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Abstract

Every acceleration or deceleration causes inertia forces and as a consequence elastic waves. Of course, such dynamic loading
situations often occur in structural applications of materials. The consequences of such dynamic loading on designing with ceramics

are considered on the example of a new dynamic tension test. First, the test device is described, and the resulting loading situation
is carefully analysed. It is seen that the dispersive character of wave propagation causes an inhomogeneous stress distribution
changing with time. Then the in¯uence of the dynamic loading on the stress intensity factors of small cracks, which in general are

responsible for failure in ceramic materials, is discussed. Finally, the consequences on fracture statistics are considered. Although
the demonstrated procedure is restricted to not-too-steep ramps of the wave front, it is considered to be valid for most cases of
dynamically loaded ceramic components. Exceptions are very sharp impact or ballistic loading. # 2000 Elsevier Science Ltd. All
rights reserved.

Keywords: Dynamic loading; Fracture statistics; Mechanical properties; Mechanical testing

1. Introduction

In brittle materials, e.g. ceramics, failure under tensile
loading generally starts at ¯aws which are distributed
within the specimen or at its surface. The size and orien-
tation of the fracture initiating ¯aws is decisive for the
strength of the specimen. The strength varies from spe-
cimen to specimen since the size and orientation of these
¯aws varies from specimen to specimen. This causes the
large scatter of strength data of brittle materials. An
important, technical consequence of this behaviour is
the dependence of the strength on the size of the spe-
cimen.1,2 More than 50 years ago, Weibull3,4 de®ned
an empirical fracture statistics, which properly des-
cribes these features of the fracture behaviour of brittle

materials. Up to now it provides the scienti®c basis of
the generally accepted design procedure with ceramics.5

Although quasi-static load spectra predominate in
most applications of ceramic components, the inertia
force cannot be neglected in some applications. Examples
are quickly operating valves or Ð as reported re-
cently6,7Ð electrical resistors loaded by very short elec-
trical pulses, e.g. caused by lightening (due to Joule
heating they want to expand, and this is opposed by the
inertia force). Current fracture statistics are formulated
for quasi-static loading conditions. In this paper, the
extension of fracture statistics to dynamic loading
situations is demonstrated on the example of a recently
proposed dynamic tension test.8

The test set-up is described in the following section.
The dynamic stress ®eld is analysed in Sections 3 and 4.
Section 5 deals with the calculation of dynamic stress
intensity factors. The fracture statistical principles are
summarised in Section 6 and then applied to the dyna-
mically loaded rod in Section 7.
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2. Description of a dynamic tension test device

A rod-like specimen travelling with a well-de®ned
constant velocity, v, is suddenly stopped at its trailing
end. Due to the inertial force a tensile stress wave pro-
pagates along the rod. The maximum tensile stress
amplitude of the wave is directly related to the velocity
of the rod before it is stopped and can be estimated by
the impact of a rod using a simple one-dimensional
analysis, see e.g. Achenbach9 (p. 344), as

� � E
v

co
for 04x4cot4L; �1�

E is the Young's modulus, co is the speed of sound in
the material under investigation with density � and is

given by co �
����
E

�

r
for the one-dimensional case, L is the

length of the specimens, x is the spatial coordinate and t
is the time. Of course, the tension wave is re¯ected at the
free end (x � L) as a compressive wave which leads to a
partial extinguishing of the stress.
Thus the strength of the specimen can be measured by

repeated testing with gradually increasing velocities, until
the specimen breaks. Another possible application of this
testing principle is the proof testing of rods or rod-like
components. Dynamic tensile testing can also be carried
out in an alternative way, by suddenly accelerating the
specimen from its front end to a speci®ed velocity v.
In general, both types of testing principles seem to

work much more simply and more directly than Hop-
kinson pressure bar devices for ceramic bar testing.10 The
principle and examples of technical realisation are
described more precisely in a recent patent of Fischer and
Danzer.11 In his diploma thesis, Stickler5 demonstrated a
practical realisation of the new dynamic tensile testing
principle by applying the alternative way of accelerating
a specimen which is initially at rest. Slender rod-like
specimens made of brittle recrystallized molybdenum
were thermally shrunk into a cylindrical carrier on their
front end. By impinging the specimen-carrier from its
back end the whole assembly can be suddenly accelerated.
This induces a tensile stress wave that propagates in the
opposite direction axially through the specimen. A num-
ber of specimens were broken by repeated testing with a
systematic increase of the impact velocities and, conse-
quently, the stress wave magnitudes. The strength of the
specimens was evaluated according to Eq. (1).
In the following the accuracy and practical applic-

ability of the proposed method of testing is assessed.
Four e�ects are studied in detail:

. The exchange of energy with a deformable seat,
which may lead to an increase of the longitudinal
stress above the value of Eq. (1).

. The dispersive character of the wave propagation

due to radial inertial e�ects and, therefore, the
actual ®nite geometry of the specimens. As will be
seen, locally signi®cant stress concentrations may
occur.

. The in¯uence of the wave propagation on the
stress intensity factors of pre-existing cracks lead-
ing to dynamic stress intensity factors.

. The application of fracture statistics on dynamic
loading situations.

3. Energy exchange between the specimen and the seat

The specimen can be modelled in the simplest case by
a cylindrical rod of length L as in Fig. 1. In this section
the rod is assumed to be very slim and only the one-
dimensional case is analysed. The displacement of the

rod is u,
@u
@t

its velocity. Since we investigate the practi-

cally realised device, see Stickler,8 we assume the right
end of the rod to be connected to a seat S. At time t � 0
the seat is suddenly subjected to a velocity v.

Since, at this point, we are mainly interested in the
modi®cation of the maximum stress due to the defor-
mablity of the seat, it is modelled for the sake of sim-
plicity by a linear spring with the spring constant k. The
force in the spring at time t is

k u� vt� � � EA
@u
@x
; �2�

since it must be equal to the force in the bar with the
cross-section area A.
The initial/boundary value problem can be written as

04x4L; c2o
@2u

@x2
� @

2u

@t2
; �3�

x � 0; u � ÿvt� � @u
@x
; � � EA

k
; �4�

x � L;
@u

@x
� 0: �5�

Since the bar is initially at rest, it follows that at

t � 0; u � 0;
@u

@t
� 0: �6�

Fig. 1. Cylindrical specimen as rod model.
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The problem can immediately be substituted by a
homogenous boundary value problem by introducing

u � ÿvt� u~: �7�

u~ is the solution of the homogenous boundary value
problem de®ned now as

c2o
@2u~

@x2
� @

2u~

@t2
; �8�

x � 0; u~ � � @u~
@x
; �9�

x � L;
@u~

@x
� 0; �10�

t � 0; u~ � 0;
@u~

@t
� v: �11�

Of course, for � � 0 the maximum stress is Ev=co [see
Eq. (1)]
A Laplace transformation technique can be used to

®nd a solution for � 6�0. Details of the solution can be
taken from the paper by Werner and Fischer.12 The
boundary condition Eq. (9) introduces a dispersive
character to the solution. During the second and sub-
sequent re¯ections of the wave the stress state may even
be increased in relation to � � Ev=co. For the sake of
demonstration, a dimensionless stress �~ � �co= Ev� � and
a dimensionless time t~ � tco=L are introduced. Fig. 2
shows the stress at x � L=2 over the time depending on
�~ �~ � 0:025 and 0:1� �. Fig. 3 demonstrates the time enve-
lope over the maximum stress in the rod in dependence
on �~. It is interesting to note that a deformable seat may
lead to an increased maximum stress in the rod after
several re¯ections. This e�ect, however, can be ignored

during the propagation of the ®rst tension wave, espe-
cially if the seat slows down and the specimen separates
from the seat.

4. Dispersion and stress concentrations

Obviously the one-dimensional problem formulation
ignores the radial inertial e�ect, which leads to a dis-
persive character of the solution, also for � � 0. Ray-
leigh and later Love (Ref. 13, p. 248) were aware of this

e�ect and added a correction term ÿ �2 R
2

2

@4u

@x2@t2
to the

wave propagation described in Eq. (1); R is the radius of
the rod and � is Poisson's ratio. Davies14 proved both
experimentally and analytically this dispersive char-
acter. Recently Fiedler and Wenzel15 reported an error
in Davies analytical solution.
Taking into account the dispersive character of the

wave propagation one can start with the treatment of a
circular cylinder considering the uniform wave propa-
gation in a half-space [see, e.g. Achenbach9 (p. 21 �) or
Bedford and Drumheller16 (p. 47)]. The wave propaga-
tion speed

c1 � 1ÿ �
�1� ���1ÿ 2��
� �1=2

co �12�

is that of a dilatational wave. The half-space solution
consists of only one nonzero displacement component,
namely u~h in x-direction. The immediate consequences
are:

. The stress component �x;h follows as

�x;h � 1ÿ �
1� �� � 1ÿ 2�� �

� �1=2

E
�

c0
; 04x4c1t; �13�

Fig. 2. Relative longitudinal stress �~ history in a moving rod, sud-

denly elastically ®xed at its trailing end; dimensionless spring constant

�~.

Fig. 3. Maximum relative longitudinal stress �~ �;max in a moving rod,

suddenly elastically ®xed at its trailing end in dependence of the

dimensionless spring constant �~.
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which results in a 16% higher longitudinal stress for � �
0:3 compared with the one-dimensional rod solution.

. Two further stress components �y;h; �z;h in the
transverse direction appear as

�y;h � �z;h � �

1� � �x;h; 04x4c1t; �14�

�y;h � �z;h � 0; x > c1t:

. To achieve, therefore, the solution for a circular
cylinder as a cylindrical ``cut-out'' of a half-space,
the corresponding solution must be superposed on
a further solution, according to a negative radial

stress �r � ÿ�y;h � ÿ�z;h � ÿ �

1� � �x;h for x< c1t

and 0 for x5c1t to assure a stress-free surface of

the cylinder.
The axisymmetric problem formulation has

consequently to deal with two wave propagation
phenomena:

. a dilatational wave propagating from the ®xed end
of the cylinder (x � 0) in the longitudinal direc-
tion, represented by the homogenous half-space
solution;

. dilatational and shear waves propagating from the
cylindrical surface into the cylinder in radial and
longitudinal directions.

This additional wave ®eld is named ``von Schmidt
wave'' [see, e.g. the book by Lin17 (chapter 3.3.5) or the
paper by ValesÏ et al.18 ]. The corresponding displacement
and stress ®eld make it necessary to solve a rather com-
plex boundary/initial value problem. The von Schmidt
wave gives rise to the dispersive character of the stress
®eld. To the knowledge of the authors the ®rst person to
tackle this problem was Skalak,19 applying integral
transforms. However, only an approximate method for
the evaluation of the inverse transforms, in this case the
``saddle point method'', was used. Therefore, Skalak's
relations for displacements and stresses are valid only
for a certain time after the impact and a certain distance
ahead of the place of impact. The ``head'' of the long-
itudinal stress wave is not a ``jump'' as in the case of a
rod but a ``steep ramp''. Due to the dispersive character
an increase of the stress level of 25 to 30% in relation to
the one-dimensional solution can be found. This repre-
sents a rather high ``overstress'' in relation to the one-
dimensional solution. The full picture of the deforma-
tion and stress state was very recently presented by
ValesÏ et al.,18 without any approximations in the inver-
sion of the integral transforms. They showed, speci®-
cally, in the region 04x43R, that a very
inhomogenous stress ®eld appears. The stress �x may
even show a peak (``a spike'') somewhere between
04r=R41. Locally the stress may rise more than 35%

in relation to the one-dimensional solution. Finally it
should be mentioned that ValesÏ et al.18 evaluated the
displacement ®eld as an in®nite series of improper inte-
grals. Signi®cant numerical e�orts are necessary to
obtain a satisfying picture of the solution. Especially it
is di�cult to perform accuracy checks for the numerical
evaluation of their integrals. At least an overall qualita-
tive check of the results by following the energy content
of the specimen would be of high value.
A concept overcoming the di�cult operations with

respect to the inversion of the integral transforms can be
an a priori numerical concept (in the literature very
often the ®nite di�erence method has been used20 and
later along the bicharacteristics of the governing di�er-
ential equations21). The authors of this paper prefer to
use the ®nite element method, speci®cally with respect
to its broad applicability and its accuracy checks. In the
following, ABAQUS-Explicit22 is used.
A dimensionless problem formulation is introduced

by the following entities:

x � �R, �... dimensionless length co-ordinate,

r � �R, �... dimensionless radial co-ordinate,

u� � u~�
v

co
�R

� �
u~�... dimensionless longitudinal
displacement,

u� � u~�
v

co
�R

� �
u~�... dimensionless radial displacement,

t � t~
R

co

� �
t~... dimensionless time.

Two types of boundary conditions at � � 0 are stu-
died:

u~� � 0; u~� free: ``fixed end'';

u~� � 0; u~� � 0: ``clamped end'':

It can easily be shown that the Navier equations of
elasticity, expressed in the dimensionless displacements
u~� and u~� contain only two factors, namely (1ÿ2�) and
2(1+�). The corresponding numerical problem for-
mulation can be represented by a substitute specimen of
a radius``1'', the Young's modulus ``1'' and the density
``1''. Only the dimensionless length L/R is a variable
entity. As a parameter Poisson's ratio is ®xed ®rst as
� � 0:29 (the value of siliciom nitride ceramics). The
actual stress components can be found by multiplying
the calculated stresses by the factor Ev=co. Therefore,
the resulting longitudinal stress �~ � re¯ects directly the
relative variation of the actual stress ®eld in relation
to the one-dimensional stress with the dimensionless
value ``1''.
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A specimen with ratio L=R � 40 is investigated.
Twenty square-shaped, constant strain elements are
used over the radius, so 800�20=16,000 elements exist.
At each time step the energy content of the system,
which must remain constant, is checked. Deviations
much smaller than 10ÿ4 of the (constant) energy content
can be observed.
We consider the time interval [0, L/R], which means

we inspect all instants until the one-dimensional wave
would have reached the right end of the rod at x � L.
During this time interval the maximum longitudinal
stress ��;max as well as the maximum principle stress in
each volume element are stored. Next charts were
drawn giving a ``time envelope'' over the maxima of the
stress state within [0, L/R]. In the following context, the
``®xed end'' boundary condition is taken into account.
Fig. 4 demonstrates isolines for �~ �;max over the whole
specimen. Three regions can be distinguished within
04�440:

1. The ``(trailing) end'' region covering the area
04�4 ca. 7, where a very inhomogeneous stress
state can be observed with a stress level higher
than 1.46. Details can be taken from Fig. 5, which
represents a magni®cation of the ``(trailing) end''
region with a ®ner grading of the isolines. Sur-
prisingly high values of �~ �;max near the axis can be
detected. The maximum value of �~ �;max amounts
to 2.42. Since the paper of ValesÏ et al.18 con-
centrates more on �~ �; near the surface, such a high
value of �~ �;max is not reported. However, near the
surface, the values �~ �;max agree well with the results
of ValesÏ et al.18 for a semi-in®nite cylinder.

2. The ``middle'' region covering the area [74�436],
from which a more detailed view can be taken
from Fig. 6. Most of the ��;maxvalues lie the range
between the ``B''-isoline and the ``D''-isoline
representing values between 1.24 and 1.34. This
range corresponds to the value of the ``head'' of
the stress wave found by Skalak.19

3. The ``head'' region covering the area 364�440
shows clearly the ``steep ramp'' character of the
head of the stress wave decreasing from 1.24 to 0.

If the ``clamped end'' boundary condition is dealt
with, only the ``(trailing) end'' region and, therefore, the
area between (04 �41) near the free surface at � � 1, is
concerned. Here a local increase of �~ �;max to values
higher than 1.70 can be observed.
Finally it can be concluded that at least over ca. 11/40

of the whole specimen length a very inhomogeneous
stress state occurs. Locally the increase in relation to the
rod solution amounts to more than a factor of 2. The
dispersive character of the wave propagation process
can, therefore, not be ignored. The time history of the
total kinetic energy and the total strain energy, however,

Fig. 4. Isolines for the maximum relative longitudinal stress �~ �;max in

the whole specimen during the dimensionless time period [0,L=R],
� � 0:29.
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Fig. 5. Isolines for the maximum relative longitudinal stress �~ �;max in

the ``end'' region during the dimensionless time period [0,L=R],
� � 0:29.

Fig. 6. lsolines for the maximum relative longitudinal stress �~�;max in

the ``middle'' region during the dimensionless time period [0,L=R],
� � 0:29.
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coincides exactly with those for the uniaxial rod. The
total strain energy increases linearly within the time
interval 04t~4L=R to its maximum value which corre-
sponds to the initial overall kinetic energy. Thus the
dispersive character of wave propagation cannot be
detected in the energy balance. This fact, however, may
be considered as a trivial check.

5. Dynamic stress intensity factor

If a stress wave front hits the surface of a small crack
it is partially re¯ected as well as modi®ed to a Rayleigh
wave (in the following, for simplicity, only small penny
shaped cracks of radius a are analysed). This gives rise
to an increase of the stress intensity factor KI, above its

static value KI;st � 2

�
�
������
a�
p

, where � is the local stress

amplitude in the uncracked body. The ratio KI=KI;st

depends on the steepness of the ramp of the wave front.
Zhang and Gross23 carefully investigated this dynamic
crack problem. They introduced the dimensionless
parameter c2�=a, where c2 is the shear wave velocity,
which is in the order of magnitude of co, and � is the
``ramp'' time interval during which the stress would
increase linearly from 0 to its maximum value. The
value of c2 is c2=0.62co for � � 0:29. In Fig. 7, KI=KI;stat

is plotted as a function of c2�=a using the data of Zhang
and Gross.23 The ratio achieves a maximum of 1.3 for
� � 0 and approaches zero c2�=a ! 1. It is less than
1.05 for c2�=a54.

Due to the dispersive character discussed, a stress
ramp really does exist. The ``ramp'' time interval � can
be taken from Skalak's solution,19 by substituting the
time, when the stress ramp starts, by x=co as

� � 4
�2R2

4c2o
� x
co

� �1=3

: �15�

The dimensionless paramater c2�=a follows now as
(again we set � � 0:29):

c2�=a � 4 0:62� � �2=4ÿ �1=3� R2x=a3
ÿ � � 0:7R2=3x1=3x=a:

�16�

It can be seen that c2�=a ®nally depends on the geo-
metry (it is proportional to R2=3), on the position x
along the rod (it is proportional to x1=3) and on the
radius of the size of the investigated defect (it is inver-
sely proportional to a).
For c2�=a � 1 the dynamic stress intensity factor is

approximately equal to the static value. In consequence
of Eq. (16), this is not possible in an area around the
®xed end of the rod (for very small values of x). In the
following the typical situation of a tensile test per-
formed on a specimen made of an advanced ceramic
material is analysed: the size of the zone where the stress
intensity factor is strongly in¯uenced by dynamic
e�ects, i.e. arbitrarily de®ned KI=KI;stat 5 1.05, is given
by c2�=a 4 4 (see Fig. 7). The length x can be calculated
using Eq. (16). In advanced ceramics, the fracture initi-
ating crack has in general an equivalent radius of 100 mm
or less. A typical radius of a tensile test bar is around 3
mm. Using these assumptions the length of the in¯u-
enced zone is around 20 mm, which is about 1=5 of the
radius of the fracture initiating defect. For smaller frac-
ture initiating defects, the zone size is even smaller. This
®nally means that this zone can be neglected and that
the stress intensity factors in this dynamic study can be
calculated from the ``standard'' relations for static stress
intensity factors.

6. Basic principles of fracture statistics

A brief summary of the fracture statistics of brittle
fracture is given. Then the consequences with respect to
an inhomogeneous and transient stress ®eld as would
appear in the testing device are considered.
It is assumed that brittle fracture originates at ¯aws of

di�erent sizes statistically distributed within the speci-
men and on its surface. Therefore, the strength of a
brittle material is also a statistic variable. Any ¯aw will
be critical, if it is large enough to initiate fracture under
a given stress ®eld. Provided the density of ¯aws is so
low that they do not interact and that any critical ¯aw
will cause the specimen to fail (weakest link hypothesis),
the probability of failure Pf is given by

Pf � 1ÿ exp ÿNc� �; �17�

where Nc is the mean number of critical ¯aws taken over
a large set of specimens.24 The mean number of critical
¯aws depends on the load amplitude (more ¯aws

Fig. 7. Ratio of the stress intensity factor to its quasistatic limit versus

the dimensionless parameter c2�=a.
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become critical as the load increases) as well as on the
specimen size. Assuming that the size of a ¯aw can be
characterised for simplicity by a single parameter a (e.g.
the radius of a penny-shaped crack) and that the Grif-
®th fracture criterion holds, any crack is critical if its
size is equal or larger than

ac � 1

Y

KIc

�

� �
; �18�

where � is the applied tensile stress in the uncracked
body normal to the plane of the ¯aw, Y is a geometry
factor and KIc the fracture toughness of the material.
For a spatially constant stress and a uniform distribu-
tion of ¯aws, the mean number of critical ¯aws equals
the local density of critical ¯aws multiplied by the
volume. For a non-uniform stress ®eld and/or non-uni-
formly distributed ¯aws the mean number of critical
¯aws is obtained by integrating the local density of cri-
tical ¯aws over the volume as

Nc �
�
V

�1
ac

g a; r� �da
� �

dV; �19�

where g a; r�� is the frequency distribution density per
unit volume of ¯aw sizes, a, at a point de®ned by the
position vector r. Even for a uniform distribution of
¯aws in the case of a non-homogeneous loading, the
local density of critical ¯aws, given by the inner integral
in Eq. (19), varies over the volume since, according to
Eq. (18), the lower limit of integration depends on the
stress at the position r.
If the frequency distribution density in a homo-

geneous material is a monotonically decreasing function
of the ¯aw size, g(a), it can be approximated (at least in
a small size region near to ac) by an inverse power law
g a� � � goa

ÿr, r being a material constant.25,26 Then Eq.
(17) can be transformed into the well known Weibull
distribution (see, e.g. Freudenthal25 and Danzer24) as:

Pf � 1ÿ exp ÿ 1

Vo

�
V

h�i
�0

� �m

dV

� �
: �20�

The Weibull parameter m is directly related to r
by m=2(rÿ1). Therefore, it re¯ects the distribution
of critical ¯aw sizes. �0 is the characteristic strength
of a sample of specimens of size V0. The notation

h�i � � for � 5 0
0 for � < 0

�
is used to indicate explicitly,

that the volume integration must be performed only
over the region loaded in tension.
In practice, the Weibull parameters m and �0 are

directly determined as material constants by a statistical
evaluation of measured values of strength (see, e.g.
Wachtman27 and Creyke et al.2 In this way the distribution

of lengths of the most severe ¯aws (including their ran-
dom orientation) is indirectly measured, as well. A high
value of the Weibull modulus m corresponds to small
variations in strength, and thus in ¯aw sizes. Engineer-
ing ceramics distinguish themselves by Weibull moduli
greater than 10.
The above considerations refer to a uniaxial state of

stress. For multiaxial stress conditions an appropriately
de®ned equivalent stress �� should be substituted for � in
Eq. (20). The proper de®nition of the equivalent stress
for a multiaxial stress state is still subject to debate (see,
e.g. Batdorf28 and Thiemeier.29 As a ®rst approxima-
tion, the highest principal stress can be taken as an
equivalent stress. This will also be assumed in the fol-
lowing context.
To consider the in¯uence of the specimen size, it is

usual to de®ne an e�ective volume Ve� which stems
from the relation:

Nc � Veff=V0� �: ��=�0� �m: �21�

�� is a reference stress. The e�ective volume Ve� (�
�) is

the volume of a hypothetical tensile specimen subjected
to a homogeneous uniaxial stress state which has the
same probability of failure as the specimen (component)
under investigation at the reference stress �*. Alter-
natively, an e�ective stress �e� can be de®ned according
to the formula,

��� �mVeff ���� � �eff� �mV0; �22�

for an inhomogeneous stress ®eld. �e� represents the
stress in a tensile specimen of the same volume as the
real component which leads to the same probability of
failure. Evidently, Eqs. (20) and (21) are based on the
Weibull distribution function.

7. Application of fracture statistics to the evaluation of
dynamic tension testing results

It has been shown recently,30,31 that a large e�ective
volume of the test specimens is required in order to
check the assumptions on the distribution of ¯aw sizes
made in Eqs. (19)±(21). In order to judge the bene®ts of
the proposed dynamic tension test method in compar-
ison to quasistatic tension tests32 the e�ective volume of
the new testing procedure has to be evaluated. Doing
this fracture statistics has to be applied to a dynamic
loading situation.
The e�ective volume can be calculated using Eqs.

(19)±(22). Up to now, the proper de®nition of the stress
� for a dynamic loading situation is still not clear. For
each volume element and in the considered time interval
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the maximum occurring tensile stress amplitude has the
biggest contribution to the probability of failure.
Therefore it is proposed to insert for � in Eq. (20) the
time envelope over the maxima of the stress state
(�~ �;max�.
The data are visualised in Fig. 8. The ratio of the

e�ective volume to the volume of the rod, Veff=V, is
plotted against the Weibull modulus m for various
values of the Poisson's ratio �. The reference stress in
this representation is taken to be the stress amplitude of
the uniaxial solution given by Eq. (8), i.e. �� � �0. For
the limiting case � � 0 the e�ective volume remains
equal to the volume of the specimen regardless of the
Weibull modulus, since in this case the envelope of the
transient stress ®eld equals the stress ®eld in a quasi-
static tensile specimen with spatially constant load
stress. For realistic values of Poisson's ratio �, however,
the e�ective volume strongly depends on the Weibull
modulus. The dependence of the e�ective stress on the
Weibull modulus is shown in Fig. 9 for various Pois-
son's ratios.

As an example, we analyse the case of a modern
structural ceramic, e.g. silicon nitride, which typically
has � � 0:29 and m � 20. For the reference stress equal
to the stress amplitude of the one-dimensional solution,
�� � �0, the e�ective volume amounts to 3000 V0 as can
be seen from Fig. 8. According to Fig. 9, this fact leads
to an e�ective stress about 1.5 times greater than in the
case for � � 0. This considerable increase in the severity
of loading due to the multiaxiality of the stress state
means that, for the same probability of failure, the ten-
sile specimen, quasi-statically loaded with the reference
stress �0, should be 3000 times larger than the dynami-
cally tested rod. Since the e�ective stress for � � 0:29 is
1.5 times higher compared to � � 0, the size of the fail-
ure initiating ¯aws amounts to, according to Eq. (8),
about 1.5ÿ2=0.44 of that for � � 0 (which would cor-
respond to the reference quasistatic tensile test). Such
calculations are only valid provided that the conditions
for the applicability of the Weibull theory are ful®lled
and that the distribution of ¯aw sizes is of a Weibull
type.
Fig. 10 shows a common representation of the

dependence of the e�ective volume on the Weibull
modulus. The reference stress is taken to be equal to the
maximum principal stress component of the stress
envelope and is di�erent for each di�erent value of
Poisson's ratio �. The numerical evaluations due to the
Poisson's ratio � of 0, 0.145 and 0.29, respectively, lead
to the reference stress of 1, 1.59 and 2.35 times �0,
respectively. This points to an increasing non-uni-
formity of the stress envelope with increasing Poisson's
ratio �. Therefore, the fraction of the specimen volume
which sees the highest stress (taken as the reference
stress) decreases. Additionally, the e�ect of the stress
non-uniformity on the e�ective volume becomes stron-
ger if ¯aw sizes become more uniform, characterised by
higher m values. In the above numerical example the
e�ective volume is as low as 10ÿ3 Vo indicating the

Fig. 10. Ratio of e�ective to real volume versus Weibull modulus. The

reference stress is taken to be the maximum stress in each stress±time

envelope; the parameter used in the curves is the Poisson's ratio �.

Fig. 8. Ratio of e�ective to real volume versus Weibull modulus for a

reference stress � � �0. The parameter used in the curves is the Pois-

son's ratio �.

Fig. 9. E�ective stress versus Weibull modulus, parameter in the

curves is the Poisson's ratio �.
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relatively small size of the highest loaded region of the
specimen. This is even less than the e�ective volume in a
standard bending test.

8. Conclusion

For typical advanced ceramic materials (de®ned by a
reasonably small size of the critical defect, e.g. ac smal-
ler than 100 mm) the dynamic and static stress intensity
factors are equal unless in a very small zone. In a mov-
ing rod which is suddenly stopped at its back end, the
extension of this zone is in the order of magnitude of the
radius of the critical defect or even less.
Therefore a probabilistic analysis of the reliability can

be performed for dynamically loaded bodies in analogy
to the well known Weibull analysis for static situations.
For the e�ective stress ®eld in the Weibull distribution
the time envelope of the highest principal tensile stress
®eld has to be used (instead of the highest principal
tensile stress ®eld in the quasistatic case).
A one-dimensional analysis of a dynamic tensile test,

which can be realised by sudden stopping of a moving
bar at its trailing end, reveals a test situation with a
spatially constant tensile stress state �0 throughout
the specimen. However, in the real three-dimensional
transient situation the transient stress ®eld is strongly
inhomogeneous.
The inhomogeneity of the transient stress ®eld is

caused by the dispersive behaviour of the elastic waves.
In the analysed example the maximum principal tensile
stress is 2.5 times higher than the tensile stress ampli-
tude of the one-dimensional case.
Due to the brittle material behaviour and the inho-

mogeneity of the stress ®eld the evaluation of the
dynamic tension test necessitates a probabilistic analysis
(e.g. Weibull). Such an analysis, which is standard for
stationary situations, has been applied here to dynamic
stress ®elds.
The analyses of the specimens show an extremely

small e�ective volume, even smaller than the e�ective
volume of a bending specimen of the same size. Since
tests with a large relative e�ective volume are preferred
in order to reduce the number of test specimens neces-
sary to predict a high reliability, the transient character
of stress ®elds makes this simple type of a tension test
less attractive than expected.
The dynamic stress ®eld and, as a consequence the

e�ective volume of the dynamically loaded specimen,
strongly depends on the Poisson's ratio v, which points
to the signi®cance of radial dispersion of waves.
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