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The failure envelope of the matrix in composite laminates under compressive loads has not received
much attention in literature. There are very little to no experimental results to show a suitable failure
envelope for this constituent found in composites. With increasing popularity in the use of micromechan-
ical analysis to predict progressive damage of composite structures which requires the use of individual
failure criteria for the fibre and matrix, it is important that matrix behaviour under compression is
modelled correctly.
In this study, off-axis compression tests under uniaxial compression loading are used to promote

matrix failure. Through the use of micromechanical analysis involving Representative Volume
Elements, the authors were able to extract the principal stresses on the matrix at failure. The results indi-
cated that hydrostatic stresses play an important role in the failure of the matrix. Thus, Drucker–Prager
failure criterion is recommended when modelling compressive matrix failure in composite structures.

Crown Copyright � 2016 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Fibre reinforced polymer materials commonly known as com-
posites are increasingly being used due to their high strength to
weight ratio and high fatigue resistance. In order to ensure struc-
tural integrity of the components which they form, it is important
to understand their behaviour at failure. However as failure in
composites are characterised by different modes, namely fibre,
matrix and interfacial failure [1], this has complicated the under-
standing of the failure behaviour. For this reason there are still
many unanswered questions as to the materials’ failure character-
istics, one of which includes matrix compression failure.

In an ideal situation, a composite would be modelled with each
strand of fibre surrounded by a polymeric matrix. This would allow
for the stress and strain states of the fibre,matrix and interface to be
extracted separately. However, this is obviously computationally
prohibitive. Onemethod that has greatly assisted in simplifying this
analysis is Classical Laminate Theory (or CLT) [2]. This theory com-
bines the properties of the fibre and the matrix through an averag-
ing approach to form what is considered to be a new homogenous
material called a lamina. CLT is widely used by researchers in the
field and given its simplicity, it does a good job at modelling
the stiffness of a laminate including linear load behaviour up to the
point of failure. One improvement that can be made to this theory
would be the ability to separately examine the fibre and the matrix.
This can be done using micromechanical analysis.

For failure assessment, micromechanical analysis can be used to
separate the stress–strain states in the matrix and fibre compo-
nents from a Representative Volume Element (or RVE). The rela-
tionship can then be used in a structural analysis to predict
matrix or fibre failure. One popular analysis method that uses
micromechanical analysis is Multicontinuum Theory (or MCT)
[3,4]. MCT predicts failure at the fibre andmatrix level by obtaining
the volume averaged stress states in the fibre and the matrix. Here,
matrix failure is assumed to be influenced by all six of the matrix
average stress components in a 3D analysis, whilst a quadratic
function is used to find the average stress of the fibre [3]. This par-
ticular theory greatly assists with understanding matrix failure and
fibre failure in a composite, especially when it comes to progres-
sive damage models [5–8]. However, the assumption of averaging
the overall stresses in the individual constituents can be improved
on. An analysis method that does this is the Amplification Tech-
nique [9–11]. Unlike MCT, where the stresses in each constituent
are averaged, the amplification technique calculates the principal
stresses and strains at several locations to identify a critical loca-
tion. Using this separation technique allows the fibre and matrix
failure to be examined in detail.

Fibre failure has been quite extensively researched in the field
of composites, whilst at a micromechanical level, matrix failure
has not received the same amount of attention. Matrix failure is
typically known to take place well before the fibre in matrix
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dominated load cases and can be characterised by three main
modes; tension, compression and shear failure. Some authors have
proposed these modes of failure to be characterised by dilatational
failure and distortional failure [10,12]. In this paper the authors
focus on distortional matrix failure in composites.

Matrix failure under tension loading has received some atten-
tion in literature. The most commonly known form of this test is
the 10� off-axis tension test on a uniaxial composite to find the
shear modulus of the lamina [13,14,15]. Others have also
performed a range of off-axis tests on uniaxial composites where
the fibre direction changes [14,15]. The authors have also explored
this form of failure through several biaxial tension tests under dif-
ferent loading ratios [16,17]. Through the use of micromechanical
analysis, some have proposed the tension quadrant of a principal
stress based failure envelope to be truncated [9,10,16,17]. This idea
is not new in the field of isotropic materials, where existing failure
criteria have proposed this. The simplest example is maximum
stress theory which predicts failure when the stress state in the
material exceeds its tensile strength. Others include: Drucker–
Prager, Mohr–Coulomb, and recently, SIFT (First Strain Invariant)
or Onset Theory [18].

Unlike matrix tensile failure, there are few papers that explore
shear and compression failure of the matrix at a micromechanics
level. One of the few failure criteria that utilises micromechanical
analysis to predict matrix failure is that proposed by Gosse and
Christensen called Onset Theory [9,10]. Their criterion uses von
Mises failure criterion to predict what they term as distortional
failure of the matrix [9]. This implies that they consider both shear
and compressive failure in composites to be modelled by von
Mises. With the assumption that a matrix can be treated as an iso-
tropic material, literature has shown that in the shear quadrants of
a stress based material failure envelope, von Mises failure criterion
does a good job in predicting failure [17]. However, it should be
noted that von Mises theory does not consider hydrostatic stresses,
which is known to play an important role in the failure of isotropic
materials under compression. To account for this phenomenon,
von Mises failure criterion was modified to account for hydrostatic
stresses. One of these theories is Drucker–Prager failure criterion
which has been quite successful in modelling shear and compres-
sion failure in monolithic isotropic materials [19]. Thus, the
authors aim to perform a set of experiments using Classical
Laminate Theory and micromechanical analysis to examine the
importance of considering hydrostatic stresses when a matrix fails
due to compression.
2. Uniaxial compression

2.1. Experiment methodology

There are three main types of antibuckling rigs used for
compression tests: (1) the modified ASTM D 695 standard; (2)
the IITRI compression test method; and (3) the combined loading
test methods [20]. Out of the three test methods, the latter two
have been shown to considerably reduce end crushing when com-
pared to the modified ASTM D695 test method. This is due to the
fixture’s ability to transfer the loads through shear. In the case of
the experiments considered in this study, the authors are inter-
ested in matrix failure, which occurs at much lower loads com-
pared to layups examining fibre failure. Thus, end crushing is not
as prominent in these set of experiments which enabled the
authors to use the modified ASTM D695 test fixture. The procedure
outlined in the modified ASTM D695 standard was followed for
these experiments [21]. Failure was confined to the gauge region
for all the specimens (shown in Fig. 2), which demonstrated that
the tests were successful.
The prepared specimens were machined according to the mod-
ified ASTM D695 standard [21]. In total ten different fibre orienta-
tions were examined. The geometry of the specimen is shown in
Fig. 1 and Table 1. W is the width of the specimen, T is the mini-
mum thickness of the specimen, h is the angle of the fibre direction
relative to the loading direction, G is the length of the gauge section
and L is the length of the tabs. It is important to oversize the gauge
region when testing matrix failure, as this prevents the fibres
extending from one tabbed region to the other. One consideration
that must be noted in specimens containing tabs is that extending
the gauge region implies that the specimen is more susceptible to
buckling as this region is unsupported by the anti-buckling rig. In
order to prevent this, the thickness of the specimens should
be chosen according to Eq. (1) [22]. The material ultimate
compressive strength (Fcu = 610 MPa), flexural modulus
(Ef = 131 GPa), and interlaminar shear modulus (Gxz = 4.73 GPa)
were found in another investigation by the authors [23]. The values
were either provided by the material supplier [24] or obtained
experimentally using ASTM D695, and ASTM D5379. A conserva-
tive design was chosen by making the steep fibre testing angles
(e.g. 10–45 degrees) thicker as their designs incorporated tabs
implying the support jig would not be supporting their gauge
regions. Specimens with fibres positioned at angles between 50
and 90 degrees did not require tabs as they were found not to
suffer from end crushing.
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where T = specimen thickness, mm; G = length of gage section, mm;

Fcu = expected ultimate compressive strength, MPa; Ef = expected
flexural modulus, MPa; Gxz = through the thickness (interlaminar)
shear modulus, MPa.

The material being used is a carbon prepreg material called
EP280 Prepreg, supplied by GMS Composites [24]. Several plates
of varying thickness (made according to Table 1) were laid up on
aluminium plates placed on the top and bottom to maintain a flat
geometry during cure. Care was taken to ensure that the fibres
were aligned in the same directions. The gap between the two
plates was sealed using high temperature scotch tape to prevent
any resin escaping during the cure. The specimens were then cured
according to the manufacturer recommendations [24] in an auto-
clave. A CNC was used to cut out the specimens at the desired
angles. Final grinding of the sides was performed on a diamond
wheel to minimise any machining defects.

Acceptable modes of failure under compression are presented
in both the ASTM D 3410 and ASTM D 6641 [22,25]. They include;
(a) axial splitting, (b) fibre kinking, and (c) shear failure. Global
buckling is the fourth failure mode which is considered to be
unsuccessful. Axial splitting and fibre kinking are typical fibre
modes of failure [26]. As these experiments are examining matrix
failure, the authors consider the shear failure mode to be the only
acceptable behaviour.

Fig. 2 and Table 2 present the final forces at failure. It is
observed that the specimens with angles between 90 and 45
degrees are found to fail suddenly with a shear mode of failure,
whilst specimens with fibre angles between 30 and 10 degrees
tended to slowly stop carrying load. These specimens have their
fibres aligned close to the loading direction, which from Fig. 2
(h)—(j) indicate failure to have taken place due to fibre kinking.
This behaviour is known to take place in 0� composites due to local
instability at the fibre level when the lamina is axially loaded. Here,
the elastic deformation of the fibres progresses to actual fibre
fractures [26].



Fig. 1. Dimensions of the off-axis compression specimen.

Table 1
Dimensions of off-axis compression specimens.

Fibre angle (�) W (mm) G (mm) T (mm) L (mm)

10 6.0 41 4.75 20
20 12.7 37 4.75 22
30 12.7 23 3 29
40 12.7 17 3 32
45 12.7 17 2 32
50 12.7 81 (no tabs) 2 0 (no tabs)
60 12.7 81 (no tabs) 2 0 (no tabs)
70 12.7 81 (no tabs) 1.5 0 (no tabs)
80 12.7 81 (no tabs) 1.5 0 (no tabs)
90 12.7 81 (no tabs) 1.5 0 (no tabs)
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In this study, the authors are interested in understanding the
failure behaviour of matrix, which has had little attention in the
past. The experiment results highlight one of the first full set of
experiments performed on composites under compression for a
large range of fibre orientation. Given the two distinct observations
shown in Fig. 2, the specimens with fibres arranged between 90
and 45 degrees are considered successful, whilst the others are
ignored for the remainder of the analysis.
2.2. Finite element analysis

Current experimental techniques are not able to distinguish
stress or strain states on the matrix and fibre independently and
usually stop at the lamina (global) level. Obtaining stress and strain
data for the matrix requires post processing of the experimental
results. This is done in a finite element analysis study. The tech-
nique separates the global stresses in the laminate to find individ-
ual stresses on the fibre and the matrix. Once the matrix stresses
are obtained, they are compared against the von Mises and
Drucker–Prager failure criteria [18].

One ideal method in which the failure stresses on the matrix
can be obtained is to create a large analysis with each individual
strand of fibre modelled, surrounded by the matrix for the entire
test specimen. However using todays computing power; this is
almost impossible to perform in a reasonable amount of time.
The next best alternative is to extract the stress and strain state
at a critical location in the global (macro) model, then impose these
as boundary conditions to a unit cell. The unit cell is a Representa-
tive Volume Element (RVE) of the fibre and the matrix that can be
found at the micro scale [9–11,27]. This method has started to gain
popularity and is considered to be an acceptable means of estab-
lishing the micromechanical stress state in the fibre and the
matrix. In order to account for the random arrangement of fibres
within a lamina; the process performed on a square unit cell is
repeated for a diamond and hexagonal fibre configuration. The
procedure is summarised in Fig. 3.
The first stage in this approach is to obtain the stress and strain
state in a global macromechanical model. Strain gauges in several
experiments were used to check that the FE model gave a good pre-
diction of this. However, a strain gauge cannot solely be used for
this stage as both in-plane and out of plane stress states are
required. Thus FEA aids in this process.

The stress and strain state in the centre of the specimen is found
using the finite element analysis package: ABAQUS v6.13. Strain
gauges were bonded onto the centre gauge region of several spec-
imens. Classical Laminate Theory was used to model the specimen
for the global macromechanical analysis. As the fibres are all
arranged in the same direction, each specimen was modelled as a
single lamina with material properties listed in Table 3. The FEA
model was found to match the strain gauge results with a differ-
ence of less than 10%. Thus the material properties in the FE model
were kept the same as those presented in Table 3. The fibre and the
matrix are assumed to have isotropic properties given in Table 4
[23] which have been obtained using an inverse method of the rule
of mixtures [18]. Where the lamina and matrix properties are used
to obtain the fibre properties.

8-noded linear brick elements with reduced integration and
hourglass control (C3D8R) were used for the micromechanical
RVE models. One of the underlying conditions to enforce when per-
forming RVE analysis is ensuring that periodic boundary conditions
are maintained. This means that as the unit cell deforms, the
opposing faces of the RVE must remain parallel to each other. This
can be quite difficult to maintain depending on the loading condi-
tions. For example when normal strains are applied to a unit cell
shown in Fig. 3, the boundary conditions are straight forward to
implement. The same case is applicable for a unit cell experiencing
a pure shear load in any one of its planes. However it is difficult to
combine both normal and shear loads into the same RVE analysis.
This difficulty is experienced in this study, where although the
main purpose of using off-axis compression specimens was to
obtain a biaxial compressive stress state, significant in-plane shear
stresses are also experienced due to the unbalanced specimen
layup. These in-plane shear stresses need to be incorporated into
the RVE analysis along with the normal strains. An approach to
do this is to superimpose the results of individual RVE models
[9,11,23]. This requires performing several RVE analyses (one for
each load case) which can be time consuming to setup. Alterna-
tively the authors performed a sub-modelling approach using a
built in module in ABAQUS v6.13. This method passes on the strain
states from the global model as displacement boundary conditions
which are applied on each node of the corresponding sides of the
RVE placed in the centre of the specimen. This procedure greatly
shortens the time required to setup a model to perform the analy-
sis. Fig. 4 shows the unit cell model for a square RVE before and
after deformation. The unit cells were positioned in the centre of
the gauge region for all the specimens as failure from the



Fig. 2. Failed off-axis compression specimens. Left: top view of specimen, right: cross section of the specimen. Fibre angle: (a) 90 degrees, (b) 80 degrees, (c) 70 degrees, (d) 60
degrees, (e) 50 degrees, (f) 45 degrees, (g) 40 degrees, (h) 30 degrees, (i) 20 degrees, and (j) 10 degrees.
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experiments was observed in this location (as shown in Fig. 2).
Note that if failure had been observed at the corner of the tabbed
regions shown in Fig. 4, more care would be needed to ensure that
edge effects were correctly modelled. The deformation scale was
exaggerated to observe the RVE behaviour and periodicity more
easily. It was verified that the RVE shrinks in the transverse
direction while expanding in the out of plane direction due to
Poisson’s effects. In addition to this; the RVE demonstrates
in-plane shear.
2.3. Results

An advantage of the sub-modelling process is that the location
of the peak stress (according to von Mises or Drucker–Prager stress
criterion) can be viewed in the graphic user interface (GUI) straight
away. This is far quicker than probing several locations on the
model ahead of time, then superimposing stress values in order
to find the critical location [9,11]. The principal stresses are
recorded for each FE model and are shown in Table 5. Fig. 5 shows



Table 2
Force at failure for the off-axis compression tests.

TEST Fibre angle (�) Cross-sectional area (mm2) Force at failure (N) TEST Fibre angle (�) Cross-sectional area (mm2) Force at failure (N)

1 90 19.05 �2495.8 15 45 25.40 �4078.78
2 90 19.05 �2778.59 16 45 25.40 �3732.22
3 90 19.05 �2047.98 17 45 25.40 �3957.02
4 80 19.05 �2740.98 18 40 38.10 �6729.77
5 80 19.05 �2216.83 19 40 38.10 �6558.68
6 80 19.05 �2413.19 20 30 38.10 �8581.61
7 70 19.05 �2431.35 21 30 38.10 �8622.96
8 70 19.05 �2639.2 22 30 38.10 �8238.75
9 70 19.05 �2415.68 23 20 60.33 �13465.36

10 60 25.40 �3545.64 24 20 60.33 �12832.83
11 60 25.40 �3489.23 25 20 60.33 �12277.63
12 50 25.40 �3216.16 26 10 28.50 �8470.27
13 50 25.40 �2713.63 27 10 28.50 �7789.31
14 50 25.40 �3452.73 28 10 28.50 �8398.7

Fig. 3. RVE created in ABAQUS 6.13. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Material properties of EP280 prepreg for the global macromechanical analysis.

Property

E11 131 GPa
E22 6.20 GPa
E33 6.20 GPa
v12 0.28
v23 0.40
v13 0.28
G12 4.73 GPa
G23 1.44 GPa
G13 4.73 GPa

Table 4
Properties of the fibre (calculated) and matrix (from manufacturer).

Property Fibre Matrix

E 259 GPa 3.14 GPa
V 0.30 0.30
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the critical location for the different fibre configurations in which
the principal stresses were obtained. These are all taken in the
mid-plane of each unit cell.
3. Uniaxial tension

From Table 5, it is evident that the matrix stress states in all the
compression tests performed are in compression or shear. In this
range the failure mode is distortional failure.
The testing and analysis conducted by Pipes and Gosse [14]
indicated uniaxial off-axis tension tests on angles greater than 20
degrees failed in a different mode (i.e. dilatation). Thus, those
angles were not tested in this paper.

3.1. Experiment methodology

Uniaxial off-axis tension tests have been performed by several
authors in the past [14,28,29]. A similar test methodology was
adopted to explore the failure envelope for the material used in
this investigation (EP280 Prepreg).

ASTM D 3039 is used for the specimen design [30]. Fig. 6 shows
the overall specimen dimensions. The use of oblique tabs has been
proposed by several authors to minimising the shear stress that is
introduced in such tests due to the fibre layout [31]. The oblique
tabs are considered to minimise the stress concentration that takes
place at the ends of the specimen during clamping. However pre-
liminary tests showed the use of oblique tabs to cause premature
failure originating from the corner of the tab rather than in the cen-
tre gauge region of the specimen. This may be due to the difficulty
in aligning the oblique tabs accurately when bonding to the spec-
imens. The authors found more success using flat tabbed speci-
mens as suggested in the ASTM D3039. For this reason square
tabs were used.

Fig. 7 shows a picture of the failed off-axis 20 degree specimen.
The specimen failed just outside the end tab, which is an effect that
is commonly observed with off-axis tension tests and further
investigation into this phenomenon has been looked into by others
[14,28,29]. The experimental data obtained from this test is shown
in Table 6.



Fig. 4. Deformation of specimen and square RVE before and after the analysis (Test 15). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 5
Critical principal stresses obtained in the matrix for: uniaxial off-axis compression
tests. (Stresses have been averaged based on the four fibre configurations examined.)

Test Fibre
angle (�)

r1

(MPa)
r2

(MPa)
r3

(MPa)
Standard deviation

r1

(MPa)
r2

(MPa)
r3

(MPa)

1 90 �77.18 �253.42 �95.60 47.27 79.26 34.96
2 90 �86.29 �281.52 �106.37 52.41 88.41 38.91
3 90 �63.60 �207.49 �78.39 38.63 65.16 28.68
4 80 �66.01 �227.05 �84.19 45.06 76.27 34.37
5 80 �55.62 �187.58 �69.57 33.86 57.41 26.06
6 80 �57.23 �195.18 �72.30 40.50 71.94 32.05
7 70 �53.06 �191.05 �67.15 31.49 58.89 27.57
8 70 �57.59 �207.38 �72.89 34.18 63.92 29.93
9 70 �52.71 �189.80 �66.72 31.29 58.51 27.40

10 60 �49.27 �198.03 �64.17 27.29 60.53 29.31
11 60 �48.49 �194.87 �63.15 26.85 59.57 28.84
12 50 �29.40 �154.37 �45.24 15.98 43.73 21.47
13 50 �24.03 �126.38 �37.12 13.57 37.92 18.49
14 50 �30.58 �160.81 �47.23 17.27 48.25 23.53
15 45 15.19 �137.00 �23.55 14.60 45.01 22.00
16 45 13.90 �125.36 �21.55 13.36 41.18 20.13
17 45 14.73 �132.91 �22.85 14.16 43.66 21.34
18 40 22.37 �134.04 �22.73 15.09 34.79 19.16
19 40 20.67 �126.11 �21.69 13.56 37.83 19.06

Fig. 5. Critical location for a: (a) square fibre configuration, (b) diamond fibre configur
configuration. (For interpretation of the references to colour in this figure legend, the re
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3.2. Processed results

The processing of the experimental results is the same as that
discussed for the compression specimens in Section 2.2. The main
difference is that the specimen is under a tensile load. Microme-
chanical analysis is also performed using the same four fibre con-
figurations. The processed results for the matrix are shown in
Table 6.
4. Discussion

This paper is mainly concerned with understanding the failure
of the matrix under compression. Although the uniaxial compres-
sion tests performed would possibly have sufficed, the tension
results presented in the previous section allow for a better overall
understanding.

Numerous failure criteria have been proposed over the last few
decades [32,33], amongst which von Mises failure criterion (Eq.
(2)) is one of the most widely used due to its simplicity and ability
to accurately follow experimental results. However this criterion is
sometimes found to underestimate compressive failure. Drucker–
Prager failure criterion is often used as an alternative. The criterion
ation, (c) vertical hexagonal fibre configuration, and (d) horizontal hexagonal fibre
ader is referred to the web version of this article.)



Fig. 6. Unidirectional off-axis tension specimen.

Fig. 7. Failed 20 degree off-axis tension specimen.

Table 6
Critical principal stresses & forces obtained at failure in the matrix for an off-axis 20 degree tension test. (Stresses have been averaged based on the four fibre configurations
examined.)

Test Fibre angle Failure force (N) r1 (MPa) r2 (MPa) r3 (MPa) Standard deviation

r1 (MPa) r2 (MPa) r3 (MPa)

1 20� 9295 85.94 14.23 �35.69 48.42 4.68 31.41

Fig. 8. An example of von Mises and Drucker–Prager failure criteria plotted in 2D Stress space.
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is the same as von Mises except that it introduces another curve
fitting parameter ‘B’ (given in Eq. (4)) to capture the hydrostatic
stresses that play an important role when a material is under com-
pression [18]. Fig. 8 shows a plot of the two failure criteria in 2D
stress space. Quadrants 2, 3 and 4 shown in Fig. 8 are of interest
for this investigation. A material that fails in these three quadrants
is believed to fail due to distortion, which is characterised by an
extensive change in the materials shape [9,12]. Quadrant 1 of the
failure envelope is considered to exhibit a different behaviour char-
acterised by dilatation, which is a change in volume of the material
[3].1 Examining this behaviour is outside of the scope for this paper
1 The division between these two failure modes may not be exactly at the boundary
between quadrant 1 and quadrant 2 (quadrant 1 and quadrant 4).
and itself is an area of research that has had very limited experimen-
tal results published for the matrix.

The results here will be investigated in 3D stress space due to
the significance of r3 shown in Tables 5 and 6. von Mises and
Drucker–Prager failure criteria look like a cylinder and a cone
respectively when plotted in 3D stress space.

rvm ¼
ffiffiffiffiffiffiffi
3J2

p
¼ A ð2Þ

where rvm is the von Mises stress, ‘A’ is a curve fitting parameter
representing the critical stress, and J2 is the second invariant of
the deviatoric stress tensor given by Eq. (3):

J2 ¼ 1
6

r1 � r2ð Þ2 þ r2 � r3ð Þ2 þ r3 � r1ð Þ2
h i

ð3Þ
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ffiffiffiffi
J2

p
¼ Aþ BJ1 ð4Þ

where J2 is the second invariant of the deviatoric stress tensor given
by Eq. (3). ‘A’ and ‘B’ are curve fitting parameters, and J1 is the first
invariant of the deviatoric stress tensor given by Eq. (5):

J1 ¼ r1 þ r2 þ r3 ð5Þ
In order to assist in the selection of a suitable failure criterion to

accurately model the compressive and shear quadrants of the
matrix failure envelope; six comparisons are made:

(1) Compare compression test results against the von Mises fail-
ure criterion fitted using compression test results.

(2) Compare compression results against the Drucker–Prager
failure criterion fitted using compression test results.

(3) Compare compression and tension results against the von
Mises failure criterion fitted using compression and tension
test results.

(4) Compare compression and tension results against the
Drucker–Prager failure criterion fitted using compression
and tension test results.

(5) Compare compression and tension results against the von
Mises criterion fitted using only compress test results

(6) Compare compression and tension results against the
Drucker–Prager criterion fitted using only compress test
results.

Table 7 summarises the differences in prediction given from the
various regression models using the six comparisons. Eq. (6) shows
the formula used for the sum of least squares analysis.

RSS ¼
Xn

i¼1

yi � f ðxiÞð Þ2 ð6Þ
4.1. Comparison 1

von Mises failure criterion is given by Eq. (2). It is the same as
that given by Eq. (4), except that the term ‘B’ is equal to zero. Eq.
(6) is used to calculate the residual sum of squares which is min-
imised by solving for values of ‘A’. Eq. (7) shows the final criterion
when examining only the off-axis compression results. A plot of
the points on the failure criterion given by von Mises is shown in
Fig. 9.ffiffiffiffi
J2

p
¼ 78:7 ð7Þ
4.2. Comparison 2

The same method is used to compare the Drucker–Prager crite-
rion with the experimental results. Based on the RSS value shown
in Table 7, there is an improvement in this model’s ability to accu-
rately predict the failure for the matrix material. Eq. (8) gives the
final criterion obtained. Fig. 10 shows the Drucker–Prager failure
criterion plotted in 3D stress space with the experimental com-
pression results. It is evident that the criterion appears to fit the
experimental results better than when a von Mises failure criterion
is fitted with the RSS value decreased by 43%.ffiffiffiffi
J2

p
¼ 60:2� 0:068J1 ð8Þ
4.3. Comparison 3

The uniaxial off-axis tension result for the 20 degree specimen
is now included in the regression. This is expected to increase the
RSS value as another regression point is being added. However the
addition of this tension results assists in examining the signifi-
cance of hydrostatic stresses, allowing the selection of either the
von Mises criterion or the Drucker–Prager criterion to become
clearer. Eq. (9) gives the final criterion obtained. Fig. 11 shows
the von Mises failure criterion plotted in 3D stress space with
the experimental compression results.
ffiffiffiffi
J2

p
¼ 77:8 ð9Þ
4.4. Comparison 4

The fourth comparison is looking at both uniaxial off-axis com-
pression and tension results, fitting the Drucker–Prager criterion to
them. From Fig. 12, it is evident that the criterion appears to fit the
experimental results better than when a von Mises failure criterion
is fitted. This is also shown by the RSS value which has decreased
by 50%. Eq. (10) shows the parameters for ‘A’ and ‘B’ obtained from
the regression analysis.
ffiffiffiffi
J2

p
¼ 62:25� 0:061J1 ð10Þ
4.5. Comparison 5

The fifth comparison uses the von Mises criterion given by Eq.
(7) to calculate the percentage error when the uniaxial tension
result is incorporated. A plot of the results in 3D stress space is
shown in Fig. 13 to aid in understanding the predictive capability
of the failure criterion when examining the compressive and shear
behaviours of the matrix material.

4.6. Comparison 6

The final comparison uses the Drucker–Prager criterion given
by Eq. (8) to calculate the percentage error when the uniaxial ten-
sion result is incorporated. A plot of the failure envelope with the
addition of the uniaxial tension result is shown in Fig. 14. This
shows an improvement from comparison 5.

4.7. Selection of a failure criterion

The Drucker–Prager criterion has been shown by others to give
a better representation of the failure surface for single-phased iso-
tropic materials under compression when compared to the von
Mises criterion [19,34]. This is due to its inclusion of hydrostatic
stresses, which von Mises does not take into account. Despite this,
there are very little experimental results to show the failure of the
individual constituents in a composite. The findings presented here
are one of the first to show the failure surface of the matrix when a
composite lamina fails due to compression.

Using Table 7 and the six comparisons made it is evident that
the Drucker–Prager criterion does a better job in explaining the
compressive failure of the matrix in composites. This can be seen
by comparisons: 2 and 4, where the RSS value was at least 40%
lower than their counterparts: comparison 1 and 3 respectively.
When Eqs. (8) and (10) are compared against each other, the value
for ‘A’ and ‘B’ change slightly due to the addition of the uniaxial off-
axis 20 degree tension result, however they remain relatively same
in magnitude indicating that the original Drucker–Prager criterion
fitted in comparison 2 did a good job in predicting failure. This
becomes clearer as the RSS values given in Table 7 are looked at
further.

Looking at the RSS values for comparison 4 and 6, which looks at
the predictive ability of the Drucker–Prager criterion established in
comparison 2, against the addition of uniaxial tension result. The
RSS value is found to increases by only 1%. This small difference in



Table 7
Comparison of experimental results with the Drucker–Prager and von Mises failure criteria.

Test Fibre angle (�) % difference between experimental data and failure prediction found in:

Comparison 1 Comparison 2 Comparison 3 Comparison 4 Comparison 5 Comparison 6

Compression
1 90 4% 7% 2% 7% 4% 7%
2 90 �5% 1% �6% 1% �5% 1%
3 90 4% 8% 3% 8% 4% 8%
4 80 �11% �3% �12% �3% �11% �3%
5 80 9% 12% 7% 12% 9% 12%
6 80 4% 9% 3% 8% 4% 9%
7 70 �19% �8% �20% �9% �19% �8%
8 70 �27% �14% �28% �15% �27% �14%
9 70 �1% 6% �2% 6% �1% 6%
10 60 16% 11% 14% 12% 16% 11%
11 60 41% 31% 40% 32% 41% 31%
12 50 11% 8% 10% 8% 11% 8%
13 50 0% �11% �2% �10% 0% �11%
14 50 9% �4% 8% �3% 9% �4%
15 45 3% �9% 1% �8% 3% �9%
16 45 �2% �14% �3% �12% �2% �14%
17 45 4% �9% 3% �7% 4% �9%
18 40 �4% �1% �5% �1% �4% �1%
19 40 �2% 1% �3% 0% �2% 1%

Tension
1 20 � � 27% �5% 29% �9%
Residual sum of squared errors (RSS): 2099 1197 2391 1213 2407 1225

Fig. 9. Plot of uniaxial compression tests on the von Mises failure envelope. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 10. Plot of uniaxial compression tests on the Drucker–Prager failure envelope.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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error suggests that the first fit using Drucker–Prager was sufficient
to capture the failure surface of the matrix, where the uniaxial ten-
sion experiments had not been performed. Thus, performing the
uniaxial tension test, clarified the conical nature of the failure envel-
ope given by Drucker–Prager in the compression and shear quad-
rants of the failure envelope. From these findings; Eq. (10) from
comparison 4 is selected as best representing matrix failure under
compression in the composite material used in this investigation.
5. Conclusions

The ASTM D695 test rig was used to perform several off-axis
compression tests. In order to prevent end crushing which is an
undesirable failure characteristic, it was found that the specimens
with fibres positioned from 10 to 45 degrees required the use of
aluminium tabs. As the centre gage region is no longer supported
by the antibuckling rig, these particular specimens had their thick-
ness increased according to Eq. (1) to prevent buckling. Following
these rules allowed the collection of successful compression data.
Specimens with fibre angles between 10 and 30 degrees were
omitted from the remainder of the study as they were not consid-
ered to display a matrix mode of failure.

Micromechanical analysis through means of a sub-modelling
approach was used in the study to separate the stress/strain state
in the fibre and the matrix. As all the successful experiments indi-
cated a matrix mode of failure, the principal stresses at a critical
location of the matrix were extracted. When the results were plot-
ted in 3D stress space it was found that the matrix was able to
carry much higher loads in compression compared to when under
tension. The Drucker–Prager failure criterion gave a 40% better fit
to the experimental results compared to von Mises. This significant
difference indicates that it is very important to consider the hydro-
static stress components when examining matrix failure under
compression. The authors recommend the use of a Drucker–Prager
failure criterion to model compressive/shear failure of a matrix
found in composites.



Fig. 11. Plot of uniaxial compression and uniaxial tension tests on the von Mises
failure envelope. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 12. Plot of uniaxial compression and uniaxial tension tests on the Drucker–
Prager failure envelope. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 13. Plot of uniaxial compression and uniaxial tension tests on the von Mises
failure envelope fitted to only the uniaxial compression results. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 14. Plot of uniaxial compression and uniaxial tension tests on the Drucker–
Prager failure envelope fitted to only the uniaxial compression results. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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