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A truncated conical beam model is developed to study the vibration behaviour of a rat whisker.
Translational and rotational springs are introduced to better represent the constraint conditions at the
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base of the whiskers in a living rat. Dimensional analysis shows that the natural frequency of a truncated
conical beamwith generic spring constraints at its ends is inversely proportional to the square root of the
mass density. Under all the combinations of the classical free, pinned, sliding or fixed boundary
conditions of a truncated conical beam, it is proved that the natural frequency can be expressed as
f ¼ αðrb=L2Þ

ffiffiffiffiffiffiffiffi
E=ρ

p
and the frequency coefficient α only depends on the ratio of the radii at the two ends of

the beam. The natural frequencies of a representative rat whisker are predicted for two typical situations:
freely whisking in air and the tip touching an object. Our numerical results show that there exists a
window where the natural frequencies of a rat whisker are very sensitive to the change of the rotational
constraint at the base. This finding is also confirmed by the numerical results of 18 whiskers with their
data available from literature. It can be concluded that the natural frequencies of a rat whisker can be
adjusted within a wide range through manipulating the constraints of the follicle on the rat base by a
behaving animal.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Rats, a ubiquitous and highly successful mammalian species
that carry out most of their activities in nocturnal poor-light
conditions, use their smell and their large face whiskers (macro-
vibrissae or vibrissae for short) to perceive the world. A Chinese
idiom says that “the eyes of a rat can see only an inch of light”,
which vividly describes rat's poor sight. During a typical explora-
tion, rats sweep the large face whiskers against and over an object
to obtain information such as its position, shape and surface
properties, and identity (Jadhav and Feldman, 2010). Using even
just a single whisker, a blindfolded rat can discriminate between
smooth and fine grooved surfaces with groove depth of 30 μm and
groove spacing interval of 90 μm (Carvell and Simons, 1990), while
another study showed that rats can use their whiskers to dis-
criminate between apertures of 62 and 68 mmwidth (Krupa et al.,
2001).
ll rights reserved.

61 3 99051825.
Information is gained from the deflection of their whiskers
either passively as the rat brushes past an object, or actively when
rats “whisk” their facial vibrissae under muscle control, to sweep
forwards and backwards against and over an object. Mechanical
interactions between the moving whiskers and objects can cause
whisker vibration or even resonance which multiplies motion
amplitude at the whisker's fundamental resonance frequency
(Hartmann et al., 2003; Neimark et al., 2003; Andermann et al.,
2004; Ritt et al., 2008) and significantly lowers the threshold for
evoked neural activity in the rat's cortex (Andermann and Moore,
2008). The whiskers vary systematically in length and thickness
across the face (long and thin at the back, short and stubby at the
front) and in turn whisker fundamental frequency varies system-
atically with whisker position across the face, allowing for encod-
ing of a range of different textures. The whisker resonance theory
is considered as one of three existing theories to explain how a rat
discriminates surface texture, i.e., to distinguish a rough surface
from a smooth surface (Jadhav and Feldman, 2010). Therefore, to
study whisker resonance and their natural frequencies can assist
the understanding of this exquisite tactile sensory system.

There are no receptors along the length of the whisker and
therefore all tactile information must be mechanically transmitted
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Fig. 1. (a) Illustration of a rat whisker sweeping an object; (b) a truncated cone for
modelling rat whiskers with specified geometrical parameters (not to scale);
(c) schematic of a torsional–torsional boundary condition for the truncated beam
model to simulate ex vivo or in vivo rat whisker vibration; and (d) infinitesimal
beam element for establishing the differential equation.
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back to receptors at the whisker base (Ebara et al., 2002; Rice et al.,
1997). From the mechanics viewpoint, a sweeping rat whisker can
be treated as a dynamic beam and, in fact, the engineering beam
theory has been applied to understand the mechanical behaviour
of rat whiskers. For example, Hartmann et al. (2003) studied the
whisker vibration by imposing a sinusoid displacement at the base
of a whisker glued to a vibration table and then, in their theoretical
analysis, treated the whisker as a truncated conical beamwith free
tip and fixed base boundary conditions. Assuming that all the 24
studied rat whiskers have the same elastic modulus, they found
that the elastic modulus of the rat whiskers is in the range of
3–4 GPa (Hartmann et al. 2003). A fully conical beam model was
applied by Neimark et al. (2003) to interpret their in vivo and
ex vivo experiments on rat whiskers. They have analysed a total of
18 whiskers across the face, including their geometrical data, mass
and first natural frequencies under in vivo fixed-tip condition.

Transverse vibration of geometrically non-uniform beams is a
classic problem in vibration mechanics. The earliest study was
carried out by Kirchhoff in 19th century (Sanger, 1967; Weaver
et al., 1990). Conway and Dubil (1965) presented tables of numerical
values of natural frequencies of truncated conical beam and wedges
for all the combinations of boundary conditions, namely the
conventional free, simply supported (pinned) and fixed boundary
condition. Sanger (1967) extended the problem to beams with a
more general variation in cross-section under conventional bound-
ary conditions. Prismatic beams with elastic supports represented
by spring elements at the beam ends were discussed in Weaver
et al. (1990).

The objective of current study is to theoretically re-examine the
vibration problem of rat whiskers with emphasis on the analysis of
natural vibration frequencies. Experimental measurements show
that the tip of rat whisker is not ideally sharp (e.g., Quist et al.,
2011). Additionally, as observed in awake, behaving animals, the
whisker may bump into an object, stick against it and then whisk
past it (Hartmann et al. 2003)—the so-called “stick-slip” behaviour
that is also postulated to play a role in texture discrimination
(Wolfe et al., 2008; Ritt et al., 2008). Therefore, a truncated cone is
applied to simulate the geometry of rat whiskers. Considering that
the base of the rat whisker is attached underneath the skin in a
follicle–sinus complex (Ebara et al., 2002) in an animal, a more
realistic constraint of a transverse and a rotational spring is
applied in our model to simulate such an elastic body support at
the base. To cover all real situations for the rat whisker tip, similar
constraints are applied to the tip in our model.
2. Truncated conical model

The rat whisker is a thin, long, pliable hair, attached underneath
the skin in a follicle–sinus complex (FSC), (Ebara et al., 2002; and
see Fig. 1(a)). From a structural mechanics viewpoint, the whisker
can be modelled as a Bernoulli–Euler beam. The radii of the
whiskers measured at different locations by Neimark et al. (2003)
and Voges et al. (2010) indicate that the whisker can be described as
conical in shape; hence, as illustrated in Fig. 1(b), a truncated cone is
used to describe the geometry of a rat whisker. L and L2 are the
length of the truncated and “chopped” (absent) cones, respectively.
L1 represents the length of the original full cone. rt and rb are
respectively the radius at the tip and the base of the rat whisker.
The radius of the beam cross-section evolves linearly along the axial
direction, i.e., the x-direction. It is worth noting that the rat whisker
in our current theoretical study is treated as a straight beam. In
reality, some whiskers, especially the very long caudal whiskers, are
curved in shape. The effect of the initial curvature is not considered
in our current study. Additionally, we limit our study to free vibration
without damping, a parameter that may affect the resonant
frequencies. Both initial curvature and damping will be considered
in our future studies.

Given that the boundary condition at the whisker base cannot
be really considered fixed or pinned due to facial compliance in
the follicle (Hartmann et al., 2003), the elastic constraints in both
transverse and angular directions are more realistic. Similarly, the
rat whisker tip may vibrate freely in air or touch a soft/hard object.
Generically, all possible boundary conditions at the two ends of
the whisker can be represented by spring elements with transla-
tional springs to constrain the transverse deflection and rotational
springs to constrain the angular movement. Considering linear
constraints, kt and Tt are the stiffness constants for the transla-
tional and rotational springs at the whisker tip, and kb and Tb are
the stiffness constants at the whisker base (see Fig. 1c). The
classical free, pinned, sliding and fixed conditions can be consid-
ered as special cases from this generic treatment.

For transverse free vibration, the forces and moments applied
on an infinitesimal element at arbitrary location x are illustrated in
Fig. 1(d). Under the assumption of small deformation and small
rotation for a Bernoulli–Euler beam, applying the dynamic equili-
brium condition for the forces and the moment equilibrium equa-
tion, the following partial differential equation can be obtained:

∂2

∂x2
EIðxÞ ∂

2vðx; tÞ
∂x2

� �
þ ρAðxÞ ∂

2vðx; tÞ
∂t2

¼ 0 ð1Þ

where IðxÞ and AðxÞ are the moment of inertia and the cross-section
area at location x, respectively. vðx; tÞ is the transverse displacement.
E and ρ are the elastic modulus and mass density of the rat whisker
material, respectively. Here, the rat whisker material is assumed as
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isotropic and homogenous. When the rat whisker vibrates trans-
versely in one of its natural modes n, the transverse displacement at
any location vðx; tÞ varies harmonically with time (Weaver et al.,
1990), i.e.,

vðx; tÞ ¼ yðxÞ sin ðωnt þ ϕÞ ð2Þ
where ωn is the circular (angular) frequency for the natural mode n.
(Without causing any confusion, the subscript n is neglected
hereafter.)

The natural frequency f is related to its circular frequency ω by

f ¼ ω

2π
ð3Þ

Substituting Eq. (2) into Eq. (1) results in

d2

dx2
EIðxÞ d

2yðxÞ
dx2

 !
−ρAðxÞω2yðxÞ ¼ 0 ð4Þ

The general solution of Eq. (4) can be expressed in terms of the
Bessel functions (Conway et al., 1964)

yðxÞ ¼ 1
x

C1J2ðλ
ffiffiffi
x

p Þ þ C2Y2ðλ
ffiffiffi
x

p Þ þ C3I2ðλ
ffiffiffi
x

p Þ þ C4K2ðλ
ffiffiffi
x

p Þ� � ð5Þ
½ε1λ3J3ðλ
ffiffiffiffiffi
L2

p
Þ þ J2ðλ

ffiffiffiffiffi
L2

p
Þ�C1 þ ½ε1λ3Y3ðλ

ffiffiffiffiffi
L2

p
Þ þ Y2ðλ

ffiffiffiffiffi
L2

p
Þ�C2 þ ½ε1λ3I3ðλ

ffiffiffiffiffi
L2

p
Þ þ I2ðλ

ffiffiffiffiffi
L2

p
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8>>>>><
>>>>>:

ð10Þ
where C1, C2, C3 and C4 are constant coefficients. J2 and Y2 are the
Bessel functions of the first and second kind, respectively, of order
2. I2 and K2are the modified Bessel functions of the first and
second kind, respectively, of order 2. The numerical values of the
Bessel functions can be obtained easily from the mathematical
software such as Matlab. Parameter λ in Eq. (5) is defined as

λ4 ¼ 64ρL21ω
2

Er2b
ð6Þ
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Under the assumption of small deformation and small rotation
(since such fine movements appear to be more than adequate for
the rat to be able to discriminate fine detail such as texture
(Carvell and Simons, 1990)), the slope θðxÞ of the transverse
displacement curve, bending moment MðxÞ and shear force SðxÞ
at any location can be derived as

θðxÞ ¼ dy
dx ¼− λ

2x3=2 C1J3ðλ
ffiffiffi
x

p Þ þ C2Y3ðλ
ffiffiffi
x

p Þ−C3I3ðλ
ffiffiffi
x

p Þ þ C4K3ðλ
ffiffiffi
x

p Þ� �
MðxÞ ¼ EI d

2y
dx2 ¼ πr4

b
λ2x2E

16L41
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x
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x
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x
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x

p Þ� �
SðxÞ ¼ d

dx EI d
2y

dx2

� �
¼ πr4bλ

3x3=2E

32L41
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x

p Þ þ C3I3ðλ
ffiffiffi
x

p Þ−C4K3ðλ
ffiffiffi
x

p Þ� �

8>>>>><
>>>>>:

ð7Þ

This study focuses on solution of the natural vibration fre-
quency. The procedure is to apply boundary conditions to deter-
mine λ and then the natural frequency f can be obtained from
Eqs. (3) and (6). The solutions of the natural frequency for a range
of boundary conditions are discussed in Section 3.
3. Natural frequency f

3.1. Frequency equation

The spring constraints illustrated in Fig. 1(c) can be described as
follows:

At the tip, x¼ L2 and

S¼ −ktyðxÞ and M¼ Ttθ ð8Þ
At the base, x¼ L1 and

S¼ −kbyðxÞ and M¼ Tbθ ð9Þ
Applying boundary conditions (8) and (9) to Eqs. (5) and (7)

results in a set of simultaneous equations with respect to C1, C2, C3
and C4
where

ε1 ¼
πr4bL

5=2
2 E

32ktL41
; ε2 ¼

πr4bL
7=2
2 E

8TtL
4
1

; ε3 ¼
πr4bE

32kbL
3=2
1

; ε4 ¼
πr4bE

8TbL
1=2
1

ð11Þ
According to mathematics, to have non-zero solutions for C1,

C2, C3and C4, the determinant consisted of the coefficients of Eq.
(10) must be zero, i.e.,
For a given problem, λ can be numerically obtained from Eq.
(12). Then, by applying Eqs. (3) and (6), the natural frequency f can
be determined. Therefore, Eq. (12) is also called the frequency
equation.
3.2. Dimensional analysis for natural frequency f

Before discussing the solution of the frequency equation (Eq.
(12)), dimensional analysis was carried out to understand the
functional relationship between the natural frequency f and other
parameters. The natural frequency f depends on the elastic
modulus E and the density ρ of the rat whisker material, the
geometrical parameters rt, rb and L as well as the translational
spring stiffness kt , kb and the rotational spring stiffness Tt, Tb at the
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boundaries, i.e.,

f ¼ f ðrt ; rb; L; E; ρ; kt ; kb; Tt ; TbÞ ð13Þ
According to the Buckingham Π theorem for dimensional

analysis (Buckingham, 1914), the number of parameters can be
reduced based on the number of fundamental dimensions pre-
sented in the physical problem by using dimensionless para-
meters. For this purpose, L, E and ρ are chosen as the primary
quantities that express all the fundamental dimensions of the
physical problem (m, N, s). The natural frequency f can be
expressed by the dimensionless function Πf as

f ¼ 1
L

ffiffiffi
E
ρ

s
Πf

rt
L
;
rb
L
;
kt
EL

;
kb
EL

;
Tt

EL3
;
Tb

EL3


 �
ð14Þ

Eq. (14) shows that the natural frequency f of the rat whisker is
always inversely proportional to the square root of the density of
the whisker material because the dimensionless function Πf is
independent of the density. This conclusion from the simple
dimensional analysis can be applied to any boundary condition
and this is confirmed by the considerations of all the special cases
in following subsections.

3.3. General formula and numerical solutions of f for classical
boundary conditions

As noted above, Eq. (12) is the frequency equation for the
generic boundary conditions with elastic support at the ends. The
classical boundary constraint conditions, such as free, simply
supported (pinned), sliding and fixed constraints, can be treated
as special cases. In terms of the application to rat whiskers, in an
experiment either the tip or the base can be rigidly clamped (i.e.,
fixed), meaning that both the translational and the rotational
springs have an infinite stiffness. In the situation of the rat whisker
moving freely in air, the tip should be treated as a free end in the
beam model, which means that the springs connected to the tip
have a zero stiffness value. Before dealing with the problem with
the generic boundary conditions, the solutions of the natural
frequency for these classical boundary conditions are discussed.

In the case of free tip and fixed base (shortened as free–fixed)
boundary conditions, kt ¼ Tt ¼ 0 and kb ¼ Tb ¼∞, the frequency
equation can be generated from Eq. (12) as											

J3ðλ
ffiffiffiffiffi
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Þ Y3ðλ
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L2

p
Þ I3ðλ
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Þ
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p
Þ Y2ðλ
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p
Þ I2ðλ

ffiffiffiffiffi
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p
Þ K2ðλ

ffiffiffiffiffi
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p
Þ

J3ðλ
ffiffiffiffiffi
L1

p
Þ Y3ðλ

ffiffiffiffiffi
L1

p
Þ −I3ðλ

ffiffiffiffiffi
L1

p
Þ K3ðλ

ffiffiffiffiffi
L1

p
Þ

											
¼ 0 ð15Þ

It can be seen that Eq. (15) is independent of material proper-
ties. Therefore, the unknown variable λ, i.e., the root of Eq. (15), is
independent of E or ρ and furthermore, λ only depends on the
other two parameters L2 and L1 in Eq. (15), i.e.,

λ¼ λðL2; L1Þ ð16Þ
According to Eq. (6), λ has the dimension of (length)−0.5.

Following the Buckingham Π theorem in dimensional analysis,
we have

λ
ffiffiffiffiffi
L1

p
¼Πλ

L2
L1


 �
ð17Þ

Eq. (17) indicates that λ
ffiffiffiffiffi
L1

p
, therefore, λ2L1 only depends on

L2=L1, i.e., rt=rb (as rt=rb ¼ L2=L1, see Fig. 1(b)). According to Eqs.
(3), (6) and (17), the natural frequency can be expressed as

f ¼ α
rb
L2

ffiffiffi
E
ρ

s
ð18Þ

where α¼ ðλ2L1=16πÞð1−ðrt=rbÞÞ2 only depends on rt=rb. Note that L
in Eq. (18) is the length of the truncated cone. The functional
relationship between α and rt=rb can be obtained numerically
through finding the non-zero roots for λ from Eq. (15). For a given
ratio rt=rb, the first non-zero root λ1of Eq. (15) leads to the first
non-zero value α1, which gives the first natural frequency f 1 of the
truncated cone under the free–fixed (for free tip and fixed base)
boundary conditions. The second non-zero root λ2 corresponds to
the second non-zero value α2 and the second natural frequency f 2,
etc. The numerical results of the first three natural frequency
coefficients α1, α2 and α3 are shown in Fig. 2(a)–(c) where it can be
seen that for a cylindrical beam ðrt=rb ¼ 1Þ, α1 ¼ 0:2798 and for a
fully conical beam ðrt=rb ¼ 0Þ, α1 ¼ 0:6938. These values are con-
sistent with literature (see, Conway et al. 1964; Georgian, 1965;
Weaver et al. 1990).

Similarly, it can be derived that Eq. (18) applies to all the classical
free, pinned, fixed or sliding constraints at the ends of a truncated
conical beam (note that a sliding constraint corresponds to a
translational spring with zero stiffness and a rotational spring with
infinite stiffness). It can also be concluded from similar dimensional
analysis that the parameter α only depends on rt=rb in all the
classical cases. It is worth noting that a formula similar to Eq. (18)
for some combinations of the classical boundary conditions can be
found in the literature, (e.g., Conway et al. 1964; Georgian, 1965;
Sanger, 1967; Weaver et al. 1990). To the best of our knowledge, no
proof of Eq. (18) has been provided previously. The dependencies of
α1, α2 and α3 on rt=rb are numerically obtained and illustrated in
Fig. 2(a), (b) and (c), respectively, for the 16 combinations of the
classical boundary conditions for the whisker tip and for the whisker
base. These curves can be fitted very well by different polynomial
functions, which are listed in Tables 1–3. The results presented in
Fig. 2 and Tables 1–3 provide a useful database for determining the
first three natural frequencies of a truncated conical beam under the
combinations of the classical boundary conditions.
4. Natural frequency of rat whiskers

Eq. (14) shows that the natural (resonance) frequency depends on
the boundary conditions. In ex vivo experiments on whiskers, the
boundary conditions can be generally described by one of the
combinations of the classical boundary conditions and Fig. 2 or
Tables 1–3 can then be directly applied to find the first three natural
frequencies. However, in a living rat, a rat whisker is embedded at its
base in a follicle–sinus complex. Instead of considering a fixed base,
the constraints from the follicle on the base should be better
simulated as elastic in both rotational and transverse directions
(Hartmann et al., 2003). Furthermore, a rat could actively control
the follicle–sinus complex to adjust the constraints on the whisker
base thereby altering the natural frequencies. Here we carry out a
theoretical study to investigate the influence of the base constraints
on the natural frequencies of a rat whisker. The constraints at the
base are simulated by the rotational and the translational springs, as
illustrated in Fig. 1. The results should assist the understanding on
how the natural frequencies can be adjusted through changing the
stiffness values at the base.

With regard to the constraints on the whisker tip, two situations
are considered. The first situation is that the rat whisker is freely
whisking in air, corresponding to a free tip condition. The second
situation is that the rat whisker tip is touching and sticking on an
object, which is simulated as a pinned tip with kt ¼∞. Referring to
Eq. (14), the natural frequency of a rat whisker depends not only on
the end constraints but also on the geometry and the material
properties. The geometry of rat whiskers varies from whisker to
whisker even in the same rat. The material properties, including the
elastic modulus, may vary within each whisker, as well as between
whiskers, as found by Quist et al. (2011). A prototypical rat whisker



Fig. 2. The natural frequency coefficient α as a function of the radius ratio rt=rb of a truncated conical beam. Each curve is for a different pair of boundary conditions denoting
the condition for the tip (before the hyphen symbol) and for the base of the whisker (after the hyphen symbol), e.g., free–fixed¼free tip and fixed base: (a) the first natural
frequency coefficient α1; (b) the second natural frequency coefficient α2; and (c) the third natural frequency coefficient α3.
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was generated by taking the mean values of the 18 macrovibrissae of
a Sprague Dawley rat measured by Neimark et al. (2003). These
values are: L¼34.1 mm, rb¼0.062 mm, rt¼0.007 mm and ρ¼1.4 mg/
mm3. The elastic modulus of the rat whisker material was taken as
3 GPa, which is within the range of reported data from 1.4 GPa to
7.8 GPa (Neimark et al., 2003; Hartmann et al., 2003; Herzog et al.,
2005; Birdwell et al., 2007; Quist et al. 2011; Carl et al., 2012).

Fig. 3(a), (b) and (c) shows numerical results for the first,
second and third natural frequencies, respectively, of the proto-
typical rat whisker when freely whisking in air. As indicated by the
labels in the figures, when both of the stiffness kb and Tb approach
either extremely large or extremely small values, the elastic
constraints at the base approach the classic boundary conditions
such as free, pinned, sliding or fixed boundaries. All the frequen-
cies in the extreme conditions reported in Fig. 3 agree with those
shown in Fig. 2. For example, when kb reduces from 10−3 to 10−9
N/m and Tb increases from 10−4 to 10−3 Nm, Fig. 3 shows that the
first three natural frequencies reach respectively to their lower
bounds of 44, 116 and 234 Hz. These are the exact same values as
can be calculated from Fig. 2 and Eq. (18) under free–fixed
conditions.

Fig. 3(a) shows the first natural frequency of the prototypical
rat whisker ranges from 44 to 94 Hz, which is in line with
experimental data in literature. For instance, Hartmann et al.
(2003) reported the first natural frequencies of the D row rat
whiskers as being between 50 and 128 Hz based on experimental
tests conducted with whiskers kept in the free–fixed boundary
conditions. The measured first natural frequencies by Neimark
et al. (2003) for the β, C1, and C2 whiskers under either in vivo or
ex vivo condition, with whiskers in the free–fixed boundary
condition, also agree with the results in Fig. 3 (see Table 1 of
Neimark et al., 2003). The predicted second natural frequencies of



Table 1
Fitted functions for the first natural frequency coefficient α1 with different boundary conditions.

Boundary conditions Fitted function R2

Fixed–fixed −0:7909 rt
rb

� �4
þ 1:9194 rt

rb

� �3
−1:8246 rt

rb

� �2
þ 1:7478 rt

rb

� �
þ 0:6938

0.9999

Free–fixed
−0:885 rt

rb

� �4
−2:4022 rt

rb

� �3
þ 2:5267 rt

rb

� �2
−1:4218 rt

rb

� �
þ 0:6938

0.9999

Pinned–fixed
−0:5251 rt

rb

� �4
þ 1:3207 rt

rb

� �3
−1:3035 rt

rb

� �2
þ 1:038 rt

rb

� �
þ 0:6938

0.9999

Free–pinned
−5:0358 rt

rb

� �5
þ 15:209 rt

rb

� �4
−17:696 rt

rb

� �3
þ 10:061 rt

rb

� �2
−2:5378 rt

rb

� �
þ 1:226

0.9994

Pinned–pinned
−28:289 rt

rb

� �6
þ 90:154 rt

rb

� �5
−110:67 rt

rb

� �4
þ 66:013 rt

rb

� �3
−20:236 rt

rb

� �2
þ 3:7917 rt

rb

� �
þ 0:0167

0.998

Fixed–free
0:1026 rt

rb

� �4
−0:2916 rt

rb

� �3
þ 0:4025 rt

rb

� �2
þ 0:0671 rt

rb

� �
þ 0:0007

1

Fixed–pinned −24:204 rt
rb

� �6
þ 78:209 rt

rb

� �5
−97:64 rt

rb

� �4
þ 59:413 rt

rb

� �3
−18:577 rt

rb

� �2
þ 3:9849 rt

rb

� �
þ 0:0365

0.9993

Pinned–free
15:839 rt

rb

� �5
−42:777 rt

rb

� �4
þ 42:161 rt

rb

� �3
−18:669 rt

rb

� �2
þ 4:6861 rt

rb

� � 0.9961

Free–free
3:6376 rt

rb

� �4
−9:0666 rt

rb

� �3
þ 8:0687 rt

rb

� �2
−2:2267 rt

rb

� �
þ 1:3689

0.9975

Free–sliding
1:2481 rt

rb

� �4
−3:3228 rt

rb

� �3
þ 3:3363 rt

rb

� �2
−1:6221 rt

rb

� �
þ 0:808

0.9998

Pinned–sliding
−0:568 rt

rb

� �4
þ 1:4681 rt

rb

� �3
−1:3977 rt

rb

� �2
þ 1:4499 rt

rb

� �
þ 0:8145

1

Sliding–sliding −2:2377 rt
rb

� �5
þ 7:0068 rt

rb

� �4
−8:6381 rt

rb

� �3
þ 5:5427 rt

rb

� �2
−1:6988 rt

rb

� �
þ 0:8094

0.9998

Fixed–sliding −0:8416 rt
rb

� �4
þ 2:1421 rt

rb

� �3
−2:0341 rt

rb

� �2
þ 2:3207 rt

rb

� �
þ 0:8175

1

Sliding–free
−8:7042 rt

rb

� �5
þ 25:506 rt

rb

� �4
−28:27 rt

rb

� �3
þ 14:902 rt

rb

� �2
−2:4076 rt

rb

� �
þ 1:3752

0.9998

Sliding–fixed
1:1565 rt

rb

� �4
−3:0382 rt

rb

� �3
þ 3:0001 rt

rb

� �2
−1:3623 rt

rb

� �
þ 0:6915

0.9996

Sliding–pinned
−6:5804 rt

rb

� �5
þ 19:511 rt

rb

� �4
−22:021 rt

rb

� �3
þ 11:926 rt

rb

� �2
−2:2907 rt

rb

� �
þ 1:2194

0.9997

Table 2
Fitted functions for the second natural frequency coefficient α2 with different boundary conditions.

Boundary conditions Fitted function R2

Fixed–fixed
−4:0943 rt

rb

� �4
þ 9:8166 rt

rb

� �3
−8:6832 rt

rb

� �2
þ 6:1564 rt

rb

� �
þ 1:6827

0.9998

Free–fixed
4:8948 rt

rb

� �4
−11:4 rt

rb

� �3
þ 9:111 rt

rb

� �2
−2:5069 rt

rb

� �
þ 1:6827

0.9795

Pinned–fixed −2:7158 rt
rb

� �4
þ 6:5573 rt

rb

� �3
−5:8771 rt

rb

� �2
þ 4:3104 rt

rb

� �
þ 1:6827

0.9998

Free–pinned
−19:98 rt

rb

� �5
þ 55:513 rt

rb

� �4
−56:779 rt

rb

� �3
þ 26:086 rt

rb

� �2
−3:3838 rt

rb

� �
þ 2:5099

0.9985

Pinned–pinned
0:9344 rt

rb

� �3
−1:9143 rt

rb

� �2
þ 2:8959 rt

rb

� �
þ 1:2387

0.9977

Fixed–free
17:838 rt

rb

� �5
−48:08 rt

rb

� �4
þ 47:189 rt

rb

� �3
−20:699 rt

rb

� �2
þ 5:5188 rt

rb

� � 0.9977

Fixed–pinned
1:2222 rt

rb

� �3
−2:6091 rt

rb

� �2
þ 4:1123 rt

rb

� �
þ 1:2598

0.9998

Pinned–free
0:9978 rt

rb

� �3
−2:0579 rt

rb

� �2
þ 3:6322 rt

rb

� �1
þ 1:413

0.9999

Free–free
52:733 rt

rb

� �6
−173:96 rt

rb

� �5
þ 223:09 rt

rb

� �4
−140:26 rt

rb

� �3
þ 44:769 rt

rb

� �2
−4:2183 rt

rb

� �
þ 2:7648

0.9998

Free–sliding
4:9776 rt

rb

� �4
−11:696 rt

rb

� �3
þ 9:5291 rt

rb

� �2
−2:2452 rt

rb

� �
þ 1:8584

0.9951

Pinned–sliding
−2:7581 rt

rb

� �4
þ 6:8143 rt

rb

� �3
−6:2795 rt

rb

� �2
þ 5:201 rt

rb

� �
þ 1:9229

0.9999

Sliding–sliding
−12:274 rt

rb

� �5
þ 35:224 rt

rb

� �4
−37:408 rt

rb

� �3
þ 18:064 rt

rb

� �2
−2:3273 rt

rb

� �
þ 1:8676

0.9983

Fixed–sliding
−3:9622 rt

rb

� �4
þ 9:8441 rt

rb

� �3
−9:098 rt

rb

� �2
þ 7:2097 rt

rb

� �
þ 1:94

0.9999

Sliding–free −21:079 rt
rb

� �5
þ 58:106 rt

rb

� �4
−58:343 rt

rb

� �3
þ 25:537 rt

rb

� �2
−1:0132 rt

rb

� �
þ 2:7208

0.9995

Sliding–fixed
−10:901 rt

rb

� �5
þ 30:935 rt

rb

� �4
−32:672 rt

rb

� �3
þ 15:827 rt

rb

� �2
−2:4552 rt

rb

� �
þ 1:6636

0.9991

Sliding–pinned
−19:201 rt

rb

� �5
þ 52:964 rt

rb

� �4
−53:424 rt

rb

� �3
þ 23:682 rt

rb

� �2
−1:6026 rt

rb

� �
þ 2:4732

0.9994

W. Yan et al. / Journal of Biomechanics 46 (2013) 1987–19951992
this prototypical rat whisker are in the range of 116–212 Hz (Fig. 3(b))
and predicted third natural frequencies are in the range of 234–
381 Hz (Fig. 3(c)). Hartmann et al. (2003) reported that a C1 rat
whisker under free–fixed conditions has the first three natural
frequencies of 40, 94 and 188 Hz. Note that the lowest values
of the predicted ranges of our study correspond to free–fixed



Table 3
Fitted functions for the third natural frequency coefficient α3 with different boundary conditions.

Boundary conditions Fitted functions R2

Fixed–fixed −10:671 rt
rb

� �4
þ 25:25 rt

rb

� �3
−21:744 rt

rb

� �2
þ 13:642 rt

rb

� �
þ 3:06

0.9996

Free–fixed
9:2448 rt

rb

� �4
−20:415 rt

rb

� �3
þ 14:704 rt

rb

� �2
−1:6035 rt

rb

� �
þ 3:06

0.9953

Pinned–fixed
−7:409 rt

rb

� �4
þ 17:66 rt

rb

� �3
−15:45 rt

rb

� �2
þ 10:379 rt

rb

� �
þ 3:06

0.9997

Free–pinned
−35:602 rt

rb

� �5
þ 95:404 rt

rb

� �4
−92:148 rt

rb

� �3
þ 37:887 rt

rb

� �2
−1:4249 rt

rb

� �
þ 4:1602

0.9997

Pinned–pinned
−5:5313 rt

rb

� �4
þ 13:221 rt

rb

� �3
−11:62 rt

rb

� �2
þ 8:4313 rt

rb

� �
þ 2:551

0.9989

Fixed–free
1:5046 rt

rb

� �3
−3:1567 rt

rb

� �2
þ 5:142 rt

rb

� �1
þ 1:4295

0.9998

Fixed–pinned −6:5005 rt
rb

� �4
þ 15:925 rt

rb

� �3
−14:493 rt

rb

� �2
þ 10:746 rt

rb

� �
þ 2:6023

0.9998

Pinned–free
2:9976 rt

rb

� �3
−6:1498 rt

rb

� �2
þ 8:6021 rt

rb

� �1
þ 2:8814

0.9996

Free–free
87:144 rt

rb

� �6
−285:02 rt

rb

� �5
þ 358:83 rt

rb

� �4
−216:76 rt

rb

� �3
þ 62:73 rt

rb

� �2
−1:7622ðrtrbÞ þ 4:4885

0.9998

Free–sliding
7:7409 rt

rb

� �4
−17:158 rt

rb

� �3
þ 12:372 rt

rb

� �2
−0:2395 rt

rb

� �
þ 3:2576

0.9983

Pinned–sliding
−6:86 rt

rb

� �4
þ 16:905 rt

rb

� �3
−15:467 rt

rb

� �2
þ 11:583 rt

rb

� �
þ 3:4501

0.9998

Sliding–sliding −23:329 rt
rb

� �5
þ 63:125 rt

rb

� �4
−61:563 rt

rb

� �3
þ 25:352 rt

rb

� �2
þ 0:1819 rt

rb

� �
þ 3:281

0.9995

Fixed–sliding −9:2506 rt
rb

� �4
þ 22:981 rt

rb

� �3
−21:018 rt

rb

� �2
þ 14:845 rt

rb

� �
þ 3:4937

0.9997

Sliding–free
94:108 rt

rb

� �6
−300:41 rt

rb

� �5
þ 367:3 rt

rb

� �4
−213:16 rt

rb

� �3
þ 57:209 rt

rb

� �2
þ 1:5766 rt

rb

� �
þ 4:4713

0.9998

Sliding–fixed
−20:936 rt

rb

� �5
þ 57:276 rt

rb

� �4
−56:696 rt

rb

� �3
þ 23:937 rt

rb

� �2
−0:6378 rt

rb

� �
þ 2:9852

0.9993

Sliding–pinned
85:748 rt

rb

� �6
−276:39 rt

rb

� �5
þ 341:41 rt

rb

� �4
−200:71 rt

rb

� �3
þ 55:115 rt

rb

� �2
þ 0:3315ðrtrbÞ þ 4:1246

0.9996

Fig. 3. The natural frequencies of a representative rat whisker freely whisking in air under different elastic constraining stiffnesses kb and Tb at the base: (a) the first natural
frequency; (b) the second natural frequency; and (c) the third natural frequency.
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conditions, as shown in Fig. 3. Given that the input data from the
prototypical whisker used for the prediction are not identical to those
for the experimental whiskers, we believe that the difference
between theoretical prediction and experimental data is under-
standable and acceptable. This comparison with experimental data
provides us the confidence that the established truncated conical



Fig. 5. The natural frequency f 1 for 18 whiskers with kb ¼ 1� 109 N/m.

Fig. 4. The natural frequency coefficient α1 for four special boundary conditions.
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model has the capacity to model and analyse the natural frequencies
of rat whiskers.

Fig. 3 shows that all three natural frequencies decrease with an
increase in either transverse stiffness kb or rotational stiffness Tb. This
finding is also consistent with the results from Fig. 2. To clearly
illustrate this agreement, Fig. 4 is extracted directly from Fig. 2(a) for
the first natural frequency coefficient α1. For a given radius ratio rt=rb
(here it is about 0.1129), Fig. 4 shows that α1, i.e., the first natural
frequency for a given whisker, decreases in the order from free–free,
to free–pinned, free–sliding and free–fixed boundary conditions, in
correspondence to the jumping increase of kb and/or Tb from zero to
infinite.

The most interesting finding from Fig. 3 is that all the three
natural frequencies are very sensitive to the rotational stiffness Tb
within a certain range. For the first natural frequency, the sensitive
range of Tb is 3� 10−7–10−5 Nm. It is 7� 10−7–10−5 Nm for the
second natural frequency and 10−6–2� 10−5 Nm for the third natural
frequency. Within these ranges, the corresponding natural frequency
decreases quickly with the increase in Tb and the frequency is
generally insensitive to the change of kb. For example, the first
natural frequency f1 can change from about 88 to 48 Hz if Tb
increases from 3� 10−7to 10−5 Nm. This means that the rat could
easily adjust the natural frequencies of individual whiskers by
increasing or decreasing the rotational constraint at the whisker
base. According to the physiology, the whiskers are supported by the
follicle–sinus complexes which act as controllable bearing through
control by surrounding intrinsic muscles (Szwed and Bagdasarian,
2003). Therefore, it is practically feasible for the rat to control the
natural frequency of individual whiskers over a wide range by
adjusting the rotational constraint at the base. This finding provides
support for the theory that whisker resonance could be used to
discriminate textures (Neimark et al., 2003; Hartmann et al., 2003;
Moore, 2004; Moore and Andermann, 2005).

The numerical results of Fig. 3 are obtained from a single
prototypical rat whisker. To confirm that a controllable zone for the
natural frequency exists through adjustment of the rotational con-
straint at the base, the first natural frequencies of all 18 whiskers in
Table 2 of Neimark et al.(2003) were calculated by using the
measured data of L, rt=rb and ρ presented in that table and assuming
E¼3 GPa for all the whiskers. The predicted results, in Fig. 5, clearly
show that the first natural frequency of all 18 whiskers is sensitive to
the rotational stiffness within a certain range although the range can
be different for different whiskers. Fig. 5 also indicates that the first
natural frequency of all 18 whiskers under free–fixed conditions used
in that study is within the range of 31–54 Hz.

Considering the second situation of the rat whisker tip touching
and sticking to an object (the so-called “stick-slip” behaviour), the
boundary condition at the tip is simulated as pinned and the base in
the follicle–sinus complex is constrained by both the transverse
spring kb and the rotational spring Tb. Fig. 6(a), (b) and (c) shows the
numerical results of the first, second and third natural frequencies of
the representative rat whisker, respectively. As the tip is now pinned,
comparing to Fig. 3, the values of the natural frequencies are higher.
Other than that, all the findings from Fig. 3 can also be observed from
Fig. 6. In this situation, there also exists a window in which the
natural frequencies of the rat whiskers can be easily changed by
adjustment of the rotational spring stiffness Tb alone.
5. Conclusions

A truncated conical beam model with generic elastic con-
straints in both transverse and rotational directions at the ends
was developed to study the vibration of rat whiskers with
emphasis on predicting the natural resonant frequency. Applying
an established theoretical model to the whiskers, the natural
frequencies of the whiskers were predicted for two typical situa-
tions: freely whisking in air and with the tip contacting and
sticking to an object. Our major findings are summarised below:
�
 Dimensional analysis proves that the natural frequency of a
truncated conical beam with generic spring constraints is
inversely proportional to the square root of the mass density,
f∝

ffiffiffiffiffiffiffiffiffiffiffi
ð1=ρÞ

p
.

�
 Under all combinations of the classical four boundary condi-
tions for the ends of a truncated conical beam, namely free,
pinned, fixed or sliding boundary conditions, it was proven that
the natural frequency can be expressed as f ¼ αðrb=L2Þ

ffiffiffiffiffiffiffiffiffiffiffi
ðE=ρÞ

p
and the coefficient α only depends on the ratio of the radii at
the tip and at the base of the beam, i.e., α¼ αðrt=rbÞ.
�
 Our numerical results show that there exists a window where
the natural frequency of a rat whisker is sensitive to the change
of the rotational constraint at the base. This indicates that the
natural frequency of a rat whisker can be adjusted within a
wide range in a behaving animal, by manipulating the con-
straints of the follicle into which the whisker is inserted at its
base. This has implications for the concept of texture discrimi-
nation through differential whisker resonances.
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Fig. 6. The natural frequencies of a representative rat whisker with the tip touching an object under different elastic constraining stiffnesses kb and Tb at the base: (a) the
first natural frequency; (b) the second natural frequency; and (c) the third natural frequency.
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