
Applicability of the Hertz contact theory
to rail-wheel contact problems

W. Yan, F. D. Fischer

Summary Rail-wheel contact problems have been analyzed by applying three-dimensional
®nite element models. Based on these models, the applicability of the Hertz contact theory
(HCT) to rail-wheel contact problems is veri®ed in the present paper. Beside a standard rail,
also a crane rail and a switching component are considered in the veri®cation. In the case of a
contact between the standard rail UIC60 and the standard wheel UICORE, different transverse
contact positions are analyzed. Numerically calculated distributions of the contact pressure for
different types of rails with respect to different initial contact positions agree with the results
from the HCT only if either the contact zone does not spread into a region of changed surface
curvature or if plasti®cation does not occur. Finally, the convective part of the dissipation
power due to friction is calculated, which cannot be provided directly by the HCT.
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1
Introduction
Since Heinrich Hertz published his contact theory in 1882, [1], it has been extensively applied
in many engineering ®elds which deal with contact problems. The application of the Hertz
contact theory (HCT) in rail-wheel contact problems can be found also in the recent literature.
For example, the HCT is applied in [2, 3] to investigate the growth of shell-type defects in the
head of a railroad rail. Hertzian contact pressure is applied in a fatigue life model to describe
the damage of wheels in [4]. An approximation of the HCT is used in the three-dimensional
(3D) rail-fatigue model PHOENIX to describe the fatigue initiation in rail subsurface, [5], etc.
The program CONTACT of the Delft group, [6, 7] can be considered as one of the most
prominent programs in Europe for calculating the contact area and the corresponding defor-
mation and stress state. However, CONTACT is based on the theory of an elastic halfspace.

Besides the HCT, a point load iteration method has recently been used to obtain the contact
pressure in order to investigate the state of residual stress in a rail head, [8]. With the de-
velopment of computational tools, numerical calculations have recently been extended to every
corner of scienti®c research. For instance, a self-developed ®nite element (FE) code is applied
in [9] to analyze rail-rolling contact fatigue cracks.

The HCT leads to an elliptical contact area and a semi-ellipsoid contact pressure distribution
in the contact region. Due to its ef®ciency and simplicity, this theory has been extensively
applied since its publication. However, as mentioned in [10], there are two limiting conditions
for the applications of the HCT:

� the contact between elastic bodies should be frictionless,
� the signi®cant dimensions of the contact area should be much smaller than the dimensions

and the radii of curvature of the bodies in contact.
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The ®rst condition is approximately satis®ed for rolling contact. Usually, the friction between
the rail and the wheel can be considered separately, because its in¯uence on the stress state
introduced by the normal compressive load can be neglected.

The second condition is often violated, e.g. in the case of a switching component or for some
special contact positions, such as gauge corner contact due to the transverse movement of the
wheel axle. In this case, the contact zone may spread into regions of changed surface curvature.
Moreover, plastic deformation can happen both in the wheel and in the rail, especially in cases
with high axle loads.

In the last few years, a large number of 3D FE investigations were performed by our group
applying ABAQUS, [11], for real rail/wheel/sleeper/bedding con®gurations. Based on this ex-
tensive study, the numerical results from the 3D FE calculations were compared to the HCT.
Some interesting results concerning the application of the HCT to rail-wheel contact problems
have been obtained, and will be presented in this paper.

2
Hertz contact theory
If two elastic nonconforming bodies contact together then, according to the HCT, [10], the
contact area is elliptical in shape with a major semi-axis a and a minor semi-axis b. The
distribution of the contact pressure in this elliptical area represents a semi-ellipsoid, which can
be expressed as

p � p0 1ÿ x2

a2
ÿ y2

b2

� �
; jxj � a; jyj � b : �1�

Here, the origin of the coordinate system is located at the contact center, which is the initial
contact point; p0 is the largest contact pressure, which appears at the contact center; the
x-axis extends along the major axis, and the y-axis along the minor axis. The values of p0, a and
b depend both on the external normal compressive force F perpendicular to the initial tangent
plane and on the geometry of the contacting bodies near the contact region. Hertz assumed that
the pro®les of the contacting bodies near the contact region can be described by quadratic
surfaces. Thus, the geometrical conditions are completely de®ned by the principal radii of
curvature and their relative orientation at the initial contact point. Finally, p0, a and b are
determined by applying the following combinations of the principal radii of curvature:
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Here, R01 and R001 are the minimum and maximum values, respectively, of the radius of curvature
of the ®rst body at the initial contact point, and R02 and R002 are the corresponding values for
body 2; the curvature radius is taken to be positive if the center of curvature lies within the
body. Parameter u is the angle between the principal normal sections with the minimum
curvature radius in the ®rst body and the second body. Tabular data from numerical com-
putations for the values of p0; a and b computed from c3; c4 and c5 can be found in [12]. The
orientation angle a of the major axis of the contact ellipse relative to the principal normal
section with minimum curvature radius of the ®rst body can be determined by
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The maximum contact pressure p0 and external normal compressive force F are related by a

1/3-power law, p0 / F1=3:

256



3
Verification
In our veri®cation, three kinds of rails and their corresponding wheels are considered. The ®rst
one is a crane rail Cr135. The geometrical conditions for the application of the HCT are well
satis®ed in this case. Thus, this con®guration is also a good example to check our numerical
calculations.

The second one is the central component of a railway switch, named ``frog''. The wheel
moves from a wing rail to a frog during a switching-over process. This switching is accom-
panied by a sudden change in the inclination of the wheel-center path and, therefore, by the
transfer of a momentum to the frog. The minor principal curvature radius at the contact point
of the frog is relatively small. We will check whether the HCT can be applied in this case.

Finally, a standard rail UIC60 is considered. The curvature radii of the cross-sectional pro®le
are 300 mm, 80 mm and 13 mm. The initial contact position varies in practice due to the
transverse shift of the wheel axle. Four typical transverse contact positions are considered both
by the HCT and by 3D FE calculations.

Furthermore, results are presented for elastic-plastic material behavior which, of course,
leads to a signi®cant deviation from the HCT.

3.1
Crane rail Cr135
In this case, the initial contact point appears at the top point of the rail as the cross-sectional
pro®le of the wheel is ¯at. Geometrical conditions are as follows: wheel R01 � 266:7 mm,
R001 � 1; rail R02 � 355:0 mm, R002 � 1; u � 90�.

The rail and the wheel are assumed to be linear elastic with the same material data: E � 210
GPa and m � 0:3. The external normal compressive force F is 3:234� 105 N. From Eqs. (3) and
(5), we get cos 2a � ÿ1 and a � 90�. That means the major axis of the contact ellipse lies in the
transverse direction of the rail. After calculating the parameters c3; c4 and c5 from Eqs. (2), (3)
and (4), the maximum contact pressure p0, the major semi-axis a and the minor semi-axis b can
be obtained from [12] as p0 � 2:1 GPa, a � 9:5 mm, b � 8:0 mm. Inserting these values into
Eq. (1), yields the distributions of the contact pressure along the major and minor semi-axes
shown in Fig. 1 by dotted lines.

In our 3D FE calculation, only a quarter of the real con®guration is modeled, according to
the symmetry conditions. Figure 2 shows the FE mesh and the pro®le of the whole analyzed
model for the rail CR135. The rail itself is bedded on rigid ground. Without affecting the
contact con®guration between the rail and the wheel, only a section of the wheel is simulated.
Many truss elements with very high stiffness are used to connect the wheel axis and the upper
surface of the wheel rim. A very ®ne mesh is constructed near the contact zone. Twenty-node
quadratic brick elements are used for the wheel and the rail. In®nite elements are applied to
re¯ect the constraint of the rail far away from the contact zone. The interface element INTER9

Fig. 1. Contact pressure distribution along
the major and minor semi-axes of the Hertz
contact ellipse for the crane rail Cr135 (major
axis ± rail's transverse direction; minor axis ±
rail's longitudinal direction)
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is used to deal with the contact between the wheel and the rail, s. [11]. The whole model
consists of 4609 elements with 60561 degrees of freedom. A complete calculation takes about 12
CPU hours on a modern high-speed processor. The numerical calculation indicates that the
shape of the contact area looks very similar to an ellipse with the highest contact pressure in the
central part. In order to compare quantitatively the distribution of contact pressure with the
HCT, the numerical results of the contact pressure along the major semi-axis and the minor
semi-axis of the Hertz contact ellipse are also shown in Fig. 1 with solid lines. The diagram
shows that the numerical curve matches the theoretical curve from the HCT. Similar conclu-
sions can be obtained from any path in the contact area. This means that the distribution of the
contact pressure from the numerical calculation for elastic contact yields a semi-ellipsoidal
distribution as described by Eq. (1). The special values of p0; a and b extracted from the
numerical calculation agree with those from the HCT. The major semi-axis a and the minor
semi-axis b are much smaller than the geometrical parameters R01 and R02. The geometrical
conditions of the Hertz contact theory are thus well satis®ed in this example. This comparison
indicates that our numerical calculation delivers satisfactory accuracy.

Using the same FE model, a numerical calculation of the elastic-plastic contact is carried out,
too. In this calculation, only the material of the rail is assumed as elastic-plastic material
described by a nonlinear kinematic hardening model, [13], with yield stresses r0:2 � 608 MPa
and r0:5 � 693 MPa, etc. Although the shape of the contact area is still similar to an ellipse, the
distribution of the contact pressure in the contact area is no longer semi-ellipsoidal. The
variation of the contact pressure from the elastic-plastic calculation along the semi-axes of the
theoretical ellipse is shown with dash-dotted lines in Fig. 1. The difference between the contact
pressure distribution for elastic-plastic contact and the HCT results is obvious. The maximum
contact pressure from the elastic-plastic contact analysis is much smaller than that from the
HCT while the area of the contact zone has grown a little. As we can imagine, the pressure
distribution is quite constant at the central part of the contact zone. The total contact force is
obtained from the contact pressure in the whole contact area; although the area beneath the
elastic-plastic curve in Fig. 1 is smaller than that beneath the linear-elastic curve, the normal
compressive force F is the same in both calculations, due to the change of the contact area.

Figure 3 depicts the relation between the maximum pressure p0 and the resultant normal
compressive force F. It shows that a proportional relation, p0 / F1=3, exists for the numerical
data of elastic contact when the normal compressive force is above 6000 N. A deviation in
relation to the theoretical curve appears for small normal compressive forces. This shift may be
caused by a rapid and discontinuous increase of the contact area at the initial loading state in
the ®nite element calculation. It should be reduced by re®ning the mesh at the contact center.
As the practical normal compressive force F exceeds the value in this stage, the range of
deviation from the ``Hertz line'' is of no practical relevance due to the low level of F. Thus, it is
not necessary to re®ne the mesh of our model. Comparing the elastic-plastic contact curve and

Fig. 2. Finite element mesh and the
pro®le of the whole analyzed model
for the crane rail CR135
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the elastic curve shows that the maximum contact pressure from the elastic-plastic calculation
is always less than p0 according to Hertz contact theory. This discrepancy becomes larger with
an increasing external normal compressive force, i.e. with increasing plastic deformation in the
rail.

3.2
``Frog''
As mentioned, the ``frog'' is the central component of a railway switch. The wheel load is
transferred from a wing rail to the frog to allow a crossing maneuver. The cyclic response of the
frog to continuous impacts is numerically investigated in [14]. This ®nite element model is
used here to verify the HCT. Geometrical conditions for the contact are as follows: frog
R01 � 13:0 mm, R001 � 1; wheel R02 � ÿ160:0 mm, R002 � 558:0 mm; u � 0�.

The material of the frog and the wheel is ®rst assumed to be elastic with E � 210 GPa
and v � 0:3. An external normal compressive force F is chosen as 7:96� 104 N. We con-
sider here the static loading case. However, depending on the average velocity of the wheel,
the jump in the inclination of the wheel-center path and the impacting mass, a momentum
is suddenly transferred to the frog leading to a dynamic factor of three or more, for details
see [15], [14]. Applying the HCT, we obtain p0 � 3:9 GPa, a � 10:0 mm, b � 1:0 mm,
a � 90�.

The major axis of the contact ellipse extends along the longitudinal direction of the frog.
This contact ellipse is long and narrow. The length of the major axis 2a is even larger than the
curvature radius R01.

Both pure elastic contact and elastic-plastic contact are simulated numerically. The frog is
mounted on a continuous bedding in our FE. The material of the wheel remains elastic while
the frog consists of a high-strength material with E � 178 GPa and yield stresses r0:02 � 1:42
GPa and r0:5 � 1:56 GPa, described by a nonlinear kinematic hardening model, [16]. The
shapes of the contact area from both the elastic and the elastic-plastic calculation look like
narrow ellipses extending along the longitudinal direction of the frog. A quantitative com-
parison is carried out along the major and the minor axes of the theoretical ellipse as shown in
Fig. 4. Again, the graph showing the contact pressure from the numerical calculation for the
elastic contact agrees well with that from the HCT. Figure 4 indicates that plastic deformation
reduces the contact pressure in the central part of the contact zone. The relation p0 / F1=3 is
also checked for the numerical results and depicted in Fig. 5.

The HCT is applied in practice not only to determine the distribution of the contact pres-
sure, but also to obtain the stress state in the contacting bodies. Both contact bodies are
considered as elastic half-spaces in the HCT. The stress state in the bodies near the contact zone
is, therefore, calculated from the contact pressure. Although the distribution of the contact
pressure in the numerical contact calculation and in the HCT is nearly identical in the present
case, it is reasonable to doubt the good agreement of the stress states in the frog with that in a
half-space subjected to Hertz contact pressure, since the frog near the initial contact zone

Fig. 3. Relation between the maximum
contact pressure p0 and the ``1/3-power law''
due to the external normal compressive
force F for the crane rail Cr135
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cannot be assumed to be a half-space. For comparison, the distributions of the von Mises
equivalent stress req in the frog from the above numerical calculation and according to HCT are
drawn in Fig. 6. Surprisingly, not only the maximum values and their corresponding positions
but also the distributions coincide very well. The small discrepancy just beneath the contact
surface is mainly due to the mesh density in the current con®guration. Thus, the stress state in
the subsurface region is also consistent with that from the HCT. For the sake of completeness,
the von Mises equivalent stress from the above elastic-plastic calculation is also shown in Fig. 6.
It is signi®cantly smaller only in a limited region reaching from the surface to about 2.5 mm
beneath the surface.

3.3
Rail UIC60
The UIC60 is the most common rail in Europe. Its transverse head pro®le consists of a
sequence of circular arcs with three different radii of 300 mm, 80 mm and 13 mm. The sections
of the pro®le on the 300 mm, 80 mm and 13 mm radii are referred to as the rail crown, rail
shoulder and gauge corner, respectively. Due to the transverse movement of the wheel, initial
contact may occur on each part of the pro®le. Here, four 3D FE contact models for different
transverse contact positions are established for the rail UIC60 and the wheel UICORE. The rail

Fig. 5. Relation between the maximum
contact pressure p0 and the ``1/3-power law''
due to the external normal compressive
force F for the frog

Fig. 4. Contact pressure distribution along
the major semi-axis and the minor axis of
the Hertz contact ellipse for the frog (major
axis ± frog's longitudinal direction; minor
axis ± frog's transverse direction)
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is mounted on discrete concrete sleepers, and the sleepers are placed on a ballast bedding in
our calculation models. The initial longitudinal contact position lies in the middle between two
sleepers in all the four models. Thus, there exists a symmetry of the problem for the four cases
with respect to the longitudinal direction. The initial contact point is situated at the symmetry
plane in each model. As an example, the whole FE mesh for model one is illustrated in Fig. 7. In
order to obtain satisfying contact results, the meshes in the rail and the wheel near the contact
zone have to be very ®ne in each of the four models.

The initial transverse contact positions for the four considered models are illustrated in
Fig. 8. In the ®rst position, Fig. 8a, the distance between the plane of the measure circle of the
wheel and the middle plane of the rail is 15 mm. The initial contact point has a transverse
distance of 6.6 mm to the middle plane of the rail and is located at the rail crown with 300 mm
radius. In the second position, Fig. 8b, the distance between the plane of the measure circle of
the wheel and the middle plane of the rail is 5 mm. The initial contact point lies at a transverse
distance of 13.4 mm from the middle plane of the rail and is located at the rail shoulder having
a radius of 80 mm. In the third position, Fig. 8c, the plane of the measure circle of the wheel and
the middle plane of the rail coincide. The initial contact position has a transverse distance of
18.4 mm to the middle plane and is located at the pro®le of the rail shoulder with radius 80 mm.
In the fourth position, Fig. 8d, the plane of the measure circle of the wheel is 2.5 mm to the left
of the middle plane of the rail. The initial contact position is located at a transverse distance of

Fig. 6. Comparison of von Mises equivalent
stresses req in the subsurface region for
the frog

Fig. 7. Finite element mesh and pro®le of the whole analyzing model for position one of the rail UIC60
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29.1 mm to the middle plane of the rail, at the gauge corner of the rail with radius 13 mm. The
materials of the wheel and the rail are assumed as linear elastic with Young's modulus equal to
210 GPa and a Poisson ratio of 0.3. In the numerical calculations of elastic-plastic contact, only
the rail is assumed as elastic-plastic with yield stresses r0:0 � 350:0 MPa and r0:4 � 700:0 MPa.
An Armstrong±Frederick nonlinear kinematic hardening model is applied, [16]. The normal
compressive force is 1:1025� 105 N.

The distributions of the contact pressure determined by numerical calculations and the
HCT for the ®rst position, Fig. 8a, are shown in Fig. 9. The theoretical distribution agrees well
with that from the numerical calculation of an elastic contact along the major axis of the
theoretical contact ellipse. Figure 9 indicates that the calculated pressure distribution for the
elastic contact is not symmetrical about the initial contact point. The minor semi-axis is a little
shorter at the positive y-side, and the gradient of the pressure is much larger at the end of this

Fig. 8a±d. Contact position for rail UIC60 and wheel UICORE. a Position one; b position two; c position
three; d position four

Fig. 9. Contact pressure distribution along
the major axis and the minor semi-axis of
the Hertz contact ellipse for position one
Fig. 8a of the rail UIC60 (major axis ± rail's
longitudinal direction; minor axis ± rail's
transverse direction)

262



side. This is due to the fact that the contact area slightly exceeds the boundary of the rail crown
with radius 300 mm and the rail shoulder with radius 80 mm. Such a deviation from the
theoretical result due to the radius change in practical contact con®guration becomes more
pronounced in the next contact position.

The distributions of the contact pressure from numerical calculations and the HCT for
position two, Fig. 8b, are shown in Fig. 10. The theoretical distribution again agrees well with
the results from the numerical calculation of the elastic contact along the major axis. From Fig.
10, however, we can see that the size of the contact area in the transverse direction is much
larger in numerical calculations than in the Hertz analysis, although the contact pressure near
the contact center is identical both in the numerical calculation of elastic contact and in the
analytical theory. Due to the extension of the contact area from the rail shoulder with radius 80
mm to the rail crown with radius 300 mm, the ®nal contact area does not show any elliptical
shape in numerical calculations. It looks like an ellipse with an additional part attached to it in
the negative y-direction. The additional contact area becomes larger with increasing external
load and it can disappear, if the external load is small enough. Similar results can be found in
[17]. The subsurface stresses near the contact center from the numerical calculation of elastic
contact should not be signi®cantly different from those based on the HCT unless the external
load is extremely large.

In position three, Fig. 8c, the contact area covers only the rail shoulder. The contact pressure
from the numerical calculation for the elastic contact and from the HCT is nearly identical.
Figure 11 shows its distribution along the minor axis of the theoretical contact ellipse. The
contact pressure in the case of elastic-plastic contact in the center of the contact zone is smaller.
The deviation at the edge of the contact zone emanates from the coarse mesh that has been used
there.

Contact occurs at the gauge corner of the rail head in position four, Fig. 8d, with a
minimum curvature radius 13 mm (which is the same as that in the case of the frog). The
distributions of the contact pressure are shown in Fig. 12. The maximum contact pressure
from both the numerical calculations and the HCT is remarkably higher than in the former
contact position. The distribution of the contact pressure from numerical calculation in
the case of elastic contact is still very similar to that from the HCT. However, the elastic-
plastic pressure distribution is much smaller in the contact center due to large plastic
deformation.

4
Dissipation power due to friction
The velocity components _sx; _sy of the microslip between contacting points for steady rolling
state have been derived in [9] as

Fig. 10. Contact pressure distribution along
the major semi-axis and the minor axis of
the Hertz contact ellipse for position two
Fig. 8b of the rail UIC60 (major axis ± rail's
longitudinal direction; minor axis ± rail's
transverse direction)
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Vector n � �nx ÿ xy=V; ny � xx=V� is called the rigid slip, nx; ny are called creepages stem-
ming from the difference in effective roll radii of the wheels, left and right, due to conicity, but
also from the deformation of the wheel, for details see also [7]. The spinning velocity x of a
wheel with average radius R running on a straight rail with constant velocity V is V=R, while
uII

x and uII
y are the components of the tangential elastic displacement at the contact surface of

body II, uI
x and uI

y are the corresponding entities for body I. Here, the steady rolling state means
that the phenomena are independent of explicit time in a properly chosen reference frame. The
x-direction is chosen to be opposite to the rolling direction, the z-direction is the direction of
the spinning vector of body II.

If the contact shear stresses applied at the contact surface of body II due to friction are
denoted by qx�x; y� and qy�x; y�, (the nomenclature contact shear stress has been taken from
ABAQUS [11]) the density of the dissipation power d is de®ned as

Fig. 12. Contact pressure distribution along
the major axis and the minor semi-axis of
the Hertz contact ellipse for position four,
Fig. 8d of the rail UIC60 (major axis ± rail's
longitudinal direction; minor axis ± rail's
transverse direction)

Fig. 11. Contact pressure distribution along
the minor axis of the Hert contact ellipse for
position three, Fig. 8c, of the rail UIC60
(minor axis ± rail's transverse direction)
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d � ÿ� _sxqx � _syqy� : �7�

As the friction force is opposite to slip velocity, a minus has been added in Eq. (7). Thus, the
total dissipation power D can be calculated by

D �
ZZ

C

�d�dC � ÿ
ZZ

C

� _sxqx � _syqy�dC : �8�

Here, C represents the contact area.
Practically, contact occurs on a curved surface C in a 3D wheel-rail rolling contact con®g-

uration. A numerical calculation such as the FEM yields qx and qy as the contact shear stresses
in the tangent plane at the local contact point, while _sx and _sy are the slip velocity components
in the local tangent plane at the local contact point. Therefore, the above integral should be
calculated with respect to the local coordinate system, changing with each contact point or
contact element. For a recent discussion see [18]. In the following numerical calculations, the
local coordinate system is chosen so that the x-coordinate is always opposite to the rolling
direction. The initial contact points are assumed to be both the rolling and the spinning center.
The goal of this chapter is to calculate the convective part of the dissipation power, which yields
with (6)
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The derivatives of ux; uy can be taken directly from the computational results and would be
identical if the classical HCT was applied substituting the contacting bodies by halfspaces.

Fig. 13a, b. Comparison of the distribution of the contact pressure p and the density of the convective part
of the dissipation power dc=V for position one, Fig. 8a, with l � 0:3 a contact pressure; b density of the
dissipation power
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The convective part of the total dissipation power follows as

Dc �
ZZ

C

�dc�dC : �10�

The wheel (body II) is now assumed to be a locomotive wheel with a driving moment M applied
on the wheel axis. We assume that the resultant horizontal force Q is lF which precludes a stick
region. The driving moment M is then automatically calculated by the algorithm; l is varied
from 0.1 to 1.0.

Again the four contact con®gurations for the UIC60 rail and the UICORE wheel as in Sec. 3.3 are
investigated, with a slightly increased force F � 1:372� 105 N against (F � 1:1025� 105 N in
Sec. 3.3). The distribution of the contact pressure p together with that of the convective part of the
dissipation power dc are depicted in Fig. 13 for a ``Hertz'' con®guration, corresponding to the
position one of Fig. 8a, and a for a ``non-Hertz'' con®guration, position two of Fig. 8b, in Fig. 14.

The distribution of the normalized density of the convective part of the dissipation power
dc=V is neither af®ne to the contact pressure nor is it comparable for all contact positions. The
largest dc=V always appears behind the contact center. It should be mentioned that some
researchers, [19±21], assume that the heat-¯ow rate is proportional to the contact pressure.
This assumption actually neglects the in¯uence of the elastic deformation on the generation of

Fig. 14a, b. Comparison of the distribution of the contact pressure p and the density of the convective part
of the dissipation dc=V for position two, Fig. 8b, with l � 0:3 a contact pressure; b density of the
convective part of the dissipation
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the energy dissipation. The convective part of the total dissipation power depending on the
friction coef®cient l is depicted in Fig. 15, and on the load for l � 0:3 in Fig. 16. Obviously, the
con®guration according to position four of Fig. 8d shows a different tendency as opposed to the
con®gurations one to three, Figs. 8a±c. This stems from the fact that the surface curvature
changes during the contact from the shoulder curvature (radius 80 mm) to the crown curvature
(radius 300 mm).

One may establish a simple relation for Dc as

Dc / cVl
F

Fref

� �a

; �11�

with a being ca. 2.0 and c being a constant with the dimension N; Fref can be set to 40 kN.
However, one must keep in mind that the con®guration due to position four, Fig. 8d deviates
from this proposal.

5
Conclusion
Three-dimensional FE calculations for rail-wheel contact problems for different types of rails
and wheels and for different contact positions have been carried out. Not only the elastic
contact but also the elastic-plastic contact has been considered. The numerical results have
been compared with those of the HCT for purely elastic contact.

Fig. 16. Variation of convective part of the
normalized dissipation power with applied
normal load for given friction coef®cient
l � 0:3

Fig. 15. Variation of the convective part of
the normalized dissipation power Dc=V with
friction coef®cient l
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In the case of an elastic wheel and rail, the distribution of the contact pressure from the
numerical calculations of the elastic contact agrees well with that from the HCT, if the surface
curvature of the rail does not change inside the contact area. This, however, is possible for
some realistic positions of the wheel on the rail. It is interesting to note that the HCT applies
well even in those cases, where one of the minimum curvature radii of the contacting bodies is
smaller than the dimension of the contact area. The subsurface stress states from the numerical
calculation for the elastic contact and from the HCT also agree well. That means, that the HCT
can be applied in rail-wheel contact problems with reasonable accuracy if the material is
assumed as linear elastic and the surface curvature of the rail remains unchanged.

A signi®cant deviation, however, occurs if plastic deformation appears in the rails. The
contact pressure distribution is higher than the semi-ellipsoidal, but much ¯atter. The highest
contact pressure is always less than that from the Hertz theory of elastic contact. This dis-
crepancy becomes more obvious with increasing plastic deformation, i.e. external loading.

Finally, the dissipation power due to the difference in the local deformation velocities has
been investigated. The HCT cannot produce any such data since it assumes two halfspaces as
contacting bodies which do not represent any real con®guration of a rail and a wheel or a
switch component.
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