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a b s t r a c t

The indentation test is a popular experimental method to measure a material’s mechanical properties
such as elastic modulus and hardness, and the Oliver–Pharr method is commonly used in commercial
indentation instruments to obtain these two quantities. To apply the Oliver–Pharr method correctly in
all of these cases, it is essential to know the limitations of this method. The present study focuses on
the applicability of the Oliver–Pharr method to measure the mechanical properties of particles in com-
posites. The finite element method is used to undertake virtual indentation tests on a particle embedded
in a matrix. In our numerical studies, the indentation ‘‘pile-up’’ phenomenon is generally observed in our
numerical case studies, which indicates that the contact area used for predicting the elastic modulus
should be measured directly, not be estimated from the indentation curve. The Oliver–Pharr method
based on the real contact area is applied to estimate the elastic modulus of the particles by using the
indentation curve from the numerical simulation, with the estimated elastic modulus being compared
with the input value. Applying the real contact area value (not the one predicted from the indentation
curve) we show that the Oliver–Pharr method can still be applied to measure the elastic modulus of
the particle with sufficient accuracy if the indentation depth is smaller than the particle-dominated
depth, a value defined in this work. The influences of the matrix and particle properties on the parti-
cle-dominated depth are studied using a dimensional analysis and parametric study. Our results provide
guidelines to allow the practical application of the Oliver–Pharr method to measure the elastic modulus
of particles in composites. This could be particularly important where particles are formed in situ in a
matrix (as opposed to being preformed and subsequently incorporated in a matrix), or when the modulus
of individual performed particles is required such as for subsequent modelling, but the modulus of indi-
vidual material particles (or its material) cannot readily be determined.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In an instrumented indentation (nanoindentation) test, a hard
indenter is pressed into the surface of a specimen to depths rang-
ing from nanometers to micrometers, and the curve of the inden-
tation force versus the indentation depth is recorded. The
measured indentation curve is a function of the mechanical prop-
erties of the tested specimen. Therefore, if an inverse analysis
method can be found, the mechanical properties of the tested spec-
imen can be predicted from the measured indentation curve. Due
to its simplicity, convenience and the increasing availability of
commercial nanoindentation instruments, such as Hysitron Trio-
lab™ and MTS Nano Indenter� system, the nanoindentation test
has become a widely-used experimental method to probe the
mechanical properties of different materials [1–7].

With regards to its application of characterizing particle-
reinforced composites or more generally, inhomogeneous materi-
als, Leggoe [8] developed an approximation method to predict
the elastic modulus of the particle based on FEA simulations of a
stiff particle embedded in a soft matrix and a theoretical analysis
for spherical indentation under a multiple partial-unloading inden-
tation regime. This method was subsequently used to measure the
elastic moduli of silicon carbide particles and Micral™ micro-
spheres in two aluminum-matrix particulate reinforced metal ma-
trix composite. Nanoindentation has also been applied to measure
the elastic modulus and hardness of dendrite particles dispersed in
a Zr-based bulk metallic glass composite for the purpose to study
the contribution of the dendrite particles on the ductility improve-
ment of the glassy alloy [9]. Pradhan et al. [10] reported a nanoin-
dentation test of the elastic modulus and hardness of graphite
flakes and spherulites embedded in spheroidal graphite iron. The
particle inclusions are important to the strength and ductility of
the cast iron. Delincé et al. [11] carried out nanoindentation tests
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on individual ferrite and martensite phases in a fine-grained dual
phase steels for purpose to separate the strengthening contribu-
tions of the two phases to the dual phase steels.

The theory for using instrumented nanoindentation to probe the
elastic modulus of materials was developed by Oliver and Pharr in
1992 [12]. However, the Oliver–Pharr method is only suitable for
monolithic and isotropic materials. When it is applied to particles
in composites, the measured elastic modulus is a function of the
elastic properties of both the particle and the matrix. In particular,
the influence of the matrix on the measured elastic modulus for
the particles should be understood in order to understand and use
the measured data. Additionally, the method described by Oliver–
Pharr to predict the projected contact area under load (a prerequi-
site step to determine the elastic modulus and hardness) is only
suitable for the indentations which display the deformation phe-
nomenon of ‘‘sink-in’’, where the surface around the indenter sinks
in, see Fig. 1a. If the opposite indentation deformation phenomenon
of ‘‘pile-up’’ occurs (the surface of the sample around the indenter
being at a greater level than its surrounds, see Fig. 1b), the predicted
contact area is smaller than the real one. Therefore, the elastic mod-
ulus and hardness can be significantly overestimated [13] (see next
section).

In our recent research on the indentation of a particle embed-
ded in a matrix [14], two cases were studied, that of a stiff particle
embedded in a soft matrix and a soft particle embedded in a stiff
matrix. It was found that complicated, pile-up deformation oc-
curred in both of these representative cases from our numerical
simulations, and thus that the indentation force versus depth curve
cannot be applied to accurately estimate the real contact area un-
der load. The more important fundamental conclusion was that
there exists a particle-dominated depth in both cases, and that if
the indentation depth is within this particle-dominated depth,
the Oliver–Pharr method can still be applied to measure the parti-
cle’s elastic modulus with sufficient accuracy, provided that the
real contact area under load is used in the prediction. In this paper,
dimensional analysis and the finite element simulations were car-
ried out to further examine the influence of the material properties
on the particle-dominated depth. The results from this work pro-
vide guidelines for measuring the elastic modulus of a particle
embedded in a matrix, or more generally, measuring the elastic
modulus of an inclusion/defect in an inhomogeneous material.

2. Investigation model and method

2.1. Theoretical model

Particle reinforced composites, or inclusions in inhomogeneous
materials, are considered in this research. An idealized semi-spher-
ical particle embedded in the surface of a semi-infinite matrix is
investigated in this work, as shown in Fig. 2. This model corre-
sponds to a real situation of particles discretely distributed in a
matrix with a relatively low particle volume fraction. A conical in-
denter with 70.3� was pressed at the center of the semi-spherical
particle. This conical indenter is equivalent to a sharp Vickers or
Berkovich indenter [15], which is commonly used in commercial
indentation instruments.

The illustrated indentation in Fig. 2 was simulated in a virtual
fashion by using an axisymmetric finite element model, see
Fig. 3. The commercial finite element package Abaqus was utilized
for the simulations. To ensure the accuracy of the numerical re-
sults, contact between the specimen and the indenter tip always
occurs at a very fine mesh zone. Several finite element models
were utilized for different cases. A typical FE model contains a total
of 21,012 eight-noded quadratic axisymmetric elements. Loading
increment was also controlled to ensure smooth indentation

curves. A typical indentation loading and unloading simulation
took about 2.5 h with 2CPUs on an Oracle/Sun Constellation Cluster
supercomputer at National Computational Infrastructure in Can-
berra, Australia.

The specimen size and the mesh density near the contact zone
were first determined according to Sneddon’s theory for an elastic
indentation with a sharp indenter [16]. An elastic indentation with
a single phase material was simulated and the predicted indenta-
tion curve was compared with Sneddon’s theory until a satisfied
result with the error no large than 5% was obtained. Additionally,
the mesh to be used for the study was checked to ensure a conver-
gent result (here the particle-dominated indentation depth, see
Section 2.3) is achieved, i.e, further refining the mesh will not affect
the result.

After finalizing the finite element models, indentation simula-
tions were carried out. The output indentation force versus the
indentation depth curve was then used to predict the elastic mod-
ulus of the particle by strictly following the Oliver–Pharr method,
which duplicates the procedure conducted by a nanoindentation
instrument in a real, physical test. For this purpose, the Oliver–
Pharr method was first briefly discussed below.

2.2. Oliver–Pharr method

The Oliver–Pharr method is the most common method for
establishing the projected contact area and predicting the elastic
modulus of ordinary materials. This method begins by fitting the
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Fig. 1. Schematics of sink-in (a) and pile-up (b).
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Fig. 2. Schematic illustration of the theoretical indentation model.
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unloading portion of the indentation graph data to the power-law
relation as below [12,17],

F ¼ Bðh� hf Þm ð1Þ

where B and m are fitting parameters and hf is the final indentation
depth after complete unloading. From this data the initial unloading
slope, i.e., contact stiffness, S, can be estimated by analytically dif-
ferentiating Eq. (1) and evaluating the result at the maximum
indentation depth, i.e.,

S ¼ dF
dh

� �
h¼hmax

¼ Bmðhmax � hf Þm�1 ð2Þ

The obtained contact stiffness from Eq. (2) is then used to esti-
mate the contact depth hc under the maximum indentation force,

hc ¼ hmax � e
Fmax

S
ð3Þ

where e is a constant which depends on the indenter geometry. For
conical indenters, e has been suggested to be 0.72 [15]. The pro-
jected contact area, A, under the maximum indentation force for a
sharp conical indenter is determined by the indenter tip’s included
angle, h, and the estimated contact depth, hc, from Eq. (3), that is,

A ¼ pðhc tan hÞ2 ð4Þ

Finally, in the case of a rigid indenter, as assumed here, the elastic
modulus of the particle, Em

p , can be calculated by

Em
p ¼

1
b

ffiffiffiffi
p
p

2
Sffiffiffi
A
p ð1� v2

pÞ ð5Þ

where vp is the Poisson’s ratio of the particle and b is a correction
factor. A value of 1.05 for b was recommend by Oliver and Pharr
[17] and used in this investigation.

Applying Eqs. (3) and (4) to estimate the projected contact area
is strictly based on the indentation phenomenon of sink-in, where
the surface around the indenter is lower than the sample as a

whole, as illustrated in Fig. 1a. Our case studies show that a com-
plicated pile-up deformation would occur in the indentation of a
particle embedded in a matrix [14], see Fig. 4. Therefore, instead
of applying Eqs. (3) and (4), the projected contact area is obtained
directly from our FE simulation in the current investigation. In a
true practical experimental sense, the real contact area under the
maximum indentation force for a sharp conical indenter can read-
ily be obtained from imaging techniques, such as SEM and AFM. It
is worth mentioning that a very large indentation depth (force)
was applied in the case studies shown in Fig. 4, for the purpose
of amplifying the complicated pile-up deformation around the in-
denter tip and between the particle and the matrix. The deforma-
tion due to the large force would cause interfacial failure between
the particle and the matrix, see Fig. 4a. However, when instru-
mented nanoindentation is used to measure elastic modulus in
practice, the indentation depth is much smaller and will not cause
such interfacial failure. Therefore, there is no need to consider the
interfacial debonding in our numerical modelling.

2.3. Particle-dominated indentation depth

It is understandable that the matrix would affect the measured
elastic modulus of the particle from an indentation test. The influ-
ence of the matrix depends on the relative indentation depth with
respect to the particle radius. If the indentation depth normalized
by the particle radius is too large, the measured elastic modulus
will be significantly different from the real value of the particle’sFig. 3. Axisymmetric finite element model to simulate the indentation test with a

rigid conical indenter.

Rigid-body motion of 
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Fig. 4. Deformed particle and the surrounding matrix at the indentation depth of
hmax/R = 0.25 for (a) a stiff particle embedded in a soft matrix, which shows local
pile-up around the indenter and large rigid-body motion of sink-in of the particle;
(b) a soft particle embedded in a stiff matrix, which shows double pile-up of the soft
particle material around the indenter and around the interface between the particle
and the matrix [14].
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elastic modulus. On the other hand, if the normalized indentation
depth is small enough, the influence of the matrix can be neglected
and the measured elastic modulus can be accepted as the elastic
modulus of the particle. Based on this rationale, the concept of par-
ticle-dominated indentation depth is introduced to exclude the
influence of the matrix on the measured elastic modulus. The par-
ticle-dominated indentation depth is the threshold indentation
depth normalized by the particle radius. If the normalized indenta-
tion depth is smaller than the particle-dominated indentation
depth, the measured elastic modulus is theoretically within 10%
of the elastic modulus of the particle. Put differently, the error to
measure the elastic modulus of the particle will be no larger than
10% if the indentation depth is smaller than the particle-dominated
indentation depth in a practical indentation test. In this study, the
error tolerance is chosen as 10%, which is considered to be practi-
cally acceptable. For a given particulate composite and a given tol-
erance, the value of the particle-dominated depth is determined.
The detailed procedure to determine the particle-dominated depth
for a given particulate composite is described below.

Firstly, a set of virtual indentation tests with different indenta-
tion depths are carried out using the finite element method, which
is described in Section 2.1. Secondly, the unloading curves and the
projected contact areas at different indentation depths are re-
corded, and they are used to predict the elastic modulus of the par-
ticle by following the Oliver–Pharr method. Thirdly, the predicted
elastic moduli (Em

p ) at different depths are normalized by the real
value of the particle’s modulus (Ep) (the input value in the FE sim-
ulations), and the curve of the normalized modulus (Em

p =Ep) versus
the normalized indentation depth (hm/R) can be plotted. To demon-
strate the procedure, the Em

p =Ep versus (hm/R) curves from two case
studies are illustrated in Fig. 5. Case One corresponds to a compos-
ite system with the elastic modulus of the particle smaller than
that of the matrix, Ep < Em. As expected, the predicted particle mod-
ulus in this case increases with the indentation depth, the curve
with square marks in Fig. 5, which indicates that the influence of
the matrix increases with the depth. Case Two is for a composite
system with Em < Ep. It can be seen that the predicted particle mod-
ulus decreases with the indentation depth due to the increasing
influence of the matrix, the curve with diamond marks in Fig. 5.
The final step is to locate the intersection point between the nor-
malized modulus curve and the error tolerance curve
(Em

p =Ep ¼ 1:1 or Em
p =Ep ¼ 0:9). The abscissa of the intersection point

is the required particle-dominated depth for the given particulate
composite. Here, the particle-dominated indentation depths are

0.138 and 0.097, respectively, for Case One and Case Two. Practi-
cally, this means that the accuracy of the measured elastic modu-
lus of the particle will be over 90% if the indentation depth is
smaller than 13.8% of the particle radius for Case One and 9.7% of
the radius for Case Two. To apply the particle-dominated depth
as a guideline to measure the elastic modulus of a particle embed-
ded in a matrix in practice, it is important to understand the effects
of the other parameters on the particle-dominated depth, which is
examined by the dimensional analysis and parametric study in the
following section.

3. Parametric study of particle-dominated indentation depth

3.1. Dimensional analysis

The particle-dominated indentation depth has different values
for different material systems. To find the conditions to cover a
range of material systems, dimensional analysis and parametrical
study are carried out. Dimensional analysis is a powerful tool to
systematically examine a research problem and it has been
successfully applied to study nanoindentation mechanics. For
example, for conical indenters, Cheng and Cheng [18] used the
established scaling relationships from dimensional analysis to
demonstrate that the indentation force is proportional to the
square of the indenter displacement and that the hardness is inde-
pendent of the indenter displacement. Based on dimensional anal-
ysis and numerical results, we proposed a method to use spherical
indentation test to measure the plastic properties of metallic foams
[6].

According to our understanding of the physical problem, for a
given composite system, the absolute value of the particle-domi-
nated indentation depth (hp), i.e., before normalized by the particle
radius, depends on the material properties of the particle and the
matrix, the geometry of the particle and the indenter, but indepen-
dent of the maximum indentation force or depth. Therefore, we
have,

hp ¼ f ðEp; vp;Yp;np; Em;vm;Ym;nm; h;RÞ ð6Þ

where vp and vm are the Poisson’s ratios of the particle and the ma-
trix, respectively. Yp and np are the plastic yield strength and plastic
hardening index for the particle and Ym and nm are the two corre-
sponding parameters for the matrix. h is the included angle of the
sharp indenter, see Fig. 2. Practically, the commonly used sharp ind-
enters are three-sided pyramid Berkovich indenter and four-sided
pyramid Vickers. From the modelling point of view, a conical inden-
ter with the included angle of 70.3�, which is used in our current
investigation, is equivalent to a real Berkovich or Vickers indenter
as it provides the same projected contact area for the same depth
[15]. In most of the cases, the indentation depth for measuring
the elastic modulus of the particle is too small to cause plastic
deformation of the matrix. Therefore, the parameters Ym and nm

to describe the plasticity of the matrix can be removed from Eq.
(6) to simplify our analysis. It should be noted that the plastic defor-
mation could occur in the extreme cases of a very stiff particle and a
matrix with very low yield strength. Such cases can be considered in
the future. With regard to the plasticity of the particle, the harden-
ing behavior is neglected, i.e., np = 0. The plastic hardening has neg-
ligible influence on the modulus prediction from an indentation test
of a single phase material. It is expected that it will not affect the
particle-dominated indentation depth significantly. Additionally,
the values of the Poisson’s ratio for both of the particle and the ma-
trix are taken as a constant 0.3 in our following investigation, how-
ever any variation from this will lead to only a very limited change
in the measured indentation modulus, see Eq. (5). Therefore, it is
believed that the variation of the Poisson’s ratios from 0.3 will not
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Case One: Ep < Em

Case Two: Ep > Em

Particle-dominated depth for Case Two

Fig. 5. Illustration of the method to determine the particle-dominated depth
normalized by the particle radius for two cases: Case One with Ep < Em and Case Two
with Ep > Em.
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affect the particle-dominated depth significantly. Based on all these
considerations, Eq. (6) can be simplified as

hp ¼ f ðEp;Yp; Em;RÞ ð7Þ

According to Buckingham P theorem for dimensional analysis,
we choose Em and R as the primary quantities in our problem with
two fundamental dimensions, length and force. The dimensionless
scaling relationship for the particle-dominated indentation depth
is

hp

R
¼
Y Ep

Em
;
Yp

Em

� �
ð8Þ

3.2. Numerical results

Applying the numerical model described in Section 2.1, finite
element simulations were carried out to illustrate the scaling rela-
tionship Eq (8). Because the results for the composite systems of a
soft particle and a stiff matrix (Ep/Em < 1) are quite different for
those of a stiff particle and a soft matrix Ep/Em > 1, the two types
of composite system are discussed separately.

Fig. 6 shows the particle-dominated indentation depth, hp/R, as
a function of the elastic modulus ratio between the particle and the
matrix, Ep/Em with different values of the normalized particle’s
yield strength, Yp/Em for the composite systems of a soft particle
and a stiff matrix, i.e., Ep/Em < 1. For a given value of Yp/Em, the
numerical results show that the particle-dominated depth in-
creases with the elastic modulus ratio Ep/Em, especially in the re-
gion of Ep/Em > 0.5. When the elastic modulus of the particle
approaches that of the matrix, i.e., Ep/Em tends towards one, and
the composite trends towards a single phase material. For a single
phase material, the particle-dominated indentation depth is theo-
retically infinite. This is shown by Fig. 6 where the particle-domi-
nated indentation depth can be seen to increase rapidly when Ep/
Em > 0.5. Considering the error tolerance is 10% (Fig. 5), it is difficult
to obtain a numerical result of hp/R when Ep/Em approaches one
and thus the numerical curves stop at Ep/Em = 0.75 or Ep/Em = 0.8.

Fig. 6 shows that the particle’s yield strength will also affect the
particle-dominated indentation depth for the type of composite
systems with a soft particle and a stiff matrix. hp/R increases with
the increase of Yp/Em. The values of Yp/Em considered here from
0.003 to 0.05 have covered a wide range of materials. In terms of
the potential application of results in Fig. 6 in guiding the indenta-

tion method to measure the elastic modulus of the particle, firstly
Ep/Em < 1 can be determined from the measured modulus versus
indentation depth curve. Referring to Fig. 5, if the measured mod-
ulus increases with the indentation depth, then it indicates that Ep/
Em < 1 and Fig. 6 can be applied. Considering the value of the par-
ticle’s yield strength is unknown, a reasonable value of hp/R = 5%
can be recommended from Fig. 6.

The datum points presented in Fig. 6 show the numerical rela-
tionship between hp/R and the two variables, Ep/Em and Yp/Em, for
the composite systems of a soft particle and a stiff matrix. Although
it is very challenging, if not impossible, to determine the explicit
scaling relationship of Eq. (8), curve fitting can be applied to find
the functions, which best fit the three set of datum points. Matlab
was applied and it was found that 6th order polynomial functions
can be used to fit the points very well. The curves from the fitting
functions are presented in Fig. 6. Their expressions are listed
below:

hp

R
¼ 22:4

Ep

Em

� �6

� 54:58
Ep

Em

� �5

þ 52:94
Ep

Em

� �4

� 25:81
Ep

Em

� �3

þ 6:731
Ep

Em

� �2

� 0:8763
Ep

Em

� �
þ 0:08589 ð9Þ

with R2 = 0.99994 for Ep/Em < 1 and Yp/Em = 0.003

hp

R
¼ 14:2

Ep

Em

� �6

� 35:38
Ep

Em

� �5

þ 35:58
Ep

Em

� �4

� 18:08
Ep

Em

� �3

þ 4:959
Ep

Em

� �2

� 0:6667
Ep

Em

� �
þ 0:08855 ð10Þ

with R2 = 0.99997 for Ep/Em < 1 and Yp/Em = 0.01

hp

R
¼ �23:15

Ep

Em

� �6

þ 56:11
Ep

Em

� �5

� 51:39
�

Ep

Em

�4

þ 22:68
Ep

Em

� �3

� 4:859
Ep

Em

� �2

þ 0:5342
Ep

Em

� �
þ 0:03514 ð11Þ

with R2 = 0.999993 for Ep/Em < 1 and Yp/Em = 0.05.
Considering the second type of composite system of a stiff parti-

cle and a soft matrix, Ep/Em > 1, Fig. 7 shows the numerical results
with three different values of the normalized particle yield strength,
Yp/Em. In contrast to the first type of composite system, the influence
of the particle’s yield strength on the particle-dominated indenta-
tion depth is quite small and can be neglected in some cases for dif-
ferent values of Ep/Em. Now the particle-dominated depth hp/R
decreases with the modulus ratio Ep/Em. When the value of Ep/Em

is decreasingly approaches 1 from 1.5, the composite approaches
to a single phase material, and as discussed before, the value of
hp/R increases rapidly. Rational functions can be applied to fit the
three set of datum points, see Fig. 7. The three functions are listed
below:

hp

R
¼

0:5125 Ep

Em

� �
� 0:2805

Ep

Em

� �3
þ 6:92 Ep

Em

� �2
� 2:316 Ep

Em

� �
� 8:205

ð12Þ

with R2 = 0.99993 for Ep/Em > 1 and Yp/Em = 0.003.

hp

R
¼ 0:5442

Ep

Em

� �3
� 7:287 Ep

Em

� �2
þ 32:09 Ep

Em

� �
� 27:85

ð13Þ

with R2 = 0.9994 for Ep/Em > 1 and Yp/Em = 0.014.

hp

R
¼

0:03107 Ep

Em

� �2
� 0:05653 Ep

Em

� �
þ 0:07144

Ep

Em

� �3
� 3:746 Ep

Em

� �2
þ 6:583 Ep

Em

� �
� 4:166

ð14Þ

with R2 = 0.9999994 for Ep/Em > 1 and Yp/Em = 0.05.
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Fig. 6. The particle-dominated indentation depth, hp/R, as a function of the elastic
modulus ratio between the particle and the matrix, Ep/Em with different values of
the normalized particle’s yield strength, Yp/Em for the composite systems of a soft
particle and a stiff matrix, i.e., Ep/Em < 1.
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In terms of the potential application of the results in Fig. 7, Ep/
Em > 1 can be confirmed from the measured modulus versus inden-
tation depth curve, which corresponds to a going-down curve with
the increasing of the depth, see Fig. 5. The approach of trial and er-
ror, combined with the results presented in Fig. 7, can be used in
practice to appropriately determine the elastic modulus of the par-
ticle. For example, if the measured elastic modulus of the particle
normalized by the elastic modulus of the matrix is around 3, the
indentation depth to obtain this modulus should be less than
1.3% of the particle’s radius, otherwise, the error could be more
than 10% according to Fig. 7. In another case, if the measured Ep/
Em is around 1.5 and the indentation depth satisfies hp/R < 5%, then
the measured result is also acceptable. The findings from this re-
search are based on an idealized sharp indenter and an idealized
flat specimen surface. To apply our finding directly in practice,
these conditions should be satisfied as closely as possible. To quan-
tify the influences from the roundness of the indenter tip and the
surface roughness, further research is required.

4. Conclusion

Virtual indentation tests through computational finite element
simulations were carried out to investigate the application of the
Oliver–Pharr method to measure the elastic modulus of a particle
embedded in a matrix. Due to indentation deformation of pile-
up, the contact area should be measured directly from an indenta-
tion test and then used to predict the elastic modulus of the parti-
cle. The influence of the matrix on the measured result can be
taken into account by bearing in mind the concept of a particle-
dominated indentation depth. If the indentation depth is smaller
than the particle-dominated indentation depth, the influence of
the matrix can be neglected, i.e., the accuracy of the measure the
particle’s elastic modulus can be more than 90%.

Our parametric study indicates that the particle-dominated
indentation depth strongly depends on the ratio of the particle’s
modulus to the matrix’s modulus. If the ratio is smaller than one,
the particle-dominated indentation depth increases with the mod-
ulus ratio. Additionally, the yield strength of the particle can affect
the particle-dominated indentation depth. It increases with the in-
crease of the particle’s yield strength. If the ratio is greater than
one, corresponding to the composites of a stiff particle embedded

in a softer matrix, the particle-dominated indentation depth de-
creases with the modulus ratio. In these cases, the influence of
the yield strength of the particle on the particle-dominated inden-
tation depth can be neglected.

From the application point of view, whether the elastic modulus
is smaller than that of the matrix or not can be determined by the
trend of the measured indentation modulus versus the indentation
depth curve. If the measured indentation modulus increases with
the indentation depth, the ratio of the particle’s modulus to the
matrix’s modulus is less than one. If the curve has the opposite
trend, then the modulus ratio is greater than one. If the ratio is
smaller than one, considering the value of the particle’s yield
strength is unknown, our numerical results suggest that the inden-
tation depth should be no more than 5% of the particle radius. If the
modulus ratio is larger than one, the permissible indentation depth
predominantly depends strongly on the modulus ratio. Our numer-
ical results presented in Fig. 7 or the fitting functions Eqs. (12)–(14)
can be used to guide the indentation test.
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Fig. 7. The particle-dominated indentation depth, hp/R, as a function of the elastic
modulus ratio between the particle and the matrix, Ep/Em with different values of
the normalized particle’s yield strength, Yp/Em for the composite systems of a soft
particle and a stiff matrix, i.e., Ep/Em > 1.
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