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ABSTRACT: A numerical study on the dynamic
responses of irregular fibers under axial tension is presented
in this article. The irregularity was represented by a sinusoi-
dal shape profile along the fiber axis. The finite element
method was used in the simulations and the maximum first
principal stress due to the dynamic pulling has been exam-
ined. Our numerical results indicate that the first principal
stress mainly varies along the longitudinal direction. Its
change in radial direction is negligibly small. The maximum
first principal stress in an irregular fiber always appears in

the narrowest crosssection, which is the weakest link of the
fiber. The maximum first principal stress is very sensitive to
the change in the irregular amplitude. The stress value
increases dramatically with the increase in the amplitude of
irregularity. The frequency of irregularity has a limited
effect on the maximum first principal stress. VVC 2009 Wiley
Periodicals, Inc. J Appl Polym Sci 113: 2561–2568, 2009
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INTRODUCTION

Most natural fibers are inherently nonuniform. Taking
wool as an example, the between-fiber and within-
fiber diameter variations can be more than 20%. These
fibers are subjected to high-speed mechanical actions
during processing and fiber nonuniformity is ampli-
fied as the fibers are processed at increasingly higher
speeds. The most serious consequence of high-speed
fiber processing is fiber breakage. In the case of wool
fiber, for instance, trials conducted on a typical 21 lm
wool have shown that about 39% of the fibers were
broken during the carding process, leading to a reduc-
tion in a mean fiber length of 28 mm,1 which signifi-
cantly devalued the fiber.

The effect of fiber irregularities on fiber tensile
properties has long been recognized, as entailed in
the truism that the strength of a chain is that of its
weakest link.2 Banky and Slen3 conducted experi-
ments on irregular wool fibers, and reported a large
difference in the amount of extension experienced
by segments of the same fiber, with the thinner seg-
ments extending more than the thicker segments.
Kenny and Chaikin4 studied the subject of fiber
irregularity analytically. They examined the stress–
strain relationships of nonuniform textile materials,

and demonstrated the profound effects of fiber
dimensional nonuniformity on fiber stress–strain
behavior. For example, they revealed that a typical
keratin fiber with a coefficient of variation (CV) of
16% in crosssection extended 60% more than a uni-
form fiber with the same average cross-sectional
area, when they were subjected to a particular load.
Collins and Chaikin5–7 conducted further study in
this area. They used an analytical approach to exam-
ine the effect of nonuniformity on the tensile proper-
ties of nonuniform fibers of special geometries such
as a cone. In recent years, there has been a growing
awareness of the importance of fiber nonuniformity,
particularly the diameter variation of wool. He
et al.8 used a numerical approach to simulate a wide
range of fiber nonuniformities and examined their
effect on fiber tensile and flexural behavior. Relation-
ships have been established between the within-fiber
diameter variation and the average and maximum
strains in a fiber under extension.9,10 These reports
have unequivocally revealed the significant effect of
geometrical nonuniformities on the mechanical
behavior of nonuniform fibers. However, their works
have focused on the quasi-static mechanical behavior
of the nonuniform fibers. Yet almost all stages of
fiber processing are dynamic, and the impact veloc-
ity can be as high as 30 m/s. The behavior of these
fibers under dynamic loading has a direct impact on
fiber breakages and fiber processing efficiency. De-
spite this, there has not yet been a systematic study
on the dynamic behavior of nonuniform fibers. In
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1963, Lyons11 summarized the work devoted to the
dynamic behavior of fibrous materials, such as rela-
tively uniform continuous filaments and yarns.
Geometrical nonuniformity was not taken into con-
sideration. In fact, most of the design criteria for
impact items such as parachutes were based on data
obtained from quasi-static tests. Minimizing fiber
breakage requires a thorough understanding of the
mechanical behavior of these nonuniform fibers
under dynamic loading conditions, including the
stress wave propagation within the nonuniform
fibers. There is an obvious gap in the area of under-
standing the dynamic behavior of nonuniform
fibrous materials.

The minimum fiber diameter and the rate of
change of diameter along a fiber are important
determinants of strength.12 A single fiber under ten-
sion breaks whenever the force in the fiber produces
a local extension at a point along its length that is
equal to or greater than the breaking extension of
the fiber at that point. Because fibers often vary in
cross-sectional area along their lengths, the local
extension produced by a tensile force on the fiber
will be greatest at the thinnest point; so the chances
are that a break will occur at that point. It is difficult
to locate the minimum diameter along a fiber
because fibers are often elliptical and irregular.
Besides, fibers do not always break at the minimum
diameter anyway.13 Measuring the diameter at the
broken ends is frustratingly slow and difficult when
the break is not a clean one. Numerical modeling
provides an alternative to study the fiber tensile
behavior. This article used finite element (FE) tech-
nique to model the dynamic responses of irregular
fibers under axial tension and revealed the effects of
fiber irregularity parameters and pulling speeds on
the maximum first principal stress due to the
dynamic pulling.

PROBLEM DESCRIPTION

The physical problem of an irregular fiber under
axial dynamic tension is examined in this article. As
shown in Figure 1, the fiber with length L is consid-
ered as axisymmetric about its longitudinal axis. The
irregularity profile along the axis is assumed as a si-
nusoidal shape. The base radius is r and the ampli-
tude of the variation of the radius is dr, as illustrated
in Figure 1. Therefore, the radius of the profile at
any location of z cylindrical coordinate system can
be described as:

rðzÞ ¼ rþ dr sin
2pnz
L

� �
; (1)

where n is the number of sinusoidal waves for the
fiber and n ¼ 4 is the case shown in Figure 1. Equa-

tion (1) is applied in the modeling of the geometry
in our numerical simulations. In reality, the profile
of a real fiber such as wool is very complex. The
sinusoidal profile can be treated as an approximation
of the real situations. Based on the sine function, the
thinnest crosssection, or the weakest link in the fiber,
corresponds to the smallest radius r � dr and the larg-
est radius r þ dr represents the thickest crosssection.
The value of dr is zero for an idealized uniform fiber.
The variation of the irregularity along the axis is rep-
resented by the parameter n. Therefore, such an
approximation can be applied to study the effects of
fiber irregularity on the fiber dynamic responses.
To simulate the loading process, we consider one

end of the fiber is constrained in the axial direction
and the other end is pulled along the axial direction
with a constant speed v0. The total pull distance DL
in all our simulations is chosen as 10% of the fiber
length L. Experimental study indicates that some
fibers show brittle breakage under dynamic tension.
According to the brittle fracture theory, the maxi-
mum normal stress, i.e., the first principal stress, r1,
would determine the breakage at a material point.
For a component, the maximum value of the first
principal stress in the component, rmax

1 , determines
the safety of the component. To investigate the
effects of fiber irregularity on its breakage, we calcu-
late the first principal stress r1 at any point in the

Figure 1 Illustration of the axisymmetric section of an
irregular fiber under dynamic tension.
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fiber during a dynamic loading. From here, we can
then calculate the maximum value rmax

1 in the fiber.
Based on our understanding of the physical prob-
lem, the value of rmax

1 should be determined by:

rmax
1 ¼ f ðL; r; dr; n; v0;E; l; qÞ; (2)

where E is the Young’s modulus, l is the Poisson’s
ratio and q is the density of the fiber material.
Although the stress–strain curves of most fiber mate-
rials show a nonlinear behavior under quasi-static
loading conditions, a linear behavior is common for
fibers under dynamic loading conditions.11 There-
fore, we simplify the fiber as a linear elastic material
in our current study. This simplification can be eas-
ily removed once relevant material data are avail-
able. In the following simulations, we chose L ¼ 5
mm, r ¼ 10 lm, E ¼ 3000 MPa, l ¼ 0.35 and q ¼
1.31 � 103 kg/m3 and examined the influence of
irregularity parameters dr and n under different ten-
sile speed v on the maximum normal stress rmax

1 .

FINITE ELEMENT MODEL AND
MODEL VERIFICATION

The FE method was used to numerically study the
dynamic responses of irregular fibers under dynamic
axial tension. All the simulations were carried out
by using the commercial package ABAQUS/
Explicit.14 As discussed earlier, axisymmetric models
were applied to simulate the physic problems. Very
fine mesh with the element side of about 2 lm was
applied through the axisymmetric sections to ensure
the accurate results. Figure 2 shows two examples of
the FE mesh of a portion of the simulated fibers.
Each FE model contains a total of 12,500 four-node
axisymmetric elements.

Elastic wave propagation in a uniform thin bar
due to dynamic axial loading is a traditional prob-
lem in the study of elastic waves.15,16 One of the
applications of this study is to develop a dynamic
tensile test for ceramics.17 For the purpose of verify-
ing our FE model, an idealized uniform fiber with a
constant crosssection area is considered. In the theo-
retical one-dimensional problem, the displacement
along the axial direction u(z,t) is governed by the fol-
lowing partial differential equation:11

@2u

@t2
¼ c2

@2u

@z2
; c ¼

ffiffiffi
E

q

s
(3)

where c is the elastic wave speed. The boundary
conditions are

uð0; tÞ ¼ 0 and
@u

@t
¼ v0 at z ¼ L for t � 0:

(4)

The initial conditions are

uðz; 0Þ ¼ 0 and
@u

@t
¼ 0 at t ¼ 0: (5)

The problem of a bar fixed at one end, which is lon-
gitudinally hit by a moving body, is solved in text
book by Love.15 If the striking body has an infinite
mass and it pulls the bar, then Love’s problem is
equivalent to the current one. Therefore, we can
derive the analytical solution to this current prob-
lem.15 For example, the axial stress is determined by:

rzzðz; tÞ ¼ �E f 0ðnÞ þ f 0ðgÞ½ � with n ¼ ct� z

and g ¼ ctþ z (6)

The function f 0(n) or f 0(g) is

f 0ðfÞ ¼

0 �L < f < L
�v0=c L < f < 3L
�2v0=c 3L < f < 5L
�3v0=c 5L < f < 7L

:::

8>>>><
>>>>:

(7)

Figure 2 Examples of a partition of the swept FE models
for (a) uniform fiber and (b) irregular fiber with n ¼ 5 and
dr ¼ 5 mm.
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where f can be either n or g. Applying eqs. (6) and
(7), we can find the axial stress at any point, rzz(z,
t), during the dynamic process. At the fixed end, z ¼
0, we have

rzzð0; tÞ ¼

0; �L < f < L
2Ev0=c; L < f < 3L
4Ev0=c; 3L < f < 5L
8Ev0=c; 5L < f < 7L

:::

8>>>><
>>>>:

(8)

The stress value as a function of the time t is
shown as the solid curve in Figure 3 for the case v0
¼ 20 m/s. The stress value was zero at the fixed end
until the first stress wave reached at t ¼ 3.31 ls. The
stress wave got reflected at the end and the second
stress wave with doubled amplitude then reached
the bottom after another 3.31 ls. This stress wave
propagated and got reflected continuously, which
formed a step-shape stress versus time curve.

In Figure 3, the analytical solution is compared
with two FE results with different Poisson’s ratios of
l ¼ 0.35 and l ¼ 0.05. It clearly indicates that the
one-dimensional analytical solution agrees very well
with the FE solutions. Our FE model considered a
3D problem by using axisymmetrical elements. The
small difference between the analytical solution and
the FE solutions is caused by the 3D effect and the
large deformation toward the end of the dynamic
process. Reducing the Poisson’s ratio of l can reduce
the 3D effect. Consequently, the FE curve for l ¼
0.05 is closer to the one-dimensional analytical
curve. The one-dimensional analytical solution eq.
(8) is based on small deformation theory. The defor-
mation of the fiber increases with the impact time.
Toward the end of the dynamic process, for exam-
ple, the elongation DL/L ¼ 10% at t ¼ 25 ls, the
strain based on large deformation theory should be
applied. This explains why the difference between
the analytical solution based on small deformation
theory and the FE solution based on large deforma-
tion theory increases with the impact time t. Consid-
ering the 3D effect, the irregularity and the large
deformation involved in the dynamic pulling, the
numerical FE method is needed to investigate this
problem. The FE results from the uniform fiber with
l ¼ 0.35 have been used as the reference to examine
the irregularity effect in this study.

It is worth pointing out that the value of the maxi-
mum value of rzz, which is roughly the maximum
first principal stress, could be far more greater than
the breaking stress of a fiber. As the purpose of this
study is to examine the dynamic response of irregu-
lar fibers not the breaking stress of irregular fibers, it
is the relative stress values, rather than the absolute,
that are of interest. Additionally, we are interested
in the maximum first principal stress rmax

1 in the

fiber under dynamic tension, whose value deter-
mines the breakage of the fiber.

RESULTS AND DISCUSSION

In addition to the material properties, E, l, and q
and the basic geometrical parameters, L and r in eq.
(2), the rmax

1 depends on the irregularity parameters,
dr and n, and the pulling speed, v0. To consider the
irregularity effects, the results of the influence of dr,
n under different v0 on the maximum normal stress
from our FE simulations are discussed later.

Effects of irregularity radius amplitude dr

The first principal stress r1 at any point in a fiber
during a dynamic pulling process can be obtained
from our FE simulation. Under the same pulling
speed of v0 ¼ 20 m/s and the same irregular fre-
quency of n ¼ 5, Figure 4 shows the contour plots of
this variable for the fibers with different irregularity
radius amplitudes dr. Case (a) indicates that the
maximum value of the maximum normal stress
appeared at the fixed end of the regular uniform
fiber. Cases (b)–(f) correspond to 5 irregular fibers
with dr varying from 1–5 lm. Comparing these con-
tours and observing Figures 5 and 6, one can obtain
the following:

1. The maximum first principal stress rmax
1 in an

irregular fiber always appears in one of the nar-
rowest crosssections, which is the weakest link
of the fiber. As the fixed fiber end does not cor-
respond to one of the narrowest crosssections,
this maximum value does not appear at the bot-
tom (z ¼ 0), which is completely different from
that of the uniform fiber. Further more, the

Figure 3 One-dimensional analytical solution of the axial
stress at the fixed end, compared with two FE solutions
for l ¼ 0.05 and l ¼ 0.35, respectively.
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maximum value did not occur at the same nar-
rowest site for different irregular fibers. For
example, it occurred at the first narrowest site
from the bottom for dr ¼ 1 lm (b) at the last

narrowest site for dr ¼ 3 lm (d). This difference
could be caused by the difference of the geome-
try of the fibers, which results in the difference
in stress wave propagation and interference.

Figure 4 Contour plots of the maximum normal stress in the fibers with n ¼ 5, v0 ¼ 20 m/s and different dr: (a) dr ¼ 0;
(b) dr ¼ 1 lm; (c) dr ¼ 2 lm; (d) dr ¼ 3 lm; (e) dr ¼ 4 lm; (f) dr ¼ 5 lm. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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2. All the contour plots show that the first princi-
pal stress mainly varies along the longitudinal
direction. Its change in radial direction is negli-
gibly small. This is due to the fact that the fiber
is very thin (the radius is only 10 lm) and the
length to mean radius ratio is very large (500).
Therefore, we can use the curves of the princi-
pal stress versus the coordinate z to better
quantify the variation of the maximum normal
stress. Figure 5 shows that for the uniform fiber,
the largest value appears at the bottom and it is
almost constant for z > 1 mm. Unlike the uni-
form fiber, the stress in the irregular fibers
varies wavily following the irregular shape of
the fibers. Peak stress values appear at the nar-
rowest sites and low-stress values appear at the
widest sites.

3. The maximum first principal stress rmax
1

increases with the irregular radius amplitude dr
as demonstrated in Figure 6(a). Under the given
v0 ¼ 20 m/s and n ¼ 5, the value of rmax

1

increases from 328 to 826 MPa from the uni-
form fiber to the irregular fiber with dr ¼ 5 lm.

For a given fiber, the influence of the pull speed
v0 on the maximum first principal stress is shown in
Figure 6(a). All the four curves indicate that rmax

1

increases rapidly with the irregular radius amplitude
dr. Further more, we can see that, in general, rmax

1

increases with v0 for a given fiber. For example, rmax
1

increased from 635 to 688 MPa for the fiber dr ¼ 4
lm and n ¼ 5. However, the four curves in Figure
6(a) are very close to each other. In comparison with
the irregularity parameter dr, the effect of pull speed
on the maximum first principal stress seems to be
not significant. Cautions should be taken to interpret

these results. First, if the pull speed is extremely
high, a significant high stress can be obtained. For
example, calculation indicates that rmax

1 ¼ 1001 Mpa
when v0 ¼ 40 m/s for a fiber with dr ¼ 5 and n ¼ 5,
whereas rmax

1 ¼ 826 MPa when v0 ¼ 20 m/s for the
same fiber.
Second, the material properties are the same for

different pull speeds in Figure 6(a). Physically, the
elastic Young’s modulus of fiber materials might
increase with the pull speed. A figure published by
Lynos indicates that the Young’s modulus of poly-
ethylene fibers increased by 200% when the nominal
strain rate increased from 0.1/min (quasi-static state)
to 2 � 107/min (which corresponds to the pull speed
of 17 m/s in our case). The sensitivity of the
Young’s modulus on the strain rate depends on the
fiber type. In our current study, the irregular fibers
correspond to natural fiber materials, such as wool
fibers. To our knowledge, no published data on the
sensitivity of the Young’s modulus on the strain rate

Figure 5 Variation of the first principal stress along the
axial direction z for irregular fibers with the same irregular
frequency n ¼ 5 but different irregular radius amplitude
dr under the same pulling speed v0 ¼ 20 m/s, compared
with the results of the regular uniform fiber.

Figure 6 (a) The relationship between the maximum first
principal stress rmax

1 and the irregular radius amplitude dr
for n ¼ 5 under different pulling speeds with constant
Young’s modulus. (b) The relationship between the maxi-
mum first principal stress rmax

1 and the irregular radius
amplitude dr for n ¼ 5 under different pulling speeds with
the Young’s modulus increasing with the pull speed.
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for wool fibers is available. To examine the effect of
the variation of Young’s modulus with the strain
rate, we chose E ¼ 3750 MPa for v0 ¼ 20 m/s, E ¼
3375 MPa for v0 ¼ 10 m/s and kept E ¼ 3000 MPa
for the quasi-static state based on the consideration
that the Young’s modulus of wool fiber is less sensi-
tive to the strain rate than the polyethylene, and
simulated the tensile tests again. As we can expect,
the stress value presented in Figure 6(b) increases
significantly with pull speed for a given fiber largely

due the increase in the Young’s modulus. For exam-
ple, rmax

1 increased from 903 to 1071 MPa (18.6%
increase) when v0 changes from 10 to 20 m/s for the
fiber with dr ¼ 5 lm and n ¼ 5. Reliable experimen-
tal data are required to further investigate the influ-
ence of the variation of the Young’s modulus with
the strain rate. In the current study, we mainly
focused on the influence of the geometry irregular-
ity. In the following simulations, we continued to
use the constant Young’s modulus for different pull
speeds.

Effects of irregular frequency n

Under the same pulling speed of v0 ¼ 20 m/s and
the same irregularity amplitude of dr ¼ 1 lm, Figure
7 shows the contour plots of the first principal stress
in the fibers with different values of irregular fre-
quency n. Again, the maximum first principal stress
rmax
1 appears at the narrowest sites. However, this

value does not change much from n ¼ 1 to n ¼ 4.
The effects of the irregular frequency n on the

maximum first principal stress rmax
1 are shown in

Figure 7 Contour plots of the maximum normal stress
for fibers under v0 ¼ 20 m/s with dr ¼ 1 lm and different
n: (a) n ¼ 1; (b) n ¼ 2; (c) n ¼ 3; and (d) n ¼ 4. [Color fig-
ure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

Figure 8 The relationship between the maximum first
principal stress rmax

1 and the irregular frequency n under
different pulling speeds for (a) dr ¼ 1 lm; (b) dr ¼ 5 lm.
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Figure 8. Figure 8(a) shows the variation of rmax
1

when n changes from 1 to 5 for fibers with the same
value of dr ¼ 0.1 lm under different pulling speeds.
Under the quasi-static loading condition, v0 ¼ 0,
rmax
1 has the same value of 352 MPa for different

values of n. However, under the dynamic loading
condition (v0 = 0), the irregularity frequency n
affects the maximum first principal stress rmax

1 as
shown in Figure 8. The rmax

1 varies marginally with
the change in the value of n. For example, when the
irregularity frequency n changes from 1 to 5, rmax

1

increases from 350 to 368 MPa under the pulling
speed v0 ¼ 20 m/s. The increase is about 4.6%.
Under the other two loading conditions of v0 ¼ 5
m/s and v0 ¼ 10 m/s, rmax

1 decreases slightly and
then increases slightly when n increases from 1 to 5.
Overall, one can conclude that the influence of the
irregularity frequency n on the maximum first prin-
cipal stress rmax

1 is not significant. Now the reference
rmax
1 value, corresponding to quasi-static loading, is

775 MPa in Figure 8(b), which is due to the large
value of dr ¼ 5 lm. The difference compared with
Figure 8(a) is that rmax

1 increases slightly with n, but
the increasing percentage is still very small.

CONCLUSIONS

The dynamic responses of irregular wool fibers under
axial tension have been investigated through FE simu-
lations. The irregularity is represented by the sinusoi-
dal shape profile along the fiber axis. Considering the
fiber breakage problem in fiber processing, the maxi-
mum first principal stress due to the dynamic pulling
has been examined. We conclude:

1. The first principal stress mainly varies along
the longitudinal direction. Its change in radial
direction is negligibly small.

2. The maximum first principal stress in an irregular
fiber always appears in one of the narrowest cross-
sections, which is the weakest link of the fiber.

3. The maximum first principal stress is very sen-
sitive to the change in the irregularity ampli-
tude. The stress value increases dramatically
with the increase in the irregularity amplitude.

4. The irregularity frequency has a limited effect
on the maximum first principal stress.

The authors are grateful to the two reviewers for their
constructive comments for improving the article.
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