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Matrix failure in composite structures has not been widely presented in literature. Their failure has often
been overlooked due to focus directed at fiber failure. With increasing attention on progressive damage
models for composite structures it is important that matrix failure is well understood as this is often the
characteristic of initial failure in these advanced materials. In this paper the authors perform several four
point bend tests on a typical stacking sequence used in composite structures [�45/0/45/90]2S. Inspection
techniques involving a FLIR thermal camera are used to detect matrix failure. Two methods are then
employed to establish a suitable failure criterion to predict matrix failure. The first compares several
failure criteria at the lamina level, whilst the second uses micromechanical analysis to predict matrix
failure. It was found that matrix failure was poorly predicted at the lamina level, whilst a hybrid failure
criterion incorporating the 1st Stress Invariant and Drucker–Prager failure criterion at the micromechan-
ical level gave a much better prediction. The proposed hybrid failure criterion can be used in various
progressive damage models to give a better prediction of initial failure in composite structures.

Crown Copyright � 2015 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials are increasingly being used due to their
high strength to weight ratio and high fatigue resistance. Their
extensive use can be found in the recently developed military
helicopters such as the Eurocopter Tiger and Bell/Boeing V22
where the airframe is made of nearly all composites. In order to
ensure structural integrity in such applications, it is important to
understand the material behavior at failure. However as failure
in composites are characterized by different modes, namely
fiber, matrix and interfacial failure [1], this has complicated their
understanding. For this reason there are still many unanswered
questions as to the materials’ failure characteristics, one such area
includes matrix failure.

Conventional laminate theory (CLT) is widely used to model
composite structures [2]. CLT uses an averaging approach to
combine the properties of the matrix and fiber to form what is
considered to be a new homogeneous material called a lamina.
The advantage of using this theory is that it is simple to use and
does a good job in predicting ply failure [2]. With advances in
computing resources available in industry it has been possible to
extend CLT and establish a more detailed model, although
modeling each strand of fiber embedded in a matrix material is still
considered computationally prohibitive. One such method that is
gaining popularity is micromechanical analysis where the
homogenous material created using CLT is broken back down to
its individual constituents using Representative Volume Elements
(RVEs). Multicontinuum theory (MCT) is one of these methods
[1,3].

With these advances, it has meant that further research is
required to understand the behavior of the individual constituents
that make up the laminate rather than stopping at the lamina level.
This is where matrix failure in composites plays an important role.
Despite being one of the constituents in a composite it’s behavior
has often been overlooked as the behavior of the fiber constituent
is usually the most visible form of failure in composite structures
[4,5] and often detectable on a load–displacement curve. Con-
versely, matrix failure is often not very visible and hard to pick
up on a load–displacement curve [6]. Even if picked up on a curve
it is difficult to pinpoint the location in the laminate. By establish-
ing an experiment method that is able to pinpoint matrix failure,
various matrix failure criteria can be tested for their accuracy.
Once a suitable failure criterion is selected, it can be used in
progressive damage models which have been gaining large interest
quite recently [7–11]. In this paper the authors use a Forward-
Looking Infrared Radar (FLIR) thermal imaging camera to aid in
detecting failure alongside visual inspection post failure detection.
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In this paper the authors perform several four point bend tests
on a laminate with a typical stacking sequence of [�45/0/45/90]2S.
The results are used to compare several well-known failure criteria
[4] to predict failure of the matrix at the lamina level using CLT.
The analysis method is then extended to perform micromechanical
analysis where the failure criterion proposed by the authors in two
previous investigations [12,13] is used for comparison purposes. In
those investigations biaxial tensile tests on fiber reinforced poly-
mer composite (FRPC) specimens and neat resin specimens were
performed on the same matrix material discussed in this paper
(EP280) [14]. The proposed stress based failure criterion for the
matrix is tested for its validity in this paper.

The paper starts with presenting the experimental setup and
results. Then the two analysis methods are described in Sections
3 and 4 followed by a final discussion comparing the prediction
of the two analysis methods.

2. Experiments

2.1. Experiment setup

The experiments were performed using a four point bend test
fixture. The procedure outlined in ASTM D7264 [15] was followed.
The material used is called EP280 Prepreg [14], with material
properties presented in Table 1. The specimen layup consisted of
16 plies with a symmetric stacking sequence given by
[�45/0/45/90]2S. The dimensions and material coordinate system
are shown in Fig. 1. A plate made up of the prepreg material was
cured in an autoclave at 120 �C for 60 min with a ramp up rate of
2 �C/min. Care was taken to ensure that the fiber directions were
aligned correctly. The specimens were machined from the cured
plate using a CNC milling machine. Final machining of the
specimen sides was performed on a diamond wheel to minimize
damage from the milling process.

In total 8 specimens were tested on a 5 kN Instron test machine.
The span between the two bottom supports and the two top sup-
ports were 128 mm and 64 mm respectively. A loading rate of
4 mm/min was used resulting in failure taking place at 3–5 min
from the start of loading.

Four of the eight specimens tested had strain measurements
recorded. Instead of using a conventional strain gauge, strain was
measured along the length of the specimen by bonding a fiber optic
cable [16,17] in the thickness of the specimen as shown in Fig. 2.
The advantage of using the fiber optic cable to measure the strain
is that the relative size (width) of the specimen to a strain gauge is
smaller so a more localized strain in our experiments can be
compared against our FE model.

In conjunction with the strain measurement, a FLIR thermal
imaging camera was used to capture any thermal spikes that result
from failure of the specimen. However this technique is only able
to observe failure on exposed faces of the specimen and cannot
capture any internal damage or damage on surfaces that aren’t
facing the view of the camera.
Table 1
Prepreg material properties.

Property

E11 131 GPa
E22 6.20 GPa
E33 6.20 GPa
v12 0.28
v23 0.40
v13 0.28
G12 4.73 GPa
G23 1.44 GPa
G13 4.73 GPa
2.2. Experiment results

The time at failure picked up by the FLIR thermal camera was
used as the basis for analyzing the results. Fig. 3 shows an example
of the temperature spike picked up by the FLIR camera for speci-
men 2. Table 2 records the displacements at failure for the 8 exper-
iments performed.

From Table 2 it can be seen that the overall consistency of the
observed point at failure was good with a standard deviation of
0.90 mm and mean of 7.66 mm.
3. Method 1: failure at the lamina level

3.1. Finite element analysis

Finite element analysis was used to process all the experimental
results to establish which ply had failed and to obtain the stress
and strain states on the matrix. The finite element package ABA-
QUS 6.13 was used [18]. Each of the 16 plies were modeled with
4 elements through their thickness. The top and bottom nodes of
each ply were tied together to assume a perfect contact. 8-node
linear brick elements with reduced integration and hourglass con-
trol were used for the specimen (C3D8R) [18]. In total there were
39168 elements and 46865 nodes. The material properties listed
in Table 1 were assigned to each Ply with an orientation specified
through ABAQUS GUI. A frictionless tangential constraint was
applied between the top loading pins and the specimen whilst a
zero displacement constraint along the x-direction was applied in
the positions of the bottom supports. Fig. 4 shows the boundary
conditions applied to the FE model.

The strain along path AA (ex) shown in Fig. 4 was extracted and
plotted in Fig. 5. These strains were extracted from 4 of the exper-
iments (specimens: 5–8) at 100s from the start of loading. The cor-
responding displacements at this time were used in the FEA
models to obtain a comparative strain state. Our FEA model
matched our experiment values to within 10%, thus it was consid-
ered appropriate for the remainder of the analysis.

3.2. Results

The strain state (along path BB) of the specimen shown in Fig. 5,
is extracted for each ply and is shown in Tables 3 and 4. The inner
plies were found to experience lower order values and were not
considered to fail before any of the four outer plies. They are
excluded for the remainder of this analysis.

3.3. Failure Prediction at the Lamina Level

Conventional analysis techniques have usually stopped at the
laminae level [4,19,20]. To provide an idea of predicting matrix
failure at this level, various failure criteria are compared. The fol-
lowing criteria are considered:

1. Maximum Stress failure criterion.
2. Maximum Strain failure criterion.
3. Tsai–Hill’s failure criterion.
4. Tsai–Wu’s failure criterion.
5. Hashin–Rotem failure criterion.

These lamina level failure criteria require information about the
stresses at failure for the lamina (EP280 Prepreg) used in this
investigation. Thus, several experiments were performed on the
lamina material to obtain its critical failure stresses which
are shown in Table 5. Where ‘Fij’ is the critical failure stress, ‘i’ is
the material direction and ‘j’ represents whether the stress is



Fig. 1. Four point bend specimen dimensions.

Fig. 2. Experimental setup of the 4 point bend test.

Fig. 3. Temperature spike picked up at failure in Test 2.

Table 2
Displacement at failure for the 8 specimens tested.

Specimen Displacement applied at initial failure (mm)

1 7.61
2 7.18
3 7.39
4 6.80
5 8.79
6 9.29
7 6.97
8 7.24
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compressive (c) or tensile (t). F4, F5, and F6 are the critical failure
stresses for r23, r13, and r12 respectively. The experiments
involved: longitudinal tensile tests, transverse tensile tests and
transverse compressive tests performed in accordance with the
ASTM D3039 and ASTM D695 standards, respectively [21,22]. In-
plane and out-of-plane shear tests were also performed in accor-
dance with ASTM D5379 [23]. The stress/strain behaviors are
shown in Fig. 6.

From Fig. 6 it can be seen that the material demonstrated non-
linearity in shear whilst behaving linearly under normal loading. In
order to capture this behavior; the critical failure strains shown in
Table 4 are converted to stresses using the concept of a linear
stress strain behavior in the material normal directions and nonlin-
ear material behavior in the shear directions (from Fig. 6). Note
that shear in the ‘13’ direction is assumed to be the same as in
the ‘12’ directions [24]. As matrix failure is the primary interest
of this paper, ply 2 and 15 are excluded from the remainder of this
investigation as their behavior is predominantly influenced by the
fiber. The stress based failure results are presented in Table. 6.

3.3.1. Maximum stress failure criterion
Maximum stress failure theory is given by Eqs. (1)–(6) in a fail-

ure index form, where a value greater than 1 indicates failure. r11,
r22, r33 are the stresses in the longitudinal (fiber), transverse and
out-of-plane directions respectively. r12, r13, r23 are the two in-
plane shear stress and one out-of-plane shear stress values respec-
tively. Fij is the critical failure stresses of the lamina given in
Table 5, where the subscript ‘i’ denotes the material direction
and subscript ‘j’ represents whether the failure is tensile (t) or com-
pressive (c) in nature. The results for each Ply are shown in Table 7.

when r11 > 0 r11
F1t

when r11 < 0 r11
�F1c

)
¼ 1 ð1Þ

when r22 > 0 r22
F2t

when r22 < 0 r22
�F2c

)
¼ 1 ð2Þ

when r33 > 0 r33
F3t

when r33 < 0 r33
�F3c

)
¼ 1 ð3Þ

jr23j
F4

¼ 1 ð4Þ

jr13j
F5

¼ 1 ð5Þ

jr12j
F6

¼ 1 ð6Þ
3.3.2. Maximum strain failure criterion
Maximum strain failure criterion [4] is presented in its stress

form given by Eqs. (7)–(12). The results for each Ply are shown in
Table 8.



Fig. 4. FEA model of the specimen along with boundary conditions. Where: displacement in the x, y, z directions is denoted as U1, U2, U3 respectively. ‘disp’ is the
displacement values taken from Table 2.
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Fig. 5. Comparison of the FEA and experiment strain values at a time of 100 s.
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when �11 > 0 r11�v12r22�v13r33
F1t

when �11 < 0 r11�v12r22�v13r33
�F1c

)
¼ 1 ð7Þ

when �22 > 0 r22�v21r11�v23r33
F2t

when �22 < 0 r22�v21r11�v23r33
�F2c

)
¼ 1 ð8Þ

when �33 > 0 r33�v31r11�v32r22
F3t

when �33 < 0 r33�v31r11�v32r22
�F3c

)
¼ 1 ð9Þ

jr23j
F4

¼ 1 ð10Þ

jr13j
F5

¼ 1 ð11Þ
Table 3
Critical global strains in the four outer plies of the global model for Specimen 1 (laminate

Ply # Fiber direction �XX (l) �YY (l) �ZZ (l)

1 �45 �10100 4960 2010
2 0 �8700 4440 1420
3 45 �7400 3110 1270
4 90 �6000 1190 1230

13 90 6120 �1200 �1200
14 45 7470 �3200 �1200
15 0 8860 �4500 �1400
16 �45 10430 �5100 �2100
jr12j
F6

¼ 1 ð12Þ
3.3.3. Tsai–Hill’s Failure Criterion
The third comparison uses Tsai–Hill’s failure criteria [4] which

is presented in Eq. (13). The results are shown in Table 8.

r2
11 � r11r22 � r11r33

F2
1

þ r2
22 � r2

33 � r22r33

F2
2

þ r2
23

F2
4

þ r2
13 � r2

12

F2
6

¼ 1

ð13Þ
3.3.4. Tsai–Wu’s Failure Criterion
The fourth comparison uses Tsai–Wu’s failure criteria [4] given

by Eq. (14). The results are shown in Table 8.

H1r11þH2r22þH6r12þH11r2
11þH22r2

22þH66r2
12þ2H12r11r22 ¼1

ð14Þ
where:

H1 ¼ 1
F1t

� 1
F1c

H11 ¼ 1
F1tF1c

H2 ¼ 1
F2t

� 1
F2c

H22 ¼ 1
F2tF2c

H6 ¼ 0

H66 ¼ 1
F6
coordinate system).

(Engineering) �XY (l) (Engineering) �XZ (l) (Engineering) �YZ (l)

�2485 3080 590
�482 3710 �4200
1122 5670 �6900
�22 �3600 �100

17 �3900 �100
�1146 5560 �7000

490 3550 �4300
2629 2580 350



Table 4
Critical local strains in the four outer plies of the global model for Specimen 1 (laminar material coordinate system).

Ply # Fiber Direction �11 (l) �22 (l) �33 (l) (Engineering) �12 (l) (Engineering) �13 (l) (Engineering) �23 (l)

1 �45 �1304 �3789 2013 15018 �1763 2597
2 0 �8708 4443 1422 482 �3711 �4157
3 45 �1564 �2686 1274 �10460 903 �8923
4 90 1195 �6012 1226 �21 �139 �3617

13 90 �1217 6120 �1185 17 �141 �3916
14 45 1584 2729 �1218 10635 998 �8862
15 0 8857 �4520 �1360 �489 �3553 �4283
16 �45 1353 3982 �2055 �15517 �1575 2074

Table 5
Critical failure stresses for EP 280 Prepreg.

Failure Stress (MPa) Method

F1t 1200 Experiments
F1c 610 Manufacturer
F2t 25 Experiments
F2c 125 Experiments
F3t 25 Experiments
F3c 125 Experiments
F4 20 Experiments
F5 60 Experiments
F6 60 Experiments
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H12 ¼ 1
2
ðH11H22Þ1=2
3.3.5. Hashin–Rotem’s failure criterion
The final lamina level failure criterion considered is Hashin–

Rotem’s failure criterion [4] given by Eqs. (15)–(17). This criterion
has three conditions to check, if any one of them exceed a value of
1, then failure is predicted. The results are shown in Table 8.

jr11j
F1

¼ 1 ð15Þ

r22

F2

� �2

þ r23

F4

� �2

þ r12

F6

� �2

¼ 1 ð16Þ

r33

F3

� �2

þ r23

F4

� �2

þ r13

F5

� �2

¼ 1 ð17Þ
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Fig. 6. Material behaviour (EP280 prepreg): (a) nonlinear shear stress/strain relation for E
transverse tension.
The results presented in Tables 7 and 8 will be discussed in Sec-
tion 5 of this paper. In Section 5, the matrix failure predictions
made at the lamina level are compared to matrix failure predic-
tions made at a micromechanical level using Representative Vol-
ume Elements (RVEs). This method is discussed next in Section 4.

4. Method 2: failure at the micro level

Micromechanical analysis is an additional step that can be per-
formed after the lamina level stress/strain states are examined
[19,20,25]. Thus, the model of the laminate and the critical stress
and strain states obtained in Sections 2 and 3 are still used in the
micromechanical level analysis. In order to perform micromechan-
ical analysis, the fiber and matrix are modeled together in a unit
cell referred to as a Representative Volume Element (RVE). The
authors have used this method in previous investigations [12,13]
to obtain a failure criterion for the matrix (EP280) which will be
tested for its predictive capability in this section.

The fiber and the matrix are assumed to have isotropic proper-
ties given in Table 9 which have been obtained using an inverse
method of the rule of mixtures [4]. Where the lamina and matrix
properties are used to obtain the fiber properties. ‘E’ is the Young’s
Modulus, ‘G’ is the Shear Modulus, and ‘v’ is the Poisson’s ratio for
the material (EP280 Prepreg).

4.1. Finite element analysis

Micromechanical analysis is reliant on finite element analysis
(FEA) to extract the individual stress/strain states on the fiber
and the matrix. The strain state within the center of the specimen
(along path BB) shown in Fig. 4 is extracted for each Ply. These
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Fig. 7. Nonlinear stress/strain relationship for the lamina and the matrix (EP.280).

Table 6
Critical local stresses in the four outer plies of the global model for Test 1.

Ply
#

Fiber
Direction

r11

(MPa)
r22

(MPa)
r33

(MPa)
r12

(MPa)
r13

(MPa)
r23

(MPa)

1 �45 �170.82 �23.49 12.48 28.64 �4.31 2.75
3 45 �204.88 �16.65 7.90 �25.03 2.21 �9.36
4 90 156.55 �37.27 7.60 �0.05 �0.34 �3.83

13 90 �159.43 37.94 �7.35 0.04 �0.35 �4.15
14 45 207.50 16.92 �7.55 25.17 2.44 �9.30
16 �45 177.24 24.69 �12.74 �29.04 �3.87 2.20

Table 7
Summary of failure predictions using the Maximum Stress a
index. (Red: indicates failure, yellow: indicates close to failur

Table 8
Summary of failure predictions given by: Tsai–Hill’s
expressed as failure index. (Red: indicates failure).

Table 9
Properties for the fibre (calculated) and the matrix (from manufacturer).

Property Fibre Matrix

E 259 GPa 3.140 GPa
G 100 GPa 1.21 GPa
v 0.30 0.30
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strain values shown in Table 4 are then applied as displacement
boundary conditions onto a RVE with a square fiber configuration.
When performing RVE analysis periodic boundary conditions must
be maintained [19,20,26] which is difficult to enforce when both
normal and shear strains are applied to a single RVE. The authors
overcome this by modelling four unit cells for plies 3, 4, 13, and
14. This includes one RVE for the three normal strains and three
separate RVEs for each shear strain component (shown in Fig. 8).
In previous investigations performed by the authors, the matrix
(EP 280) had been predominantly tested under multiaxial tension
or compression and a linearly elastic material assumption was
found to be appropriate [12,13]. In this paper, the lamina level
shear strains shown in Table 4 are found to be nonlinear and also
one of the dominant stress cases. Thus it is important that the
FEA model correctly models this case.

The laminas nonlinearity is shown in Fig. 6a. it is important that
this lamina level nonlinearity is also reflected in its constituents. In
order to do this, three numerical micromechanical models are
compared: Rule of Mixtures [4], Halpin-Tsai’s equation [4] and
Chamis’s equation [27] (given by Eqs. (18)–(20) respectively).
The authors assume the fiber to behave in a linear isotropic
manner, whilst the matrix is treated as an isotropic material
which behaves linearly in the materials normal directions, but
nd Maximum Strain failure criteria, expressed as failure
e).

, Tsai–Wu’s, and Hashin–Rotem’s failure criteria,



Fig. 8. RVE (square fiber configuration) with boundary conditions applied.

Table 10
Elastic shear modulus prediction given by three different micromechanical models.

Gm (GPa) Percentage difference from experiment value

Experiment 1.21 NA
Rule of mixtures 2.27 88%
Halpin-Tsai 1.21 0%
Chamis 1.32 9%

Table 11
Principal stresses on the matrix for a square fiber configuration RVE (Test 1).

Ply # Fiber Direction (Degrees) r1 (MPa) r2 (MPa) r3 (MPa)

1 +45 17.21 �125.52 �29.65
2 0 50.88 �15.91 �5.33
3 �45 20.01 �104.30 �23.17
4 90 �31.47 �110.03 �38.67
13 90 112.14 31.88 39.36
14 �45 116.12 �32.05 25.24
15 0 16.25 �51.69 5.62
16 +45 128.33 �14.18 31.21

Fig. 10. Failure observed in specimens after post-failure inspection.
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nonlinearly in its shear directions. A plot of the matrix nonlinear
relationship using Eqs. (18)–(20) is shown in Fig. 7.

1
G12

¼ v f

Gf
þ ð1� v f Þ

Gm
ð18Þ

G12 ¼ Gmð1þ ngv f Þ
gv f

where g ¼
Gf

Gm
� 1

� �
Gf

Gm
þ n

� � ð19Þ

G12 ¼ Gm

1� ffiffiffiffiffiv f
p ð1� Gm

Gf
Þ ð20Þ

where:
n: calibration factor,
G12: shear modulus of the lamina,
Gm: shear modulus of the matrix
Gf : shear modulus of the fiber,
v f : fiber volume fraction.

From the three micromechanical models compared, Table 10
shows the prediction of the laminas initial elastic shear modulus.
It can be seen that the Rule of mixtures over predicts the shear
modulus, whilst the Halpin-Tsai and Chamis models were able to
predict the shear modulus to within 10% accuracy. For the
Halpin-Tsai model, this accuracy is expected as the model has a
Fig. 9. Example of the critical location select
calibration factor to improve its prediction, on the other hand the
Chamis model has no calibration factors and is able to maintain a
good elastic shear modulus prediction (difference of 9%). For this
ed for a square RVE (Specimen 1, Ply 3).



Table 12
Principal stresses on Ply 3 and Ply 13 for the matrix. (Average of four fiber
configurations.)

Test # Ply # r1 (MPa) r2 (MPa) r3 (MPa)

1 3 33.53 �91.01 �18.04
2 3 37.78 �91.88 �17.48
3 3 36.45 �91.88 �17.92
4 3 36.99 �88.15 �16.46
5 3 37.25 �103.77 �21.44
6 3 37.02 �107.33 �22.68
7 3 37.07 �89.44 �16.84
8 3 37.31 �91.76 �17.50

Average 3 36.68 �94.40 �18.55
1 13 86.28 12.56 25.81
2 13 81.27 11.77 24.32
3 13 83.77 12.20 25.07
4 13 76.68 11.16 22.95
5 13 100.35 14.58 30.01
6 13 106.16 15.62 31.81
7 13 78.68 11.39 23.49
8 13 81.81 11.86 24.45

Average 13 86.88 12.64 25.99

Table 13
Comparison of processed experiment results
for Ply 3 with the Drucker–Prager failure
criterion. (Red: indicates failure, yellow:
indicates close to failure).
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reason, the Chamis micromechanical model is selected as the basis
of modeling the shear nonlinearity of the matrix (EP280). A user
material subroutine (UMAT) was written for ABAQUS 6.13 to
implement anisotropic nonlinear material behavior.

After displacement boundary conditions are applied using the
critical strains obtained in each ply of the specimen on the RVEs
(shown in Fig. 8), the UMAT is run. Each RVE is then probed at their
critical location shown in Fig. 9 and superimposed according to
Eq. (21).
Table 14
Comparison of processed experimental results of Ply
failure, yellow: indicates close to failure).
Ss11
Ss22
Ss33
Ss12
Ss23
Ss13

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

SRVE111

SRVE122

SRVE133

SRVE112

SRVE123

SRVE113

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

þ

SRVE211

SRVE222

SRVE233

SRVE212

SRVE223

SRVE213

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

þ

SRVE311

SRVE322

SRVE333

SRVE312

SRVE323

SRVE313

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

þ

SRVE411

SRVE422

SRVE433

SRVE412

SRVE423

SRVE413

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð21Þ

Once the stresses are obtained from Eq. (21), they are converted
to principal stresses. Due to the random packing of fibers within a
lamina, four fiber configurations are analyzed for each failure
point. They include the square, diamond, horizontal hexagonal
and vertical hexagonal fiber configurations shown in Fig. 9. 1024
simulations would need to be run in total for the 8 specimens
tested, where each of the four outer plies (plies 1–4, 13–16) were
analyzed using RVEs which included normal and shear loads and
four different fiber configurations. To reduce this number by a fifth,
only one fiber configuration (square) was initially analyzed for all
the plies in Test 1. Then based on observed failure locations in
our experiments; plies 3 and 13 were analyzed in more detail for
the remainder specimen tests.

4.2. Results

The processed results for the square fiber configuration RVE
using ‘Test 1’ experimental results are recorded in Table 11. Where
r1, r2, and r3 are the three principal stresses.

Post inspection of the specimens revealed that plies 1, 3, 13, and
16 have failed. Ply 3 failure was picked up by the FLIR thermal
camera. However it should be noted that the FLIR thermal camera
is only able to pick up failure on the specimen facing the camera
and does not necessarily indicate whether other plies have also
failed. Failure of plies 1 and 16 was visible from post inspection
of all the specimens although they were not observed to fail
throughout the load regime indicating that failure had occurred
before Ply 3 but undetected. Ply 1 failure demonstrated signs of
fiber kinking, which is a known characteristic resulting from
matrix shear [24]. To inspect matrix failure on the inner plies a dia-
mond wheel was used to grind each Ply off one at a time. On Spec-
imens 1, 5, and 6 cracks were visible on Ply 13 indicating matrix
failure, whilst on the other specimens, no clear matrix cracks were
observed. This may be indicative that the other specimens may
have been on the verge of failure. Pictures of the specimens during
post-failure inspection are shown in Fig. 10.

For these reason the authors have decided to focus the remain-
der of this investigation on Ply 13 and Ply 3. Table 12 summarises
the stress state at failure for the matrix for all eight of the experi-
ments. The principal stresses shown are the average of four fiber
configurations tested: square, diamond, horizontal hexagonal,
and vertical hexagonal configurations discussed earlier.
13 with the 1st Stress Invariant. (Red: indicates



Fig. 11. Plot of processed failure results on the previously obtained Drucker–Prager
and 1st Stress Invariant [9].
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4.3. Failure prediction at the micro level

In previous investigations performed by the authors [12,13,28],
the material being tested (EP280) was designed so that failure
points for the matrix could be obtained from which a failure crite-
rion for the matrix was recommended. In this investigation the
authors wish to verify the accuracy of the failure criterion by per-
forming tests on a typical laminate stacking found in composite
structures. The authors had found that the Drucker–Prager failure
criterion best predicts compressive and shear modes of failure for
the matrix material (EP 280) used in this study [13]. The obtained
failure criterion for EP 280 is presented as a failure index in Eq.
(22). The authors had also found from biaxial tensile tests per-
formed on a FRPC specimen, that all the tensile failure results fell
on the 1st Stress Invariant given by Eq. (24) [19,29,30]. The failure
index values obtained using Eqs. (22) and (24) are shown in Tables
13 and 14. Matrix failure is predicted when Eqs. (22) and (24) are
greater than 1. The 1st Stress Invariant was found by performing
biaxial tensile tests on three different types of specimens; (1) fiber
reinforced specimens where J1 was found to be equal to 167.5 MPa.
(2) Uniaxial off-axis tensile tests on fiber reinforced specimens
(J1 = 120.4 MPa). (3) Biaxial tensile tests on a neat resin specimen
made of the same matrix material where J1 was found to be equal
to 153.2 MPa. ffiffiffiffi

J2
p

62:25� 0:061ðr1 þ r2 þ r3Þ ¼ 1 ð22Þ

where:

J2 ¼ 1
6

ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2
h i

ð23Þ

r1, r2, and r3 are the principal stresses in the fiber, transverse and
out-of-plane directions respectively.

J1 is the 1st Stress Invariant.

r1 þ r2 þ r3

J1
¼ 1 ð24Þ

The failure results from the four point bend tests are plotted on
the previously obtained Drucker–Prager failure surface and the 1st
Stress Invariant. This is shown in Fig. 11.

5. Overall discussion

The results for matrix failure prediction at the lamina level are
compared against the matrix failure prediction obtained by the
authors at a micro level. Table 15, summarises the results for spec-
imen 1 discussed in those sections. For completeness of data the
readers may refer to the original tables in Sections 2 and 3 of this
paper.

The values in Table 15 are presented in failure index form (FI)
where a value of 1 or more indicates failure to have taken place,
these values are also highlighted in red. As discussed in Section 3
and shown in Fig. 10, post inspection of the specimens revealed
plies 1 and 16 (the two outer plies) to have failed sometime early
on in the loading regime. From Table 15 it can be seen that the
maximum strain failure theory predicts failure about to take place
(FI = 0.97) whilst all the other lamina level failure criteria suggest
that no failure has taken place, thus over predicting failure. The
hybrid criterion used by the authors in the micromechanical anal-
ysis was the only failure criterion that correctly predicted failure to
have taken place early on in the loading regime (FI = 1.03). Looking
at the FI values for Ply 16; we can generally say that all the lamina
level failure criteria predicted failure to have taken place. However
the spread in their predictions is quite large with Tsai–Wu predict-
ing failure (FI = 1.03) taking place slightly earlier than when the
experiments were stopped, whilst Tsai–Hill failure criterion pre-
dicted failure to take place (FI = 2.01) at almost half way into the
loading regime. Micromechanical analysis using the proposed fail-
ure criterion did also predict failure with an FI value of 1.36 which
generally falls in the mean of the spread given using the lamina
level failure criteria. Validation of which criterion is most accurate
cannot be made as the time at failure for Ply 16 was not observed
but overall it can be said that all failure criteria did correctly
predict failure to have occurred. Ply 3 is the most important to



Table 15
Summary of matrix failure predictions at the lamina and micro level (using Specimen 1 results). (Red: indicates failure,
yellow: indicates close to failure).
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consider from the experiments, as the time at failure was observed
using the FLIR thermal camera and post-inspection had also
revealed matrix failure in this Ply. Using Table 15, all the lamina
level failure criteria did not predict failure with the closest being
predicted by Maximum Strain failure criterion which suggested
that the specimen was 69% of the way to failure (FI = 0.69). On
the other hand, the micromechanical hybrid failure criterion pro-
posed by the authors gave the best prediction of FI = 0.94. Thus
with a 6% error it can be said that this model was able to capture
matrix failure in Ply 3. The final Ply that was inspected for damage
was Ply 13. Ply 13 is of particular interest to the authors due to two
Matrix failure occurs if :

r1 þ r2 þ r3 P Xt ; where r1;r2;&r3 P 0

else :ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6 ½ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2�

q
P A� Bðr1 þ r2 þ r3Þ

8>>>><
>>>>:

ð25Þ
reasons. The first is due to that fact that in ‘Method 1’ all the failure
criteria discussed predicted that Ply 13 had failed. This can be also
seen in Table 15. The second reason is that Ply 13 is found to expe-
rience a triaxial tensile stress state (although close to being in
shear) (Table 11). This particular mode of failure has been exam-
ined in detail by the authors in previous studies [12], where it
was found that matrix failure was best predicted using the 1st
Stress Invariant failure criterion. From Table 14 and Fig. 11 it can
be seen that the failure observed in Ply 13 (under triaxial tension)
does cluster around the proposed failure surface. With the best
prediction given when the 1st stress invariant (J1) is equal to
120.4, giving a difference of 4% (average) between the processed
experimental results and the proposed failure model.

The lamina level failure criteria all correctly predicted Ply 13
failure for specimen 1, however their failure index values range
from 1.53 to 2.96 given by Maximum Stress and Tsai–Hill failure
criteria respectively. This implies that all the lamina level failure
criteria predict failure to have occurred earlier than the time at
which these results have been analyzed, where a value of
F1 = 2.96 suggests failure to have occurred very early in the loading
regime. Although no specific time at failure was observed for Ply 13
we assume that it occurs around the time at which the loading
regime was stopped, as specimens 1, 5, and 6 shown in Table 12
were found to have failed whilst all the other specimens tested
had not. Thus the micromechanical analysis using the 1st Stress
Invariant still gave the best failure prediction with an FI value of
1.04.

The results presented here demonstrate the success in using
micromechanical analysis to predict matrix failure in composite
structures. Eq. (25) is now proposed which builds on the concept
proposed by Gosse and Christensen [20] when they presented
Strain Invariant Failure Theory (SIFT). In this paper the authors
suggest a hybrid formulation which uses Drucker–Prager failure
criterion to predict compressive and shear dominant failure in
composite structures due to the matrix. Whilst using the 1st Stress
Invariant is found to predict triaxial tensile failure the best.
where:
r1, r2, and r3 are the principal stresses.
Xt is the uniaxial tensile strength of the matrix material.
‘A’, and ‘B’ are curve fitting parameters obtained for the
Drucker–Prager failure criterion using matrix data.

6. Conclusions

Matrix failure was observed in the composite specimen tested. It
was found that matrix failure was best observed through the use of
a FLIR thermal imaging camera. Other detection methods such as
the load–displacement curve and visual inspection throughout
the tests were not as conclusive. The limitation of failure detection
using the FLIR thermal camera is that failure on the exposed faces of
the specimen can only be detected. Matrix failure in Ply 3 was
picked up clearly by the thermal camera and its time at failure
was used as the basis for analyzing all the experiments. Post inspec-
tion of the specimens revealed Ply 13 to be on the verge of failure as
3 out the 8 specimens tested had shown signs of matrix failure
when the outer layers were removed using a diamond wheel.

Failure predictions at the lamina and micro level were per-
formed which revealed micromechanical analysis to do a much
better job in capturing matrix failure. At the lamina level, none
of the five failure criteria investigated were able to predict Ply 3
failure. Whilst all of them over predicted Ply 13 failure by at least
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52% with the worst over predicting by nearly 200%. Ply 3 and Ply 13
failure were best captured at the micromechanical level to within
6% and 4% respectively for Specimen 1. The authors suggest the use
of a hybrid failure criterion comprised of the Drucker–Prager fail-
ure criterion to predict matrix compressive and shear failure,
whilst the 1st Stress Invariant is suggested for use in matrix tensile
failure cases.
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