 600 300 0.0 0.06 0.004 0.0 99.45 0.55 65.73 9.29
60 600 200 0.0 0.06 0.004 0.0 99.44 0.56 65.57 8.65
60 600 100 0.0 0.06 0.004 0.0 100.82 0.82 65.02 8.36
60 500 300 0.025 0.04 0.0 0.0 98.12 1.88 63.72 6.20
60 500 300 0.05 0.04 0.0 0.0 98.20 1.80 63.68 6.13
60 500 300 0.1 0.04 0.0 0.0 98.34 1.66 62.50 4.17
60 500 300 0.0 0.08 0.0 0.0 99.92 0.08 63.67 6.12
60 500 300 0.0 0.10 0.0 0.0 99.19 0.81 62.06 3.43
60 500 300 0.0 0.06 0.002 0.0 98.01 1.99 62.89 4.82
60 500 300 0.0 0.06 0.004 0.0 98.12 1.88 62.50 4.17
60 500 300 0.0 0.06 0.0 0.1 98.62 1.38 62.50 4.17
60 500 300 0.0 0.06 0.0 0.2 98.46 1.54 62.11 3.52
60 500 300 0.0 0.06 0.0 0.3 98.81 1.19 61.73 2.88
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austenite and that in particular strongly depends on the indentation depth among all other parameters. At a very small
indentation depth (e.g., hm=R≤0.001), before the commencing of phase transformation, the specimen is a single phase
material and the Oliver–Pharr method can be applied directly. The measured indentation modulus is indeed the elastic
modulus of the austenite. Once phase transformation occurs, the measured indentation modulus decreases with the
indentation depth due to the increase in the volume of the transformed martensite.

Additionally, a weighting factor, which represents the contribution of the transformed martensite, was introduced to
establish a relationship between the measured indentation modulus from the Oliver–Pharr method and the elastic
moduli of both the austenite and martensite phase. A semi-empirical formula was then proposed to quantify the
weighting factor based on our numerical results, which leads to an explicit relationship between the measured
indentation modulus and the elastic moduli of the austenite, the martensite and the indentation depth. Finally, a
spherical indentation test method by using this established explicit relationship and the Oliver–Pharr method was
proposed to measure the elastic moduli of the austenite and martensite of SMAs. This proposed indentation method
was validated by a set of 25 numerical experiments. The numerical results show the maximum errors were only 1.99%
for austenite elastic modulus and 12.62% for martensite elastic modulus, which would be acceptable in practice. This
research outcome has the potential in extending the application of the Oliver–Pharr method from single phase
materials to phase transformation materials.
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Appendix A. Validation of the implemented model

A NiTi SMA tube under uniaxial and non-proportional multiaxial loadings was simulated by using the implemented
model in Abaqus at 300 K. The predicted results are compared with experimental tests. NiTi tubes (Ni, 55.9 at%) with



Table A1
Material parameters used in simulations.

Ea¼40.8 GPa, Em¼24.2 GPa, va¼0.3, vm¼0.3, εm¼0.0447, εv¼0.0
ssf ¼390 MPa, sef ¼479 MPa, ssr¼106 MPa, ser ¼50 MPa

T0¼296 K, Ca¼6.04 MPa/K, Cm¼7.79 MPa/K

Fig. A1. Superelastic behavior under tension loading–unloading..

Fig. A2. Comparison between predictions by Abaqus and experimental data under non-proportional multiaxial tension–torsional rectangle path: (a) axial
strain–axial stress response and (b) torsional strain–torsional stress response.
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Fig. A3. Comparison between predictions by Abaqus and experimental data under non-proportionally multiaxial tension–torsional rhombus path: (a) axial
strain–axial stress response and (b) torsional strain–torsional stress response.
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Af ¼290 K were employed in the experimental tests. The tubular specimen has the outer diameter of 2.01 mm and inner
diameter of 1.68 mm. Material parameters are obtained from a uniaxial tension-unloading curve and listed in Table A1.

Fig. A1 shows the experimental and simulated uniaxial stress–strain curves. It is seen that the model can predict uniaxial
deformation behavior very well.

To investigate the performance of the material model in predicting non-proportionally multiaxial loading conditions, the
simulations and experiments under rectangle, rhombus and hourglass stress-driven tension–torsion paths were performed,
as shown in Figs. A2–A4. It is seen that the experimental observed deformation behavior of the NiTi SMA under these
nonproportionally multiaxial loadings can be reproduced by the implemented model. Some difference between experi-
mental and simulation result is caused by the residual strain occurs in the unloading process due to plastic deformation,
which is neglected by the material model.
Appendix B. Indentation unloading curve fitting in applying the Oliver–Pharr method

When the Oliver–Pharr method is applied in measuring elastic modulus and hardness of elasto-plastic solid materials,
Hay and Pharr (2000) suggested using 25–50% of the upper indentation unloading data for curve fitting so as to achieve a
satisfactory prediction accuracy. In the case of SMAs, this rule of thumb may not be applicable due to the reverse phase
transformation during unloading. The issue of how much unloading data should be applied in the indentation of SMAs is
addressed in this appendix through analyzing the numerical results.

The FE model is described in Section 3.1. The values of material parameters were chosen as Ea¼Em¼50 GPa, εm¼0.04,
ssf ¼sef ¼500 MPa and ssr¼ser ¼300 MPa. Note that the elastic moduli of the austenite and the martensite are intentionally
taken as the same for the current investigation. The errors between the elastic modulus Eop obtained from the Oliver–Pharr
method and the elastic modulus Ea as input value in FE simulations can be quantified as ðjEa−Eopj=EaÞ � 100%. The



Fig. A4. Comparison between predictions by Abaqus and experimental data under non-proportional multiaxial tension–torsional hourglass path: (a) axial
strain–axial stress response and (b) torsional strain–torsional stress response.

Fig. B1. Error of the predicted elastic modulus by the Oliver–Pharr method as a function of the percentage of the upper unloading data used in the
prediction under different indentation depths.
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normalized indentation depth hm=R varies from 0.001 to 0.1 and the percentage of the upper unloading data used in the
prediction varies from 5% to 55% in the following numerical investigation.

Fig. B1 shows the relationship between the error and the percentage of the upper unloading data used in the
prediction at different normalized indentation depths hm=R. It can be seen that when the value of hm=R is relatively



Fig. B2. Influence of the fitting parameter m on the error of the predicated elastic modulus by using the Oliver–Pharr method.
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small (e.g., hm=R≤0.01), the error is less than 5%; the error increases rapidly with the normalized indentation depth
hm=R. If hm=R remains constant, the error decreases with the increase in the percentage of the upper unloading data and
it approaches a minimum value with the percentage of the upper unloading data in the range of 30–40%, and then
sharply increases when the percentage of the upper unloading data is more than 40%. Therefore, it has been suggested
that the upper 30–40% of the unloading data is used to fit the curve defined by Eq. (2b) in application of the Oliver–
Pharr method for SMAs.

We also investigated the influence of the fitting parameter m on predicted elastic modulus, as shown in Fig. B2. It can be
seen that when the percentage of the upper unloading data lies in the range of 30–40%, a reasonable range for the
parameter m is between 1.20 and 3.29. At small indentation depths, e.g., hm=R≤0.01, m approaches 1.5, which is consistent
with the range of 1.2–1.6 for most solid elasto-plastic materials with the Berkovich indenter (Oliver and Pharr, 1992). At large
indentation depths, e.g.,hm=R40.01, m can be larger than 2.0.

In conclusion, the contact stiffness S should be calculated by fitting the upper 30–40% of the unloading data and the fitted
parameter m should be within the interval of 1.20–3.29.
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