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The failure envelope of the matrix in composite laminates under tensile loads has not received much
attention in literature. There are very little to no experimental results to show a suitable failure envelope
for this constituent found in composites. With increasing popularity in the use of micromechanical anal-
ysis to predict progressive damage in composite structures, it is important that matrix behaviour under
tension is modelled correctly. In this paper, the authors present and test a new biaxial specimen design to
investigate tensile matrix failure in composite structures. Through the use of micromechanical analysis,
the authors developed a method in which the matrix stresses at failure can be extracted. Comparing to
the existing off-axis test, it was shown that the presented specimen design and test methodology can
improve the accuracy of the obtained matrix failure stresses, i.e., the matrix failure envelope for EP280
resin. Additionally, the results indicate that matrix failure takes place earlier than that predicted by
von-Mises failure criterion and that the 1st Stress Invariant criterion can better predict matrix failure
under tensile loading.

Crown Copyright � 2015 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Fibre reinforced polymer materials are increasingly being used
due to their high strength to weight ratio and high fatigue resis-
tance. Despite this, there are still many unanswered questions as
to the materials’ failure characteristics as composites can be char-
acterised by fibre, matrix and interfacial failure [1].

It is computationally prohibitive to model a composite structure
with each strand of fibre despite being able to extract the stress
and strain states of the fibre, matrix and interface separately.
One method that has greatly assisted in simplifying this analysis
is Classical Laminate Theory (CLT) [2]. This theory combines the
properties of the fibre and the matrix through an averaging
approach to form a new homogenous material called a lamina.
CLT is widely used by researchers in the field and given its simplic-
ity it does a good job at modelling the stiffness of a laminate
including linear load behaviour up to the point of failure. One
improvement that can be made to this theory would be the ability
to separately examine the fibre and the matrix. This can be done
using micromechanical analysis.

Micromechanical analysis can be used to separate the stress and
strain in the matrix and fibre from a representative volume
element (RVE). These can then be used to predict matrix or fibre
failure in a structural analysis. One popular analysis method that
uses micromechanical analysis is Multicontinuum Theory (MCT)
[3,4]. MCT predicts failure at the fibre andmatrix level by obtaining
the volume averaged stress states in the fibre and the matrix. Here,
matrix failure is assumed to be influenced by all six of the matrix
average stress components in a 3D analysis, whilst a quadratic
function is used to find the average stress of the fibre [3]. This par-
ticular theory greatly assists with understanding matrix failure and
fibre failure in a composite, especially when it comes to progres-
sive damage models [5–7]. However, the assumption of averaging
the overall stresses in the individual constituents can be improved
on. An analysis method that does this is the amplification tech-
nique [8–10]. Unlike MCT, where the stresses in each constituent
are averaged, the amplification technique calculates the principal
stresses and strains at several locations to identify a critical loca-
tion. Using this separation technique allows the fibre and matrix
failure to be examined in detail.

Fibre failure has been quite extensively researched in the field
of composites, whilst at a micromechanical level, matrix failure
has not received the same amount of attention. Matrix failure is
typically known to take place well before the fibre in matrix dom-
inated load cases and can be characterised by three main modes:
tension, compression and shear failure. Some authors have pro-
posed these modes of failure to be characterised by dilatational
failure and distortional failure [8,9,11]. In this paper the authors
focus on tensile matrix failure in composites.
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Matrix failure under tension loading has received some atten-
tion in literature where some have performed a range of off-axis
tests on uniaxial composites [12]. However improvements to this
method can be made. For example testing a 45� off axis specimen
can only give the user one data point for failure, in order to obtain
several more failure points, the fibre angle should be varied. How-
ever, as more angles are tested, the difference between them is
minimal and subject to manufacturing errors. For example: two
specimens; one with 45� fibre orientation and the other with 47�
fibre orientation. Along with this others have stated how the off-
axis tensile tests suffer from premature failure due to the way
the specimens are constrained when being loaded [13–15]. This
raises the question of whether the measured data from off-axis
tests are accurate. One method in which these tests can be
improved is through performing biaxial tension–tension tests. This
would mean that for a given fibre orientation, the load ratios can be
varied to obtain more than one data point for failure. Biaxial test
results and specimen designs have been presented in literature
[16–18]. The findings from these can be used to create a new test
specifically examining matrix failure.

In the past, experimental data for isotropic materials has been
used to propose various failure criteria. Some of which include
maximum stress theory, von-Mises, Drucker–Prager, and Mohr–
Coulomb. The availability of data has allowed certain models to
be refined. For example, maximum stress theory, Drucker–Prager,
and Mohr–Coulomb all suggest a truncation in the tensile quadrant
of a principal stress based failure envelope [8,9]. However the lack
of experimental data to explain the onset of failure (matrix failure)
in composites under tensile stress states has hindered research in
composites. Through the use of micromechanical analysis and by
designing and testing a biaxial fibre reinforced specimen, this void
of information can start to be populated.

In this paper the authors aim to design and test a fibre rein-
forced biaxial specimen by overcoming some of the difficulties pre-
sented in literature with performing such tests [19]. The authors
use a modified version of a specimen design previously presented
to test isotropic materials under biaxial loads [20,21]. Uniaxial off-
Fig. 1. Specimen design (top view) with lamina orien
axis tests are also performed using the same material to highlight
the significance of performing biaxial tests. The study is concluded
by comparing against a third set of experiments performed on a
biaxial specimen made of the matrix material called EP280 [22].

2. Matrix failure in CFRP under biaxial tensile loading

The main objective of this paper is to establish the tensile fail-
ure envelope for the matrix. In order to do this the authors have
modified an existing biaxial specimen design created for testing
isotropic materials [20,21,23]. The specimen design was found to
achieve a 98% higher stress state at the centre gauge region com-
pared to anywhere else in the specimen allowing for a successful
biaxial test [23]. The biaxial tests were performed on a machine
designed by the authors which uses two computer controlled actu-
ators placed on a set of linear bearings which allows the specimen
to deform in a uniform manner which is important in such tests
[21].

2.1. Experiment methodology

The material being tests is called EP 280 Prepreg which has a ply
thickness of 0.25 mm. The authors use two plies within the centre
gauge region and a further 10 plies to form the surrounding geom-
etry. It is important to have ply drop-offs at each layer in order to
avoid introducing significant out of plane peal stresses. The final
specimen design is shown in Fig. 1. The diameter of the holes in
each ply can be chosen so that a smooth conical transition can
be achieved. If a different thickness material is used or different
centre gauge thickness is requires, then through the use of Eqs.
(1) and (2); the required punch diameters can be calculated. The
authors used existing imperial and metric sized punches to pro-
duce these holes, thus the uneven reduction in hole diameters. This
uneven transition does not affect the overall specimen geometry as
the external surfaces are pressed against two aluminiummoulds to
ensure that the geometry is maintained to the same dimensions as
that used by the authors previously [20,21,23].
tation and ply drop offs (0.25 mm ply thickness).
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Focus on preparing each layer of the laminate is required when
manufacturing the biaxial specimen. Fig. 1 shows the layering of
several plies of prepreg carbon, where layers 6 and 7 make up
the gauge region. As matrix failure is being examined in this paper,
the centre two gauge regions have fibres aligned in the same direc-
tion to promote this mode of failure (for example, 2 layers of +30�
fibres placed in the centre gauge region). Fig. 2a shows the general
manufacturing process. Eqs. (1) and (2) summarises the relation-
ship found by the authors in a previous investigation where a para-
metric study was performed examining the optimum thickness of
the gauge region such that failure does not occur at the clamps.
Along with choosing an appropriate transition radius so that pre-
mature failure at this location does not take place [23]. The equa-
tions were proposed as a guide to researchers aiming to come up
with their own flat pate biaxial specimen design.

Gage thickness
Thickness at clamps

6 0:1 ð1Þ

Transition Radius
Gage Diameter

P 1 ð2Þ

The authors suggest the use of alternating ±45� fibres for all lay-
ers outside the gauge region. The specimens were cured in an auto-
clave for 60 min at 120 �C with a ramp up rate of 2 �C/min at
100 kPa [22]. Fig. 2b shows the final specimen used for testing.

2.2. Experimental results

Biaxial tensile tests have not been published in great detail in
literature due to the difficulties associated in performing such tests
[19]. The specimen design to some extent is simpler to test com-
pared with an isotropic material as the fibre directions can be cho-
sen to promote matrix failure.

One thing to note is that this specimen will continue to carry
load after the gauge region has failed as the surrounding reinforc-
ing layers remain intact. This can create issues when detecting fail-
ure as preliminary tests demonstrated that the critical point at
which the matrix fails cannot be detected easily on the load–dis-
placement curve. This issue is overcome using a FLIRE thermal
imaging camera (Fig. 3). The matrix failure causes a momentary
spike in temperature which is picked up by the camera. The cam-
eras acquisition rate was set to 6 frames per seconds which was
found to be adequate for capturing the initial failure. This is due
to the fact that although failure occurs very suddenly, the temper-
ature spike picked up by the thermal camera takes a few seconds to
fully dissipate. The load at failure was then recorded for each of the
tests.
(a)
Fig. 2. (a) Layers 1–6 out of 12 layers of Prepreg carbon with varying hole diame
Six different fibre orientations are tested: 45�, 40�, 30�, 20�, 10�,
and 0�. Several tests for each fibre direction are performed with dif-
ferent loading ratios. Forces in the x and y direction are listed in
Table 1 for the different tests performed.

2.3. Finite element analysis

Current experimental techniques are not able to distinguish
stress or strain states on the matrix and fibre independently, and
usually stop at the laminate (global) level. Obtaining stress and
strain data for the matrix requires post processing of the experi-
mental results. This is done through finite element analysis for this
study. The technique separates the global stresses in the laminate
to find individual stresses on the fibre and the matrix.

An ideal method in which the failure stresses on the matrix can
be obtained is to create a large analysis with each individual strand
of fibre modelled, surrounded by the matrix for the entire test
specimen. However using to days computing power; this is almost
impossible to perform in a reasonable amount of time. The next
best alternative is to extract the stress and strain state at a critical
location in the global (macro) model, then impose these as bound-
ary conditions to a unit cell. The unit cell is a representative vol-
ume element (RVE) of the fibre and the matrix that can be found
at the micro scale. This method has started to gain popularity
and is considered to be an acceptable means of establishing the
micromechanical stress state in the fibre and the matrix [8–
10,24]. In order to account for the random arrangement of fibres
within a lamina; the process performed on a square unit cell is
repeated for a diamond, and hexagonal fibre configuration. The
procedure is summarised in Fig. 4.

The first stage in this approach is to obtain the stress and strain
state in a global macromechanical model. Strain gauges in several
experiments were used to check that the FE model gave a good pre-
diction of this. However, a strain gauge cannot solely be used for
this stage as we are after both in-plane and out of plane stress
states. Thus FEA aids in this process.

The properties of the lamina were experimentally determined
using ASTM D3039 [25] and ASTM D5379 [26]. The material prop-
erties for EP280 Prepreg are listed in Table 2. The rule of mixtures
is used to calculate the individual properties of the fibre and matrix
[27]. For simplicity both the fibre and matrix are considered to be
isotropic in nature. The material was supplied with a 50% fibre vol-
ume fraction. Micromechanical analysis using RVEs was used to
check the properties in Table 3 against those listed in Table 2. It
is found that the results closely match with a difference of less than
10%, thus Table 3 properties were adopted as the isotropic proper-
ties of the fibre and the matrix.
(b)
ters to form a composite specimen. (b) Final cured and machined specimen.
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Fig. 3. Thermal camera showing point of failure for a: (a) 45� specimen, (b) 40� specimen, (c) 30� specimen, (d) 20� specimen, (e) 10� specimen, (f) 0� specimen.

Table 1
Experimental forces at failure for biaxial FR tests.

TEST Fibre
angle (�)

Failure force in the X
direction (N)

Failure force in the Y
direction (N)

Load
ratio

TEST Fibre
angle (�)

Failure force in the X
direction (N)

Failure force in the Y
direction (N)

Load
ratio

1 45 5932 10,218 0.6 14 20 10,087 10,223 1.0
2 45 7882 8716 0.9 15 20 2626 5270 0.5
3 45 3087 10,844 0.3 16 20 2906 5937 0.5
4 45 7041 6694 1.1 17 20 5840 7906 0.7
5 45 7017 8999 0.8 18 10 5714 5498 1.0
6 45 6454 6088 1.1 19 10 7656 6724 1.1
7 40 5726 7118 0.8 20 10 9584 8526 1.1
8 40 8410 7285 1.2 21 10 11,511 9602 1.2
9 30 671 5149 0.1 22 0 6021 7209 0.8

10 30 6985 7451 0.9 23 0 1914 5255 0.4
11 20 7753 9072 0.9 24 0 9318 8390 1.1
12 20 10,589 10,980 1.0 25 0 2710 6755 0.4
13 20 3004 6830 0.4 26 0 1160 4680 0.2
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The finite element analysis package: FEMAP v10.0.2 was used to
model the specimen [28]. Each ply is modelled as a separate sec-
tion using 3D solid hexahedral elements. One element is used
through the thickness of each ply. The coincident nodes between
layers are tied together assuming a perfectly bonded surface. Each
ply is assigned a separate material property depending on its fibre
orientation. Using the properties listed in Table 2, the stiffness
matrix for the material is determined and rotated about the z-
axis using the bond transformation matrix [29]. This ensures that
the global properties are oriented in the local axis for the analysis.
The 1, 2 and 3 directions represent the fibre, transverse and out of
plane directions respectively. Six out of the twelve layers are mod-
elled to be computationally efficient and a symmetry constraint is
applied to the bottom surface of layer six shown in Fig. 1.

End effects from the clamps and boundary conditions applied to
the specimen are important to consider in both experimental setup



Fig. 4. Methodology used to post process experimental results.

Table 2
Material properties for EP 280 Prepreg.

Property

E11 131 GPa
E22 6.20 GPa
E33 6.20 GPa
v12 0.28
v23 0.40
v13 0.28
G12 4.73 GPa
G23 1.44 GPa
G13 4.73 GPa

Table 3
Calculated properties for the fibre and matrix.

Property Fibre Matrix

E 259 GPa 3.140 GPa
V 0.30 0.30

Fig. 5. Meshed specimen with identification of gauge region, tab locations and
boundary conditions.
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and in the FE model [14,30]. The specimen design in this case is
somewhat advantageous as the gauge region is quite far from
any constraints thus assisting in the way in which the loads are
applied in the FE model [31]. The authors apply loads as surface
traction forces on tabbed surfaces which are perfectly bonded to
the surface of the specimen (Fig. 5). This is to closely model the
way in which loads are transferred from the clamps on the test
machine to the specimen. Note that the contact surfaces of the
clamps have a coarse grit paper applied to distribute the load to
the surface of the specimen as opposed to directly on the bolt
holes. From a previous study performed by the authors it is found
that the gauge region of the specimen experiences a homogeneous
stress distribution [20,21]. For this reason the strain state on the
centre node (the origin of the Cartesian axis shown in Fig. 5) is
obtained for each analysis.

Fig. 6 shows the stress contour plot for layers 1–6 of the biaxial
specimen. Note that the first FEA result was compared against
experimental results using a delta strain gauge rosette. A difference
of less than 10% was achieved, thus the values in Table 2 were used
to analyse the specimen. As can be seen in Fig. 6, despite the lam-
ina being highly orthotropic in nature, through the use of ±45� sur-
rounding layers; the centre two plies (layer 6 and 7) experience a
peak stress concentration in the gauge region. This is desired in
order to satisfy the conditions of a successful biaxial test [19–21].

All the experiments were tested for buckling and geometric
nonlinear tendencies in FEMAP. None of the specimens were found
to have suffered from buckling which can potentially take place
within the gauge region at very high load ratios when the Poisson’s
effect overcomes the slight tension in the other axis resulting in a
net compressive stress state. The geometric nonlinear analysis
showed the strain results to vary by less than 1% and thus geomet-
ric linear analysis was considered to be sufficient for modelling
purposes. Once analysis of the global model was completed, the
strains in the centre gauge region were used as inputs for the
micromechanical stage of the analysis.

An important consideration when performing RVE analysis is to
ensure that periodic boundary conditions are maintained such that
if several of the same unit cells are to be stacked next to each
other; there should be no gaps between them [8,9]. Maintaining
periodic boundary conditions while applying normal and shear
strains to a single RVE is difficult to do. To overcome this, the
authors modelled two unit cells; one for normal strains and the
other for shear strains. The results are then superimposed accord-
ing to Eq. (3).
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Fig. 6. Stress contour plot for layers 1–6 for test 1 using a 45� specimen (Table 1).
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where:
Superscript ‘RVE1’ represent the stresses obtained from repre-
sentative volume element 1 involving the normal loads
(Fig. 7a).
Superscript ‘RVE2’ represent the stresses obtained from repre-
sentative volume element 2 involving the in-plane shear loads
(Fig. 7b).
Superscript ‘S’ represent the stresses obtained from RVE1 and
RVE2 after superimposing the results.

In the RVEs all the sides must remain flat and parallel to their
opposing face. In the first RVE (Fig. 7a), three of the six faces are
constrained using symmetry constrains that allow the face to
expand or contract within its plane but restricts movements per-
pendicular to its face. The other three faces have strains applied
on them using the values obtained from the macromechanical FE
model. These include the strains along the fibre, perpendicular to
Fig. 7. Boundary conditions applied to a square fibre configuration RVE. (a) Example of
the fibre and in the out of plane directions. In the second RVE
(Fig. 7b), the out of plane faces are fixed in the ‘3’ direction whilst
displacements are applied parallel to the 1, and 2 directions simu-
lating a shearing load.

The location of the maximum principal stresses differs depend-
ing on the type of fibre configuration used (square, diamond, ver-
tical hexagonal, or horizontal hexagonal); this is shown in Fig. 8.
When the stresses are obtained from the model they must all be
probed from the one location which is termed the critical location.
Thus state variables (STATEV) in ABAQUS 6.13 were used to obtain
a contour plot (Fig. 9) of the 1st Stress Invariant [32]. This allowed
the critical location to be identified and the values of r11, r22 and
r33 to be probed in the regions shown in red. Reasons why the 1st
Stress Invariant was chosen will be discussed in Section 5.

The next process is to calculate the principal stresses at failure
for the matrix. From the finite element model it is found that the
two out of plane shear stress values were very low and thus
normal strains applied to the RVE, (b) example of shear strains applied to the RVE.



Fig. 8. Normal stress plot demonstrating different critical stress locations on the matrix (horizontal hexagonal RVE).

Fig. 9. Plot of the 1st Stress Invariant on the matrix for a: (a) square configuration, (b) diamond configuration, (c) vertical hexagonal configuration, (d) horizontal hexagonal
configuration.
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ignored in the superimposing method. The remainder stresses
were used to calculate the principal stresses according to Mohr’s
Circle in three dimensions.

The final stage of the analysis is the consideration of hygrother-
mal stresses. The importance of incorporating thermal residual
stress analysis is debated in literature when it comes to composites
[33]. Some existing failure criterions such as Onset Theory have
thermal residual stress parameters within their model. These stres-
ses are recommended to be added on to the mechanical strains
after performing micromechanical analysis [8]. Whilst others have
argued that the residual stresses tend to relax over time [34,35].
For this investigation the thermal residual stresses are considered
to be offset by the absorption of moisture by the material between
the time of cure and testing. This was investigated by the authors
in a previous study [36]. Regardless of any assumptions made
about hygrothermal stresses, the trends presented in this paper
are believed not to change.

2.4. Processed results

The final processed results listing the principal stresses at fail-
ure for the matrix obtained under biaxial testing are shown in
Table 4.

3. Matrix failure in CFRP under uniaxial Off-axis tension

Uniaxial off-axis tension tests have been performed by several
authors in the past [12,14,15]. A similar test methodology was
adopted to explore the failure envelope for the material used in
this investigation (EP280 Prepreg). Steep fibre angles are avoided
in this study as they have been reported to exhibit a distortional
mode of failure [12] which is not of interest in this paper. As the
specimens are made up of the same material used in the biaxial
test, it is expected a similar observation will be seen. Any
differences in results will highlight the advantage of performing
actual biaxial tests as opposed to off-axis tests to observe matrix
failure.
3.1. Experiment methodology

ASTM D3039 is used for the specimen design [25]. Fig. 10 shows
the overall specimen dimensions. The use of oblique tabs has been
proposed by several authors to minimising the shear stress that is
introduced in such tests due to the fibre layout [14,15,19]. The tabs
are also considered to minimise the stress concentration that takes
place at the ends of the specimen during clamping. However the
authors did not have success in their use as failure originated at
the tip of the oblique tab. Thus square tabbed specimens (which
is suggested in the ASTM D3039) were used. Fig. 11, shows the pic-
tures of several off-axis specimens after failure. The 20� and 10�
angles were not tested as these are known to fail due to shear
[12,37], whilst the 0� fibre angle is a characterised by fibre failure.
These two modes of failure are not of interest in this paper.

3.2. Processed results

The processing of the experimental results is the same as that
discussed for the biaxial specimens in Section 2.3 and Fig. 4. The
main difference is that the macro model of the specimen is mod-
elled according to Fig. 10. Micromechanical analysis is also per-
formed using the same four fibre configurations. The processed
results for the matrix are shown in Table 5.

4. Failure in a neat resin under biaxial tensile loading

The final specimen being discussed in this paper is the biaxial
neat resin specimen. The neat resin specimen uses the same resin
found in the carbon prepreg specimens. The purpose of using such
a material is to see if there is a relationship between the tests on a
specimen with and without the presence of fibres.

4.1. Experiment methodology

The specimen design presented by the authors in previous stud-
ies [20,21] was used to the perform biaxial tension–tension tests.



Table 4
Principal stresses obtained from experiments for biaxial FR tests and their standard deviation based on four fibre configurations (square, diamond, vertical hex and horizontal
hex).

Test No Fibre angle (�) r1 (MPa) r2 (MPa) r3 (MPa) Standard deviation r1 (MPa) Standard deviation r2 (MPa) Standard deviation r3 (MPa)

1 45 137.65 32.61 4.60 29.92 13.72 9.20
2 45 95.58 50.92 33.62 25.68 12.00 14.08
3 45 178.02 28.10 �55.32 35.45 11.87 10.98
4 45 76.54 44.67 27.80 21.36 9.84 11.64
5 45 105.26 37.03 31.22 25.55 9.88 14.17
6 45 70.08 40.51 25.35 19.43 9.09 10.68
7 40 89.96 29.43 24.34 21.64 8.42 11.47
8 40 86.80 49.77 31.23 23.97 11.12 13.14
9 30 101.25 35.61 30.37 25.46 9.91 14.55

10 30 112.09 41.38 35.04 28.89 11.92 16.46
11 20 138.47 43.92 31.65 35.05 16.05 16.74
12 20 162.05 54.18 43.34 41.58 17.72 22.07
13 20 118.44 31.91 10.68 28.92 15.23 10.28
14 20 149.68 50.57 41.22 38.49 16.17 20.91
15 20 89.79 25.78 9.90 22.03 13.39 8.00
16 20 104.41 44.69 10.80 22.04 19.26 9.07
17 20 124.87 37.53 23.61 30.84 15.42 13.27
18 10 79.57 29.42 25.48 21.98 9.31 13.16
19 10 96.02 36.51 31.16 26.68 11.63 15.92
20 10 121.95 46.16 39.50 33.86 14.69 20.19
21 10 137.82 54.91 46.36 36.37 14.76 20.14
22 0 107.53 55.18 40.24 26.71 16.07 12.25
23 0 76.43 30.93 27.04 22.58 10.47 13.27
24 0 115.96 50.59 40.71 34.55 16.11 20.62
25 0 98.08 39.94 34.69 28.93 13.43 17.06
26 0 68.60 27.53 24.21 20.28 9.34 11.91

Fig. 10. Unidirectional off-axis tension specimen.

(a)

(c)

(b)

(d)

(e)
Fig. 11. Failed off-axis tension specimen. Fibre angle: (a) 90�, (b) 60�, (c) 50�, (d) 45�, (e) 30�.
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4.2. Processed results

As the neat resin specimen is composed of one material which is
isotropic (EP280 resin); micromechanical analysis was not
required. Instead the specimen was modelled in FEMAP v10.0.2
where the forces at failure in the x and y directions were applied
to the specimen similar to that described in Section 2.3 and a pre-
vious investigation by the authors [21,38]. The principal stresses at
the centre node of the gauge region were extracted and recorded as
the stresses at failure. These stresses are shown in Table 6. From
FEA it was found that the out-of-plane stresses were one hun-
dredth in order of magnitude of the in-plane stress values. Thus
in Table 6, the value of r3 is assumed to be equal to zero for all
the tests.



Table 5
Critical principal stresses & forces at failure obtained in the matrix for uniaxial tension tests. (Stresses have been averaged based on the four fibre configurations examined; their
standard deviations are shown.)

Test
No

Fibre angle
(�)

Failure force
(N)

r1

(MPa)
r2

(MPa)
r3

(MPa)
Standard deviation r1

(MPa)
Standard deviation r2

(MPa)
Standard deviation r3

(MPa)

1 90 2380 89.94 37.34 35.55 31.15 13.02 12.29
2 90 2441 92.35 38.34 36.43 31.94 13.35 12.57
3 90 2113 82.03 34.04 32.49 25.92 10.86 10.31
4 90 2408 90.95 37.76 35.96 31.42 13.14 12.40
5 60 2558 107.62 28.29 �6.03 28.03 9.77 8.71
6 60 2513 105.78 27.83 �5.87 27.56 9.62 8.59
7 50 2427 112.70 20.49 �38.81 47.52 7.36 22.05
8 45 3615 118.53 26.09 �24.25 29.49 8.99 14.17
9 45 3689 126.21 26.53 �30.30 30.01 9.16 7.66

10 45 3349 114.61 24.09 �27.53 27.24 8.31 6.95
11 45 3157 108.12 22.75 �25.92 25.78 7.86 6.55
12 40 3622 111.53 22.64 �29.13 21.93 6.13 9.08
13 30 5977 121.99 20.16 �47.56 26.87 6.92 7.56
14 30 5518 112.74 18.67 �43.84 24.87 6.42 7.03

Table 6
Critical principal stresses & forces obtained at failure in the neat resin under biaxial
and uniaxial tension tests.

Test
No

Failure force in the
X direction (N)

Failure force in the
Y direction (N)

r1

(MPa)
r2

(MPa)
r3

(MPa)

1 6053 0 133.13 �43.55 0.00
2 4730 6245 103.32 59.07 0.00
3 6366 4852 105.08 60.90 0.00
4 5756 5110 89.82 70.96 0.00
5 5607 4516 90.82 58.98 0.00
6 6232 3019 115.33 21.57 0.00
7 0 5548 122.02 �39.94 0.00
8 2023 N/A (Uniaxial) 146.00 0.00 0.00
9 1636 N/A (Uniaxial) 155.00 0.00 0.00

10 1785 N/A (Uniaxial) 149.00 0.00 0.00

N.T. Chowdhury et al. / Composite Structures 135 (2016) 61–73 69
5. Discussion

The three different experiments are compared to observe simi-
larities in the stresses obtained upon matrix failure. Seven compar-
isons are made as discussed below.

(1) Compare the results for the fibre reinforced biaxial specimen
with von-Mises failure criterion.

(2) Compare the results for the fibre reinforced biaxial specimen
with the 1st Stress Invariant.

(3) Compare the results for the off-axis fibre reinforced uniaxial
specimen with von-Mises failure criterion.

(4) Compare the results for the off-axis fibre reinforced uniaxial
specimen with the 1st Stress Invariant.

(5) Compare the results for the neat resin biaxial specimen with
von-Mises failure criterion.

(6) Compare the results for the neat resin biaxial specimen with
the 1st Stress Invariant.

(7) Compare the 1st Stress Invariant for the three different
experiments.

Fig. 12 clarifies what the different failure criterions discussed in
this paper look like when drawn in 3D stress space. The results
from the comparisons are summarised in Table 7 below.

For discussion purposes examining comparison 1 and 2; Tests
11–17, 18–21 and 22–26 represent the 20�, 10� and 0� biaxial FRPC
tests respectively. This is shown in Table 7 as the average of the
results in order to overcome the scatter experienced in those par-
ticular fibre angles tested. The reader can refer to Table 4 for the
full set of data.

The general equations for von-Mises and the 1st Stress Invariant
is given by Eqs. (4) and (5).
rvm ¼ 0:5½ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2�
n o0:5

ð4Þ

J1 ¼ r1 þ r2 þ r3 ð5Þ
where:

r1, r2, and r3 are the three principal stresses (max, mid, and
min respectively).
rvm is the von-Mises stress.
J1 is the 1st Stress Invariant and failure is predicted when J1 is
equal to a critical value termed Xt.

RSS was calculated using Eq. (6). Here yi is the experiment value
and f(xi) is the predicted value.

RSS ¼
Xn

i¼1

ðyi � f ðxiÞÞ2 ð6Þ
5.1. Comparisons 1 and 2

Comparison 1 compares the matrix failure results with von-
Mises failure criterion (Eq. (4)). A least squares linear regression
using Eq. (6) was performed. The values of r1, r2, and r3 are known
from Table 4. This implies that rvm is the only unknown in the von-
Mises failure criterion given by Eq. (4). Thus various values of rvm

are estimated and the RSS value given by Eq. (6) was recorded. The
value of rvm which gave the lowest RSS was chosen as giving the
best fit to the matrix failure results. The obtained von-Mises failure
criterion using this approach is given by Eq. (7) and plotted as ‘re-
gression 1’ in Fig. 13.

In comparison 2, the matrix failure results are compared against
the 1st Stress Invariant which is proposed in Onset theory [8,9] to
predict dilatational (tensile) failure of the matrix. The relationship
for the 1st Stress Invariant (Eq. (5)) was obtained using the same
approach discussed for the von-Mises failure criterion. Here J1 is
the one unknown parameter and thus different values of J1 were
estimated and the value that gave the lowest RSS value was cho-
sen. This value was 167.5 MPa given by Eq. (8).

Due to the nature of the biaxial specimen design presented it is
difficult to obtain a pure uniaxial matrix failure point, especially
since the results are processed using micromechanical analysis
involving RVEs. For demonstration purposes as von-Mises is typi-
cally based on uniaxial test data in order to determine the value
of rvm, the authors use the value of 167.5 MPa obtained from Eq.
(8) to come up with the relationship given by Eq. (9) and plotted
on Fig. 13 as ‘regression 2’.

0:5½ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2�
n o0:5

¼ 78:5 ð7Þ



Fig. 12. 2D and 3D representations of failure criteria in the tensile quadrant/octant.

Table 7
Comparison of experimental results with von-Mises failure criterion and the 1st Stress Invariant.

Test No % Difference between experimental data and failure prediction found in comparison:

1 2 3 4 5 6

1 13.13 4.39 78.01 35.24 – –
2 110.32 7.53 74.29 38.80 21.66 6.00
3 33.30 �9.97 91.53 23.38 19.70 8.35
4 131.53 �11.03 75.42 36.76 27.19 4.95
5 99.21 3.59 1.80 7.88 32.36 �2.22
6 139.75 �18.84 0.68 6.10 18.11 �10.64
7 97.48 �14.19 21.85 �21.61 – –
8 130.93 0.18 17.80 �0.03 2.62 �4.70
9 85.42 �0.16 23.26 1.70 6.50 1.17
10 73.51 12.55 17.63 �7.67 3.65 �2.74
11 14.01 �12.83
12 17.14 �12.76
13 39.13 (avg. T11-T17) 14.92 (avg. T11-T17) 28.05 �21.44
14 23.82 �27.26
15
16
17

18–21 (avg.) 80.84 11.17
22–26 (avg.) 113.98 0.02

Residual sum of squared errors (RSS): 127,716 3,848 20,598 12,990 20,575 655
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r1 þ r2 þ r3 ¼ 167:5 ð8Þ

0:5½ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2�
n o0:5

¼ 167:5 ð9Þ

From Table 7 it is seen that the errors predicted by the 1st Stress
Invariant failure criterion are fairly low, with an average error of
8%. Whilst for the von-Mises failure criterion given by Eq. (7) the
difference between the model prediction and matrix failure results
are very high, with an average error of 88%. The poor fit is also
reflected in the residual sum of squared error (RSS) which is 33
times greater than that obtained when using the 1st Stress
Invariant.

5.2. Comparisons 3 and 4

Comparison 3 and 4 uses the processed data obtained for matrix
failure in the off-axis uniaxial specimens. The experimental results
are compared against von-Mises failure criterion and the 1st Stress
Invariant. The equations for the two von-Mises regressions (Eqs.
(10) and (12)) and the 1st Stress Invariant (Eq. (11)) were obtained
using the same process discussed in Section 5.1. If we interpret the
values obtained from the regression; in Eq. (10) a uniaxial intercept
point (or failure stress) of 104.0 MPa is found that fits the results
the best whilst for the 1st Stress Invariant a much higher uniaxial
tensile stress of 120.4 MPa is predicted for failure.

From Table 7 it can be seen that von-Mises failure criterion over
predicts matrix failure for all the experimental results, whilst the
1st Stress Invariant does a much better job in explaining the mate-
rials failure. In the case of ‘Regression 1’ (Eq. (10)) where von-Mises
is regressed on all the test data, it can be seen from Fig. 14 that the
failure criterion does a poor job in predicting material failure. This
is also confirmed by the RSS value which is about double that
obtained for the 1st Stress Invariant failure criterion.

0:5½ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2�
n o0:5

¼ 104:0 ð10Þ

r1 þ r2 þ r3 ¼ 120:4 ð11Þ

0:5½ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2�
n o0:5

¼ 120:4 ð12Þ

Note that the 1st Stress Invariant for this type of specimen is
found to over predict failure for the 90–60� off-axis specimens
(tests 1–6), whilst under predicting failure for the 50–30� speci-
mens (tests 7–14). The authors are not interested in presenting a
new failure criterion in this paper, but simply present the experi-
mental results with the intention of comparing it against two exist-



Fig. 13. 3D plot of biaxial FRPC results with the 1st Stress Invariant and von-Mises failure surfaces. ‘Regression1’: von-Mises based on uniaxial data, Eq. (7). ‘Regression 2’:
von-Mises based on biaxial data, Eq. (8).

Fig. 14. 3D plot of off-axis UD experimental results with the 1st Stress Invariant and von-Mises failure surfaces. ‘Regression1’: von-Mises based on uniaxial data, Eq. (10).
‘Regression 2’: von-Mises based on biaxial data, Eq. (11).
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ing failure criterions. However, it can be noted that if a second
curve fitting parameter termed ‘K’ is introduced to the r3 variable,
a much better fit is obtained (when K = 0.15). This is given by Eq.
(13).

r1 þ r2 þ Kr3 ¼ J1 ð13Þ
This modified model will not be looked into further in this

paper as the primary focus is on the biaxial FRPC specimen, which
demonstrates a good fit with the standard form of the 1st Stress
Invariant. A possible cause to this slight change in the model
may be attributed to the specimen design which suffers from large
amounts of shear and stress concentrations at the clamping
regions of the specimen as discussed by several authors in litera-
ture [14,15,19].
5.3. Comparison 5 and 6

The final type of specimen tested is made up of the neat resin
material which makes up the matrix constituent in the previous
two specimen designs tested. These experimental results are also
compared against von-Mises failure criterion and the 1st Stress
Invariant. A plot of the experimental points along with these two
failure criteria is shown in Fig. 15.

A least squares regression analysis similar to the one discussed
in Section 5.1 was performed using the tensile results. Eqs. (14)
and (16) are obtained for von-Mises whilst the 1st Stress Invariant
is given by Eq. (16). If we interpret the values obtained from the
regression; in Eq. (14) a uniaxial intercept point (or failure stress)
of 112.4 MPa was found that fits the results the best whilst for the



Fig. 15. 3D plot of neat resin experimental results with the 1st Stress Invariant and
von-Mises failure surfaces. ‘Regression1’: von-Mises based on uniaxial data, Eq.
(14). ‘Regression 2’: von-Mises based on biaxial data, Eq. (15).
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1st Stress Invariant (Eq. (15)) a much higher uniaxial tensile stress
of 153.2 MPa is predicted for failure.

0:5½ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2�
n o0:5

¼ 112:4 ð14Þ

r1 þ r2 þ r3 ¼ 153:2 ð15Þ

0:5½ðr1 � r2Þ2 þ ðr1 � r3Þ2 þ ðr2 � r3Þ2�
n o0:5

¼ 153:2 ð16Þ

Looking at Table 7, the linear fit using the 1st Stress Invariant
was found to give the best prediction of failure in the material,
with an average error prediction of 13%. This is also confirmed
when the RSS value is observed. Here the goodness of fit was 30
times better for the 1st Stress Invariant compared to the prediction
of matrix failure given by von-Mises.
Fig. 16. Plot of matrix failure planes given by the 1st Stress Invaria
5.4. Overall comparison/comparison 7

In all three experiments performed, von-Mises failure criterion
severely over predicted matrix failure. As all the experimental
points tend to cluster on the inside of the von-Mises failure surface,
a good match was found using the 1st Stress Invariant which is a
flat plane when drawn in 3D. The 1st Stress Invariant was much
better in predicting matrix failure. Hence, the experimental results
suggest that there is a truncation in the tensile quadrant of the
materials failure envelope.

A plot of the suggested failure envelope in the tensile quadrant
for matrix failure is shown in Fig. 16. Although all three sets of
experiments exhibit a close correlation to the 1st Stress Invariant,
they do have different magnitudes. Eq. (17) summarises these dif-
ferences. The baseline experiment is considered to be the biaxial
FRPC experiments as this specimen design includes the presence
of fibres whilst improving on the off-axis tests. The off-axis fibre
reinforced specimens were found to have the lowest stresses at
failure, and this may be attributed to the inherent downfall of
the specimen design suffering from large shear stresses in the
clamping locations. This was also noted by others in literature
[14,15,19]. Despite this, the results still show a similar trend as
the biaxial fibre reinforced specimens, where a truncation exists
in this tensile quadrant. The biaxial tests performed on the neat
resin specimens were found to fail at slightly lower stress values
(by 8%) compared to the biaxial fibre reinforced specimens. The
experiment results still demonstrated a truncation in the tensile
quadrant. Although this difference is very minor it may be
explained by the findings of others which state that the in-situ flow
stress behaviour of the epoxy matrix can be different to that
obtained from mechanical tests of matrix coupons due to the dif-
ferences in the curing process with and without the presence of
fibres [37,39,40]. Further investigation into this behaviour is out-
side the scope of this paper, but has been investigated by others
[37,39,40].

XBFR
t ¼ 1:09XNEAT

t ¼ 1:39XUFR
t ð17Þ

where:

Xt
BFR is the critical stress value given by the 1st Stress Invariant

for the biaxial fibre reinforced specimen given by J1 in Eq. (8).
Xt
NEAT is the critical stress value given by the 1st Stress Invariant

for the biaxial neat resin specimen given by J1 in Eq. (15).
nt for the three different experiments discussed in this paper.
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Xt
UFR is the critical stress value given by the 1st Stress Invariant

for the uniaxial fibre reinforced specimen given by J1 in Eq. (11).

6. Conclusions

The presented fibre reinforced biaxial specimen was found to
successfully demonstrate matrix failure originating within the
gauge region. Through performing several tests under different
loading ratios, the tensile quadrant of a stress based failure envel-
ope was populated. A superimposing technique utilising microme-
chanical analysis was presented by the authors to extract the
stresses on the matrix at failure. In total, three sets of experiments
were performed with all demonstrating a similar trend. Overall,
the fibre reinforced biaxial tests were found to demonstrate a good
match with the 1st Stress Invariant with an average model predic-
tion error of 8%.

References

[1] Jeffry W, Mayes S, Christopher K, Richard M. Comparison of MCT failure
prediction techniques and experimental verification for biaxially loaded glass
fabric-reinforced composite laminates. J Compos Mater 2004;38:2165–81.

[2] Reddy JN. Mechanics of laminated composite plates. CRC Press; 1997.
[3] Helius: MCT Technical Manual. Version 1.0 ed 2009: Firehole Technologies.
[4] Welsh JS. Comparison of MCT failure prediction techniques and experimental

verification for biaxially loaded glass fabric-reinforced composite laminates. J
Compos Mater 2004;38:2165–81.

[5] Shokrieh MM, Lessard LB. Progressive fatigue damage modelling of composite
materials, Part II: material characterization and model verification. J Compos
Mater 2000;34:1081–116.

[6] Chi SL, Jeong HK, Seul KK, Dong MR, Jae ML. Initial and progressive failure
analyses for composite laminates using puck failure criterion and damage-
coupled finite element method. Compos Struct 2015;121:406–19.

[7] Ana C, Toby M, Kent H. Finite element guidelines for simulation of fibre-
tension dominated failures in composite materials validated by case studies.
Compos Struct 2015;126:299–313.

[8] Hart-Smith LJ. Application of the strain invariant failure theory (SIFT) to metals
and fibre-polymer composites. Philos Mag 2010;90:4263–331.

[9] Gosse JH, Christensen S. Strain invariant failure criteria for polymers in
composite materials. In: AIAA Structural Dynamics, and Materials Conference,
2001. p. 45–55.

[10] Kyo J, Yuanchen H, Young L, Ha SK. Distribution of micro stresses and
interfacial tractions in unidirectional composites. J Compos Mater
2008;42:1825–49.

[11] Asp L, Berglund A, Talreja R. A criterion for crack initiation in glassy polymers
subjected to a composite-like stress state. Compos Sci Technol
1996;56:1291–301.

[12] Pipes RB, Gosse JH. An onset theory for irreversible deformation in composite
materials. In: Proceedings of 17th International Conference on Composite
Materials (ICCM 17), Edinburgh, 27–31 July 2009.

[13] Pierron F, Alloba E, Surrel Y, Vautrin A. Whole-filed assessment of the effects of
boundary conditions on the strain field in off-axis tensile testing of
unidirectional composites. Compos Sci Technol 1998;58:1939–47.

[14] Sun CT, Chung I. An oblique end-tab design for testing off-axis composite
specimens. Composites 1993;24:619–23.

[15] Xiao Y, Kawai M, Hatta H. An integrated method for off-axis tension and
compression testing of unidirectional composites. J Compos Mater
2010;46:657–69.
[16] Quek SC, Waas AM, Shahwan KW, Agaram V. Compressive response and failure
of braided textile composites: Part 1-experiments. Int J Non-Linear Mech
2004;39:635–48.

[17] Serna Moreno MC, Lopez Cela JJ. Failure envelope under biaxial tensile loading
for chopped glass-reinforced polyester composites. Compos Sci Technol
2011;72:91–6.

[18] Serna Moreno MC, Curiel-Sosa JL, Navarro-Zafra J, Martinez Vicente JL, Lopez
Cela JJ. Crack propagation in a chopped glass-reinforced composite under
biaxial testing by means of XFEM. Compos Struct 2015;119:264–71.

[19] David AE, Diego C, Hugo E, Ricardo R, Oliver P. Biaxial tensile strength
characterization of textile composite materials. In: Composites and their
properties. InTech; 2012. http://dx.doi.org/10.5772/48105.

[20] Chowdhury N, Chiu WK, Wang J. Biaxial specimen design for structures
subjected to muli-axial loads. Adv Mater Res 2014;891:1633–8.

[21] Chowdhury N, Chiu WK, Wang J, Yan W. Comparison of failure criteria
examining matrix dominant failure under biaxial loading. In: ACAM 8, 8th
Australasian congress on applied mechanics, 2014.

[22] GMS Composites, <http://www.gmscomposites.com/prepreg-range/>.
[23] Chowdhury NT, Chiu WK, Wang J. Design of a flat plate specimen suitable for

biaxial tensile tests on polymer materials. Polym Polym Compos, 23(9), in
press.

[24] Li W, Cai H, Li C, Wang K, Fang L. Micro-mechanics of failure for fatigue
strength prediction of bolted joint structures of carbon reinforced polymer
composites. Compos Struct 2015;124:345–56.

[25] ASTM D3039. Standard test method for tensile properties of polymer matrix
composites. West Conshohocken, PA: ASTM International; 2000.

[26] ASTM D5379. Standard test method for shear properties of composite
materials by the V-notched beam method. West Conshohocken, PA: ASTM
International; 2012.

[27] Kaw. Mechanics of composite materials. 2nd ed. CRC Press; 2006.
[28] FEMAP v10.0.2 64-bit. Finite Element Analysis software package.
[29] Lane C. Acoustic wave propagation in anisotropic media, Part

2. Switzerland: Springer International Publishing; 2014.
[30] Pagano NJ, Halpin JC. Influence of end constraint in the testing of anisotropic

bodies. J Compos Mater 1968;2:18.
[31] Meremonti P, Russo R. On the Von Mises-Sternberg version of Saint-Venant’s

principle in plane linear elastostatics. Arch Ration Mech Anal
1994;128:207–21.

[32] ABAQUS CAE 6.13 Standard edition. Finite element analysis software package.
[33] Szekrenyes A, Jozsef U. Finite element modelling of the damage and failure in

fibre reinforced composites (overview). Periodica Polytechnica Ser Mech Eng
2002;46:139–58.

[34] Xia Z, Chen Y, Ellyin F. A meso/micro-mechanical model for damage
progression in glass-fibre/epoxy cross-ply laminates by finite-element
analysis. Compos Sci Technol 2000;60:1171–9.

[35] Tsai SW. Residual stress and strains, composite design. In: Tsai SW, editor. 4th
ed. Think Composites; 1988.

[36] Chowdhury NT, Chiu WK, Wang J, Yan W. Residual stresses introduced to
composite structures due to the cure regime. In: Proceedings under review in
the 7th Asia pacific international symposium on aerospace technologies
(APISAT 2015), Australia: 25–27 November 2015.

[37] Lee S, Munro M, Scott RF. Evaluation of three in-plane shear test methods for
advanced composite materials. Composites 1990;21:495–501.

[38] Steve L. Characterization and failure analysis of plastics. ASM International;
2003. p. 99.

[39] Essam T, Carlos G, Javier L, Molina-Aldareguia JM. Mechanics of shear
deformation in fiber-reinforced polymers: experiments and simulation. Int J
Fract 2009;158:197–209.

[40] Yerramalli CS, Waas AM. In situ matrix shear response using torsional test data
of fiber reinforced polymer composites. J Eng Mater Technol 2002;124:152–9.

http://refhub.elsevier.com/S0263-8223(15)00858-2/h0005
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0005
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0005
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0010
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0020
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0020
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0020
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0025
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0025
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0025
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0030
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0030
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0030
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0035
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0035
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0035
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0040
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0040
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0050
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0050
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0050
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0055
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0055
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0055
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0065
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0065
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0065
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0070
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0070
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0075
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0075
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0075
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0080
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0080
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0080
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0085
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0085
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0085
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0090
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0090
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0090
http://dx.doi.org/10.5772/48105
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0100
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0100
http://www.gmscomposites.com/prepreg-range/
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0120
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0120
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0120
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0125
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0125
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0130
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0130
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0130
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0135
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0145
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0145
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0150
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0150
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0155
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0155
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0155
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0165
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0165
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0165
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0170
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0170
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0170
http://refhub.elsevier.com/S0263-8223(15)00858-2/h9010
http://refhub.elsevier.com/S0263-8223(15)00858-2/h9010
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0180
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0180
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0185
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0185
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0190
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0190
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0190
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0195
http://refhub.elsevier.com/S0263-8223(15)00858-2/h0195

	Matrix failure in composite laminates under tensile loading
	1 Introduction
	2 Matrix failure in CFRP under biaxial tensile loading
	2.1 Experiment methodology
	2.2 Experimental results
	2.3 Finite element analysis
	2.4 Processed results

	3 Matrix failure in CFRP under uniaxial Off-axis tension
	3.1 Experiment methodology
	3.2 Processed results

	4 Failure in a neat resin under biaxial tensile loading
	4.1 Experiment methodology
	4.2 Processed results

	5 Discussion
	5.1 Comparisons 1 and 2
	5.2 Comparisons 3 and 4
	5.3 Comparison 5 and 6
	5.4 Overall comparison/comparison 7

	6 Conclusions
	References


