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A shear-lag model with a cohesive fibre–matrix interface has been developed for the anal-
ysis of stress transfer between the fibre and the matrix in fibre-reinforced composites in
this paper. A bilinear cohesive damage evolution law is used to describe the fibre–matrix
interface behaviour. The governing equations for the interfacial shear stress and the axial
stress in the fibre are derived. Accurate analytical solutions are obtained when the fibre–
matrix interface is in the initial linear elastic deformation regime. When debonding occurs,
interfacial damage and softening are modelled by superposing two elastic stress systems
and satisfying the damage evolution law at both ends of the damage process zone, and
approximate analytical solutions are obtained. The stress distribution and evolution during
the fibre pull-out, the maximum pull-out force and the pull-out curve have been analysed
using a shear strength-based debonding criterion. Analytical expressions for the maximum
fibre pull-out force and its limit as the embedded fibre length approaches infinity are
obtained. In addition, the new function proposed for describing the radial distribution of
the shear stress in the matrix fixes the problem of zero shear-lag parameter when b=a
approaches infinity, enabling the shear-lag analysis to deal with low fibre volume fractions.
Generally, the analytical solutions compare satisfactorily well to the cohesive finite ele-
ment calculations and experimental data in the literature.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The load transfer mechanism between the fibre and the
matrix and the fibre–matrix interface behaviour play an
important role in determining the mechanical properties
of fibre-reinforced composites such as elastic modulus,
tensile strength and fracture toughness, and have received
considerable attention and extensive investigations.
Tensile stresses acting on the composites can be trans-
ferred between the matrix and fibres by shear at the
fibre–matrix interface. Theoretical analysis of the load
transfer and interfacial debonding problem during fibre
pull-out can be classified into two principal approaches;
one is the strength-based approach where the interfacial
debonding takes place when the interfacial shear stress
reaches the interfacial strength (Cox, 1952; Hsueh, 1988,
1992; Landis and McMeeking, 1999; Lawrence, 1972;
Leung and Li, 1991; McCartney, 1992; Nairn, 1997, 2004;
Nayfeh, 1977), and the other is the fracture
mechanics-based approach where the interfacial debond-
ing is treated as a mode II fracture which propagates once
the interfacial toughness is overcome (Budiansky et al.,
1986; Gao et al., 1988; Gurney and Hunt, 1967;
Hutchinson and Jensen, 1990; Nairn, 2000; Stang and
Shah, 1986; Zhou et al., 1992). The two theories of interfa-
cial debonding and fibre pull-out have been compared
experimentally (Kim et al., 1992; Zhandarov et al., 2001),
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and theoretically (Leung and Li, 1991; Stang et al., 1990),
indicating the conditions of their validity.

In the strength-based theories, the original shear-lag
theory (Cox, 1952) has been widely adopted to obtain the
shear stress distribution at the fibre–matrix interface.
Modifications of the classical shear-lag model have been
made to obtain improved results (Hsueh, 1992;
McCartney, 1989; Nairn, 1997, 2004; Nayfeh and
Abdelrahman, 1998). Extensions of the shear-lag model
with introducing interfacial friction have been proposed
to analyse interfacial debonding during the fibre pull-out
or push-out (Budiansky et al., 1986; Leung and Li, 1991;
McCartney, 1989; Shetty, 1988; Zhou et al., 1993).

Recently, owing to their extraordinary physical and
mechanical properties such as high tensile stiffness and
strength and low density, carbon nanotubes (CNTs) find
promising applications as reinforcements in advanced
structural composites. Early experimental measurements
showed very disappointing improvements in the mechan-
ical properties of carbon nanotube based composites. It has
been identified through both experimental and numerical
studies that the CNT-matrix interfacial characteristics
(interfacial strength and length) critically control the per-
formance of such composites and therefore they have
attracted considerable attention of many researchers.
Various interfacial interaction models have been adopted
in analysis of the stress transfer between carbon nanotube
and matrix. For examples, the van der Waals interfacial
interaction between the polymer matrix and the CNT and
the interfacial chemical bonding have been modelled with
the Lennard-Jones potential, and the many-body
bond-order potential, respectively, in analysis of the shear
strength of carbon nanotube-polymer matrix interfaces
(Chen et al., 2010; Frankland et al., 2002, 2003).
Nonlinear cohesive laws for CNT-polymer matrix inter-
faces have been established based on the van der Waals
interfacial interaction (Jiang et al., 2006; Lu et al., 2008)
and chemical bonding (Jiang, 2010), respectively. The clas-
sical shear-lag model has been adopted to predict the
interfacial stress transfer in CNT-reinforced polymer com-
posites (Gao and Li, 2005), to analyse the carbon nanotube
pull-out from a polymer matrix (Frankland and Harik,
2003), and to investigate fracture toughness enhancement
with introducing a linear interface law to account for
CNT-matrix interfacial bond breaking (Chen et al., 2010).
The shear-lag model has also been used to analyse the
pull-out test of CNT-coated carbon fibres in a polyester
matrix (Agnihotri et al., 2012), and cohesive zone finite ele-
ment models have been established with introducing a
non-linear interface cohesive law to model the pull-out
response of CNT-coated fibres (Agnihotri et al., 2012; Jia
et al., 2014).

The development of cohesive laws for characterising
the CNT-matrix interfacial properties, and the application
of different cohesive laws together with the classical
shear-lag theory in analysing the load transfer between
CNT and matrix inspire us to establish an analytical rela-
tionship between the load transfer and evolution and the
interfacial cohesive properties. We first derive the govern-
ing equations for a shear-lag model with a cohesive fibre–
matrix interface by introducing an interfacial bilinear
cohesive law into the classical shear-lag model in
Section 2. The accurate analytical solution for the cohesive
interface in the initial linear elastic deformation regime is
given in Section 3. In Section 4, we propose a simple
method to obtain approximate analytical solutions when
interfacial damage and softening occur. The analytical
solutions for the distribution and evolution of the interfa-
cial shear stress and axial stress in the fibre are compared
to the cohesive zone finite element calculations and exper-
imental data available in the literature.
2. A shear-lag model with a cohesive fibre–matrix
interface

A composite cylinder shear-lag model is adopted for the
analysis of the load transfer from the fibre to the matrix
when the fibre is loaded. As shown in Fig. 1, a single fibre
with a radius a is embedded with a length L in a coaxial
matrix cylinder with an outer radius b. The fibre is sub-
jected to an axial tensile stress rp at the loaded end
z ¼ Lð Þ. The embedded end face z ¼ 0ð Þ between the fibre

and matrix can be perfectly bonded or completely free. It
is assumed that both the fibre and matrix are elastic, and
the interface transfers stresses between the fibre and
matrix by interfacial shear. The outer surface r ¼ bð Þ is
stress-free.

The interface r ¼ að Þ between the fibre and matrix is
modelled as a cohesive interface in pure shear mode. The
shear behaviour of the cohesive interface is described by
a bilinear cohesive traction-separation law, as shown in
Fig. 2. The cohesive law is characterised by an initial linear
elastic regime followed by a linear softening regime.
Interfacial damage initiates once the interfacial shear
stress reaches the cohesive strength s0 and the shear sep-
aration reaches the critical value d0. Beyond this point, as
the shear separation increases further, the shear stress
decreases due to material degradation until the complete
failure (interfacial debonding) begins where the separation
reaches the critical value d1 and the traction or cohesive
strength acting across the cohesive interface is reduced
to zero.

The bilinear cohesive traction-separation constitutive
relation is given by

s ¼
K0d if 0 6 dmax

6 d0

1� Dð ÞK0d if d0 6 dmax
6 d1

0 if dmax P d1

8><
>: ð1Þ

where K0 is the initial shear stiffness of the cohesive inter-
face, dmax is the maximum value of the shear separation
attained during the fibre pull-out, and D is the scalar dam-
age variable.

This law assumes that the cohesive surfaces initially are
intact without any relative displacement, and exhibit
reversible linear elastic behaviour until the traction
reaches the cohesive strength s0 or equivalently the sepa-
ration exceeds d0. Beyond d0, the traction reduces linearly
to zero up to d1 and any unloading takes place irreversibly.
The area under the traction-separation curve represents
the fracture energy, Gc , of the cohesive crack.
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Fig. 1. Schematic diagram of a shear-lag model with a cohesive fibre–matrix interface.
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Fig. 2. A bilinear cohesive traction-separation law.
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Shear-lag models of varying degrees of complexity have
been proposed to analyse the stress transfer between the
fibre and the matrix. In this paper, we use a simple
shear-lag mode with the focus on analysing the stress dis-
tribution and damage evolution in the cohesive fibre–ma-
trix interface during the fibre pull-out. So compressive
stresses on the fibre duo to matrix shrinkage (Gao et al.,
1988), friction in the debonded interface (Budiansky
et al., 1986; Hutchinson and Jensen, 1990; Leung and Li,
1991; Marshall et al., 1985; Shetty, 1988; Zhou et al.,
1993), matrix cracking (Budiansky et al., 1986; Marshall
et al., 1985), or fibre breaking (Chen et al., 2010; Nayfeh
and Abdelrahman, 1998) are not considered.

The derivations of a shear-lag model with a cohesive
fibre–matrix interface presented here are built upon the
earlier works (Aveston and Kelly, 1973; Budiansky et al.,
1986; Hsueh, 1988, 1992) and modifications (McCartney,
1992; Nairn, 1997; Nayfeh, 1977) of the classical
shear-lag model. Therefore, the fundamental assumptions
inherent in a shear-lag analysis are invoked as well, except
that in the current formulation there is a displacement dis-
continuity between the fibre and the matrix at the cohe-
sive interface.

For the present shear–lag modelling, the fibre and
matrix are assumed to deform as linear thermoelastic bod-
ies having transversely isotropic thermoelastic constitutive
relations of the form:

ezz ¼
rzz

EA
� mA

EA
rrr þ rhhð Þ þ aAT ð2Þ

crz ¼
srz

GA
ð3Þ
where EA;GA; mA, and aA are the tensile modulus, shear
modulus, Poisson’s ratio, and thermal expansion coeffi-
cient in the longitudinal direction, respectively, and T is
the temperature difference from the stress-free tempera-
ture T0.

The following axial equilibrium equation must be satis-
fied in both the fibre and the matrix

@rzz

@z
þ 1

r
@ rsrzð Þ
@r

¼ 0 ð4Þ

According to the fundamental shear-lag assumption, the
axial tensile and shear strains are given in terms of the
axial displacement w r; zð Þ, respectively, by

ezz ¼
@w
@z

; and crz ¼
@w
@r

ð5Þ

The shear stress distribution in the fibre and matrix are
assumed to be of the form (McCartney, 1989; Nairn, 2004)

s f
rz r; zð Þ ¼ sa zð ÞI rð Þ and sm

rz r; zð Þ ¼ sa zð ÞO rð Þ ð6Þ

where the superscripts f and m denote the fibre and matrix,
respectively. sa zð Þ is the axial shear stress at the interface.
The functions I rð Þ and O rð Þ define the assumed radial
dependence of the shear stress in the fibre and the matrix,
respectively. The continuity and boundary conditions for
the shear stress require (Nairn, 2004)

I 0ð Þ ¼ 0; I að Þ ¼ 1; O að Þ ¼ 1; and O bð Þ ¼ 0 ð7Þ

It is worth noting that the function O rð Þ needs meeting
additional requirement for the shear-lag analysis to be
applicable to low fibre volume fractions (large b=a). This
issue is addressed later.
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In this paper, a cohesive interface between the fibre and
matrix is modelled, so there is a displacement discontinu-
ity (or jump) cross the interface r ¼ að Þ. The axial displace-
ment of the fibre and matrix at r ¼ a and the shear
separation dð Þ of the cohesive interface satisfy the follow-
ing deformation relation

w f a; zð Þ �wm a; zð Þ ¼ d zð Þ ð8Þ

This axial displacement discontinuity relation has been
implemented into shear-lag analysis for imperfect inter-
face modelling (Nairn, 2004).

Following the approach (Nayfeh, 1977), the average of
any variable f r; zð Þ over the cross-sectional area
ri 6 r 6 roð Þ is defined as

f ðzÞ ¼ 1
p r2

o � r2
i

� � Z ro

ri

2prf r; zð Þdr ð9Þ

Applying Eq. (9) to Eq. (4) over the fibre 0 6 r 6 að Þ and the
matrix a 6 r 6 bð Þ, respectively, leads to the results

dr f
zzðzÞ
dz

¼ �2s f
rz a; zð Þ

a
¼ �2sa zð Þ

a
ð10Þ

drm
zzðzÞ
dz

¼ 2sm
rz a; zð Þ

b2 � a2
� �

=a
¼ 2sa zð Þ

b2 � a2
� �

=a
ð11Þ
d2r f
zz zð Þ

dz2 ¼

1

b2

a2�1

� �þ Em
A

E f
A

2
4

3
5

a2Em
A

r
aI rð Þ½ �
4G f

A

þ
b2

r2�1

� �
r
aO rð Þ

h i
4Gm

A

8><
>:

9>=
>;

r f
zz zð Þ � rp

1þ b2

a2 � 1
� �

Em
A

E f
A

	 
� Em
A

b2

a2 � 1
� �

1þ b2

a2 � 1
� �

Em
A

E f
A

	 
 dd zð Þ
dz
þ am

A � a f
A

� �
T

	 
8>><
>>:

9>>=
>>; ð19Þ
Multiplying Eq. (3) by r2, substituting Eqs. (5)2 and (6)1,
and then integrating with respect to r over the
cross-sectional area of the fibre 0 6 r 6 að Þ yields

w f ða; zÞ �w f zð Þ ¼ sa zð Þ
2G f

A

rI rð Þ½ � ð12Þ

Similarly, multiplying Eq. (3) by b2 � r2
� �

, substituting

Eqs. (5)2 and (6)2, and then integrating with respect to r
over the cross-sectional area of the matrix a 6 r 6 bð Þ
yields

wmðzÞ �wmða; zÞ ¼ sa zð Þ
2Gm

A

b2
=r2 � 1

� �
rO rð Þ

h i
ð13Þ

The addition of Eqs. (12) and (13), using the relation equa-
tion (8), yields

wm zð Þ�wf zð Þþd zð Þ¼ rI rð Þ½ �
2Gf

A

þ
b2
=r2�1

� �
rO rð Þ

h i
2Gm

A

8><
>:

9>=
>;sa zð Þ

ð14Þ

Differentiate Eq. (14) with respect to z yields
em
zz zð Þ�ef

zz zð Þþdd zð Þ
dz
¼ rI rð Þ½ �

2Gf
A

þ
b2
=r2�1

� �
rO rð Þ

h i
2Gm

A

8><
>:

9>=
>;

dsa zð Þ
dz

ð15Þ

Averaging Eq. (2) by applying Eq. (9) over the fibre
0 6 r 6 að Þ and the matrix a 6 r 6 bð Þ, respectively, leads

to the results

e f
zz zð Þ ¼ r f

zz zð Þ
E f

A

� m f
A

E f
A

r f
rr zð Þ þ r f

hh zð Þ
h i

þ a f
AT

em
zz zð Þ ¼ rm

zz zð Þ
Em

A

� mm
A

Em
A

rm
rr zð Þ þ rm

hh zð Þ
� �

þ am
A T ð16Þ

The outer surface boundary r ¼ bð Þ is stress free, so the
mechanical equilibrium condition leads to

a2r f
zz zð Þ þ b2 � a2

� �
rm

zz zð Þ ¼ a2rp ð17Þ

Using the assumption (McCartney, 1992; Nairn, 1997)

mA

EA
rrr þ rhhð Þ

����
����� rzz

EA
þ aAT

����
���� ð18Þ

differentiating Eq. (10) and substituting it together with
Eqs. (16) and (17) into Eq. (15) results in
The differential equations (19) and (10) together with the
traction-separation cohesive law equation (1) constitute
the governing equations for the shear-lag model with a
cohesive fibre–matrix interface, from which the stress dis-
tributions can be derived when subjected to appropriate
boundary conditions.

For clarity, the average of the axial tensile stress in the

fibre, r f
zz zð Þ, is represented by rf zð Þ in the following

analysis.
3. Solution for initial linear elastic regime

For the cohesive interface in the initial linear elastic
regime, it can be obtained by differentiating Eq. (1) and
making use of Eq. (10) that
dd zð Þ
dz
¼ 1

K0

ds zð Þ
dz
¼ � 1

K0

dsa zð Þ
dz

¼ a
2K0

d2rf zð Þ
dz2 ð20Þ

where s zð Þ is the shear traction in the cohesive interface,
and s zð Þ ¼ �sa zð Þ.
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On substituting Eq. (20) into Eq. (19) it can be shown
that the average axial tensile stress in the fibre satisfies
the following second order differential equations
d2rf zð Þ
dz2 ¼

2 a2

b2�a2 þ
Em

A

E f
A

 �

a2 Em
A

2G f
A

r
a I rð Þ
� �

þ Em
A

2Gm
A

b2

r2 � 1
� �

r
a O rð Þ

h i
þ Em

A
aK0

	 
 rf zð Þ � 1

1þ Em
A

E f
A

b2

a2 � 1
� �	 
rp � rT

8>><
>>:

9>>=
>>; ð21Þ
where rT ¼
Em

A am
A �a f

Að ÞT
a2

b2�a2
þ

Em
A

E f
A

.

Let us now introduce the following scaling parameters:

f ¼ z=a; l ¼ L=a;

a ¼
2 1

b2=a2�1ð Þ þ
Em

A

E f
A

	 

Em

A

2G f
A

r
a I rð Þ
� �

þ Em
A

2Gm
A

b2

r2 � 1
� �

r
a O rð Þ

h i
þ Em

A
aK0

8>><
>>:

9>>=
>>;

1=2

; and

c ¼ 1

1þ Em
A

E f
A

b2

a2 � 1
� �	 


Then, the governing equation (21) can be expressed as:

d2rf fð Þ
df2 ¼ a2 rf fð Þ � crp � rT

� �
ð22Þ

and the interfacial shear stress is

sa fð Þ ¼ �1
2

drf fð Þ
df

ð23Þ

With a slight difference in the expression, Eq. (22) is essen-
tially identical to the result obtained by Nairn (2004) in
modelling imperfect interface with introducing an imper-
fect interface parameter into shear-lag analysis. The
shear-lag parameter a is the same as that obtained by
Nairn. The dominator of the shear-lag parameter a consists
of three parts: the fibre term; the matrix term; and the
cohesive interface term. For the case that the initial inter-
facial shear stiffness K0 is far greater than Em

A =a, the cohe-
sive interface term disappears, the shear-lag parameter,
a, and Eq. (22) are reduced to the result of the classical
shear-lag model where a perfectly bonded fibre–matrix
interface is assumed.

Define the following boundary conditions:

rf f ¼ 0ð Þ ¼ �rp; rf f ¼ lð Þ ¼ rp ð24Þ

where the dimensionless factor � defines relation between
the applied load, rp, and the average fibre axial stress at
the embedded end face f ¼ 0ð Þ.

Solution of Eq. (22) subjected to the boundary condi-
tions equation (24) yields, for the case of rT ¼ 0,
rf ¼ rpu f; l;að Þ sa ¼ �
rp

2
x f; l;að Þ d ¼ rp

2K0
x f; l;að Þ

ð25Þ
where

u f; l;að Þ ¼ Sinh afð Þ
Sinh alð Þ � �

Sinh a f� lð Þ½ �
Sinh alð Þ

þ c 1� Sinh afð Þ � Sinh a f� lð Þ½ �
Sinh alð Þ

	 

x f; l;að Þ ¼ u0 f; l;að Þ ¼ a
Cosh afð Þ
Sinh alð Þ � �

Cosh a f� lð Þ½ �
Sinh alð Þ

�

�c
Cosh afð Þ � Cosh a f� lð Þ½ �

Sinh alð Þ

�
ð26Þ

For the case of a completely free fibre end face at f ¼ 0, we
have � ¼ 0. For the case that the fibre end face at f ¼ 0 is
fully bonded with the matrix, it is generally difficult to
define the exact boundary condition, but various treat-
ments are available to provide good approximate boundary
conditions (Clyne, 1989; Hsueh, 1988, 1992; Starink and
Syngellakis, 1999). So, Eq. (25) provides unified expres-
sions for the solutions for both the completely free
� ¼ 0ð Þ and fully bonded �– 0ð Þ fibre end faces. As the ini-

tial shear stiffness of the cohesive interface, K0, approaches
infinity, the shear separation d in Eq. (25) is zero, and Eq.
(25) is reduced to the solution of the classical shear-lag
model (Hsueh, 1988, 1992).

Analysis of the terms of Eq. (25) provides insight into

the characteristics of the solution. The first term Sinh afð Þ
Sinh alð Þ in

u f; l;að Þ is equal to 0 at f ¼ 0 and 1 at f ¼ l, the second

term � Sinh a f�lð Þ½ �
Sinh alð Þ is equal to 1 at f ¼ 0 and 0 at f ¼ l, and

the third term is equal to 0 at both f ¼ 0 and f ¼ l and 1
at f ¼ l=2, symmetric with respect to f ¼ l=2. So, the first
term represents the effect of the load, the second term
reflects the effect of the boundary conditions at the
embedded fibre end face f ¼ 0ð Þ, and the third term
describes the effect of c on the axial stress distribution in
the fibre 0 < f < lð Þ.

Different assumptions on the radial dependence of the
shear stress in the fibre and matrix have been adopted in
shear-lag models. The assumption of I rð Þ ¼ 0 and
O rð Þ ¼ a=r (Aveston and Kelly, 1973; Budiansky et al.,
1986; Cox, 1952; Hsueh, 1988) ignores the shear stress in
the fibre and does not strictly satisfy the stress-free
boundary condition at the outer surface r ¼ bð Þ. Improved
results have been obtained by assuming I rð Þ ¼ r=a and



Fig. 3. The dimensionless shear-lag parameter a as a function of Em
A = aK0ð Þ.
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O rð Þ ¼ ab b=r � r=bð Þ= b2 � a2
� �

(McCartney, 1989; Nairn,

1997, 2004; Nayfeh, 1977) which satisfies the interface
continuity and boundary conditions for the shear stress.
Fig. 3 compares the shear-lag parameter a as a function
of Em

A = aK0ð Þ for different b=a by using three different forms
of the radial dependence function O rð Þ. It is shown that the
difference between the three expressions decreases as the
ratio Em

A = aK0ð Þ increases, and is insignificant for a large b=a .
It has been shown that the shear-lag method does not

work for low fibre volume fractions because the shear-lag
parameter a approaches zero as b=a becomes large
(Nairn, 1997). This limitation arises from a term of
ln b=að Þ in the matrix term of the dominator that
approaches infinity as b=a approaches infinity. To fix this
problem, modification has been made by adding a small

constant v to ln b=að Þ to replace it with � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=b2 þ v

q
in a generalised shear-lag analysis (Nairn, 2004).
v ¼ 0:009 has been suggested by best fitting finite element
results.

For a shear-lag analysis to be applicable when b=a
becomes large, the function O rð Þ needs to satisfy the condi-

tion that the average b2

r2 � 1
� �

r
a O rð Þ

h i
converges as b=a

approaches infinity. Actually, the average b2

r2 � 1
� �

r
a O rð Þ

h i
in the dominator of the shear-lag parameter always
includes the ln b=að Þ term if the assumed function O rð Þ
has a 1=r term. So the choice of an appropriate function
O rð Þwithout 1=r term may overcome this limitation. In this
paper, the radial dependence function O rð Þ is defined as
O rð Þ ¼ ek b�rð Þ=a � 1
ek b�að Þ=a � 1

ð27Þ
where the positive constant k describes the rate at which
the shear stress changes with respect to the radial distance.

Eq. (27) satisfies the interfacial and boundary condi-
tions equation (7) and decays fast towards zero as r
approaches b. Most important is that it results in a finite
average b2

r2 � 1
� �

r
a O rð Þ

h i
as b=a approaches infinity. It can

be shown that

lim
b=a!1

b2

r2 � 1

 !
r
a

ek b�rð Þ=a � 1
ek b�að Þ=a � 1

" #
¼ 2

k
ð28Þ

which ensures a well defined shear-lag parameter at zero
fibre volume fraction.

Fig. 4 compares the different radial dependence func-
tions for the shear stress, together with the finite element
analysis results. For comparison, an axisymmetrical finite
element model has been established to model the fibre
pull-out by using the commercial finite element package
ABAQUS. The geometric model and parameters for the
finite element modelling are given in the inset of Fig. 4.
Axisymmetrical elements (CAX4) are used to model the
fibre and matrix, and zero-thickness cohesive elements
(COHAX4) are used to model the cohesive fibre–matrix
interface. The axial displacement at the bottom boundary
of the matrix is constrained. The bottom end face of the
fibre is free from the matrix. Uniform displacement load
is applied to the top end face of the fibre. The radial depen-
dence function equation (27) with k ¼ 0:45 is much closer
to the finite element results, and is used in the following
analysis. For k ¼ 0:62, Eq. (28) yields a limit of 3.23, which
is very close to Nairn’s result of � ln 0:009� 3=2 ¼ 3:21 at
zero fibre volume fraction (Nairn, 2004).

The ‘‘exact’’ shear-lag stress state has been given by
Nairn (1997). For an approximate shear-lag analysis, as it
is shown in the generalised shear-lag analysis (Nairn,
2004), there are an infinite number of functions that can
be used to approximate the radial dependence of the shear
stress. For example, the following function may also pro-
vide a good approximation to the radial distribution

O rð Þ ¼ asbs

b2s � a2s

bs

rs
� rs

bs

 �
ð29Þ

which satisfies the interfacial and boundary conditions
equation (7) and decays towards zero as r approaches b.
It can be shown that, for s > 1,



(a) ⁄ = 2

(b) ⁄ = 6

b a

b a

Fig. 4. Comparison of different radial dependence functions for the shear stress: (a) b=a ¼ 2; and (b) b=a ¼ 6.
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lim
b=a!1

b2

r2 � 1

 !
r
a

� � asbs

b2s � a2s

bs

rs
� rs

bs

 �" #
¼ 2

s� 1
ð30Þ

In order for Eq. (29) or (27) to be used to approximate the
radial dependence of the shear stress in a shear-lag analy-
sis, an appropriately chosen parameter s in Eq. (29) or k in
Eq. (27) should provide a smooth transition between
results for large and small b=a and work for any combina-
tion of real fibre and matrix properties (Nairn, 2004).

Comparison of the magnitude of the cohesive shear
stresses at the embedded end f ¼ 0ð Þ and the loaded end
f ¼ lð Þ provides a criterion that determines at which end

interfacial damage and thus debonding will initiate. The
shear-strength based debonding criterion indicates that
the interfacial damage and debonding will initiate at left
end f ¼ 0ð Þ, at right end f ¼ lð Þ, or at both ends,
respectively, if s f ¼ 0ð Þj j is larger than, less than, or equal
to s f ¼ lð Þj j. It can be derived from Eq. (25) that, for the case
of s f ¼ 0ð Þ > 0 and s f ¼ lð Þ > 0,
s f ¼ 0ð Þ > s f ¼ lð Þ if 2c� � > 1
s f ¼ 0ð Þ ¼ s f ¼ lð Þ if 2c� � ¼ 1
s f ¼ 0ð Þ < s f ¼ lð Þ if 2c� � < 1

ð31Þ
So, in this case, interfacial damage and debonding will ini-
tiate at the embedded end f ¼ 0ð Þ if 2c� � > 1, at the
loaded end f ¼ lð Þ if 2c� � < 1, and at both ends simulta-
neously if 2c� � ¼ 1. For the case of a free embedded fibre
end, � ¼ 0, and the criterion equation (31) is reduced to
that given by Leung and Li (1991). Fig. 5 shows the distri-
bution of the interfacial shear stress for the three cases.



Fig. 5. The distribution of the interfacial shear stress for three different cases l ¼ 10ð Þ.
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4. Solution for damage evolution regime

After interfacial damage initiates, damage process zone
will grow and evolve progressively during the fibre
pull-out. It can be obtained from Eq. (1)

dd
dz
¼ 1

1� Dð ÞK0

ds
dz

ð32Þ

Substitution of Eq. (10) into Eq. (32), and then into Eq. (19)
results in the governing equation for the damage process
zone
Ini�al elas�c system: 

Virtual elas�c system: 

Damage: 

Elas�c zone Damage zone

Fig. 6. Schematic diagram showing the idea of approximating interfacial
damage by superposition of two elastic systems.

d2rf zð Þ
dz2 ¼

2 a2

b2�a2 þ
Em

A

E f
A

 �

a2 Em
A

2G f
A

r
a I rð Þ
� �

þ Em
A

2Gm
A

b2

r2 � 1
� �

r
a O rð Þ

h i
þ Em

A
a 1�Dð ÞK0

	 
 rf zð Þ � 1

1þ Em
A

E f
A

b2

a2 � 1
� �	 
rp � rT

8>><
>>:

9>>=
>>; ð33Þ
In Eq. (33), the damage variable D is loading history depen-
dent, and is a function of z due to different shear separa-
tions dmax zð Þ (and thus different degrees of interfacial
softening) in the damage process zone. So the interfacial
damage zone is an inhomogeneous elastic interface in
terms of the residual interfacial stiffness and strength,
and the exact analytical solution of Eq. (33) is generally
not available.

Study of the bilinear cohesive traction-separation law
provides an idea to find an approximate analytical solution
of the interfacial damage and debonding problem. As
shown in Fig. 2, the cohesive shear stress due to the inter-
facial damage, s dmaxð Þ, is equal to the shear stress predicted
by the initial elastic traction-separation behaviour for the
current separation without damage, K0d

max, minus a virtual
shear stress, K2 dmax � d0ð Þ. So, the damage behaviour may
be approximated by superposition of two elastic systems
without damage: one is the initial elastic system
characterised by K0; and the other is a virtual elastic sys-
tem characterised by K 0. This idea is depicted in the sche-
matic diagram Fig. 6.

As illustrated in Fig. 6, the shear stress in the interfacial
damage zone is modelled by superposing a shear stress
given by the initial linear elastic traction-separation beha-
viour without damage with an additional shear stress com-
ponent from the virtual elastic system. It is assumed that
the virtual elastic stress system to be superposed does
not change the shear stress in the elastic zone nor the sep-
aration but affects the stress distribution in the damage
process zone only.
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The virtual elastic stress system satisfies the governing
equation:

d2rf

df2 ¼ b2 rf � cr0
� �

ð34Þ

sa ¼ �
1
2

drf

df
ð35Þ

where the dimensionless parameter b is obtained from the
expression of a by directly replacing K0 with K 0.

For the interfacial damage initiates from the left end
(the embedded end), the virtual stress system within the

left damage zone 0 6 f 6 lL
0

� �
satisfies the following

boundary conditions:

rf f ¼ 0ð Þ ¼ 0; and sa f ¼ lL
0

� �
¼ 0 ð36Þ

which assures that the virtual stress system satisfies
the boundary condition at the embedded end and the
damage initiation condition at the right end of the damage
zone.

Substituting the boundary conditions equation (36) into
Eqs. (34) and (35) yields the solution for the virtual stress

system in the left damage zone 0 6 f 6 lL
0

� �
as

rf ¼ r̂L
0 1�

Cosh b f� lL0
� �h i

Cosh blL
0

� �
2
4

3
5

sa ¼
br̂L

0

2

Sinh b f� lL
0

� �h i
Cosh blL

0

� � ð37Þ

where r̂L
0 needs to be determined by satisfying the damage

evolution law at the left end f ¼ 0ð Þ of the damage zone.
If the interfacial damage initiates from the right end

(the loaded end), the virtual stress system within the right

damage zone lR
0 < f < l

� �
satisfies the following boundary

conditions:

rf f ¼ lR
0

� �
¼ 0; and sa f ¼ lR

0

� �
¼ 0 ð38Þ

which assures that the stress in the left elastic zone is not
affected by the virtual stress system.

Then the solution for the virtual stress system in the

right damage zone lR
0 < f < l

� �
can be given as

rf ¼ r̂R
0 1� Cosh b f� lR0

� �h in o

sa ¼
br̂R

0

2
Sinh b f� lR

0

� �h i
ð39Þ

where r̂R
0 needs to be determined by satisfying the damage

evolution law at the right end f ¼ lð Þ of the damage zone.
Define the following four critical values

rL
0 ¼

2K0d0

x f ¼ 0; l;að Þ ; rL
1 ¼

2K0d1

x f ¼ 0; l;að Þ ; rR
0

¼ 2K0d0

x f ¼ l; l;að Þ ; and rR
1 ¼

2K0d1

x f ¼ l; l;að Þ ð40Þ
where the subscripts L and R denote the left end f ¼ 0ð Þ
and the right end f ¼ lð Þ, respectively. rL

0 and rL
1 are the

applied loads when the interfacial shear separation at the
left end f ¼ 0ð Þ of the initial elastic system reaches d0

and d1, respectively, and rR
0 and rR

1 are the applied loads
when the interfacial shear separation at the right end
f ¼ lð Þ of the initial elastic system reaches d0 and d1,

respectively. It should be noted that once a failure zone ini-
tiates in the cohesive interface during the fibre pull-out,
the effective length l0, over which the shear stress is trans-
ferred, should be used in calculating the corresponding
loads by using Eq. (40).

Depending on the geometrical and mechanical proper-
ties of the system, the four critical values may be in differ-
ent orders, and hence there are various scenarios that the
interfacial damage and debonding may initiate from differ-
ent ends (the embedded end and/or the loaded end) in dif-
ferent sequences of events. In this paper, solutions of the
stress distributions for the following two scenarios are
given:

Scenario 1: rR
0 < rR

1 < rL
0 < rL

1.
Scenario 2: rL

0 < rL
1 < rR

0 < rR
1.

The details of the solutions for the above two scenarios
are given in Appendix A. The solutions for other scenarios
can be obtained by following the same solution procedure.
4.1. Scenario 1: damage initiates at right end f ¼ lð Þ

As determined by Eq. (31), interfacial damage will initi-
ate at the right end if 2c� � < 1. For this case, after the ini-
tial elastic deformation stage, the damage zone initiates at
the right end where the interfacial separation reaches d0,
and grows leftwards with further loading. When the inter-
facial separation reaches d1 and the cohesive shear traction
is reduced to zero, the interfacial failure (debonding) initi-
ates at the right end and grows leftwards. The detailed
solutions for the cohesive interface in different stages of
deformation are given in Appendix A.1.

Fig. 7(a) and (b) show, respectively, the distributions of
the interfacial shear stress and the average axial stress
along the fibre at different stages with the left end face
of the fibre free from the matrix � ¼ 0ð Þ. For the modelled
system, 2c� � ¼ 0:444 < 1. The finite element modelling
of the fibre pullout has been conducted and the results
are shown in Fig. 7 for comparison. The geometrical and
mechanical parameters for the finite element modelling
are given in the inset of Fig. 7. In this study, K 0 is assumed
to equal K2. The finite element calculations of the shear
traction in the cohesive interface and the average axial
stress in the fibre are plotted in Fig. 7. The analytical pre-
dictions are in good agreement with the finite element cal-
culations at the elastic stage. When a right damage zone
develops, the analytical prediction of the shear stress
within the damage zone is larger than the finite element
result near the left end of the damage zone, which results
in a little larger prediction of the axial stress in the fibre
compared with the finite element prediction. Overall, the
analytical predictions compare satisfactorily well to the
finite element calculations.



(a) The interfacial shear stress. 

(b) The average axial stress along the fibre. 

Fig. 7. Comparison of the analytical solution to the FE model calculations for the case that damage initiates from the right end: (a) the interfacial shear
stress; and (b) the average axial stress along the fibre.
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4.2. Scenario 2: damage initiates at left end f ¼ 0ð Þ

As determined by Eq. (31), interfacial damage will initi-
ate at the left end if 2c� � > 1. For this case, after the ini-
tial elastic deformation stage, the damage zone initiates at
the left end where the interfacial separation reaches d0,
and grows rightwards. When the interfacial separation
reaches d1 and the cohesive shear traction is reduced to
zero, the interfacial failure (debonding) initiates at the left
end and grows rightwards. The detailed solutions for the
cohesive interface in different stages of deformation are
given in Appendix A.2.

Fig. 8(a) and (b) show, respectively, the distributions of
the interfacial shear stress and the average axial stress in
the fibre at different stages with the left end face of the
fibre free from the matrix � ¼ 0ð Þ. The finite element anal-
ysis results have been plotted for comparison. The param-
eters used are listed in the inset of Fig. 8(a). For the
modelled system, 2c� � ¼ 1:54 > 1. Overall, the analytical
predictions compare satisfactorily well to the finite ele-
ment calculations.

4.3. The maximum fibre pull-out force

For the case of interfacial damage initiates at the right
end and the embedded fibre length l is long enough, the
maximum pull-out force (stress) is given by

rmax
f ¼ 2K0d1

Sinh alð Þ
a Cosh alð Þ � �� c Cosh alð Þ � 1½ �f g

�

�
Cosh b l� lR

0

� �h i
� 1

bSinh b l� lR
0

� �h i
9=
; ð41Þ

For the case of interfacial damage initiates at the left end,
the maximum pull-out force is



(a) The interfacial shear stress. 

(b) The average axial stress along the fibre. 

Fig. 8. Comparison of the analytical solution to the FE model calculation
for the case that damage initiates from the left end: (a) the interfacial
shear stress, and (b) the average axial stress along the fibre.

Fig. 9. The maximum fibre pull-out force as a
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rmax
f ¼2K0d1

Sinh alð Þ
a 1��Cosh alð Þ�c 1�Cosh alð Þ½ �f g�

Cosh blL
0

� �
�1

bSinh blL
0

� �
8<
:

9=
;
ð42Þ

The maximum pull-out force, rmax
f , given by Eqs. (41) and

(42) increases with the embedded fibre length. As the
embedded fibre length l approaches infinity, we have

lim
l!1

l� lR
0

� �
¼ lim

l!1
lL
0 ¼

1
a

ln
d1

d0
ð43Þ

Then, Eqs. (41) and (42) yield, respectively,

lim
l!1

rmax
f ¼ 2Kd1

1
a 1� cð Þ �

Cosh b
a ln d1

d0

� �h i
� 1

bSinh b
a ln d1

d0

� �h i
8<
:

9=
; ð44Þ
lim
l!1

rmax
f ¼ 2Kd1

1
a c� �ð Þ �

Cosh b
a ln d1

d0

� �h i
� 1

bSinh b
a ln d1

d0

� �h i
8<
:

9=
; ð45Þ

Fig. 9 shows the maximum fibre pull-out force (Eq. (41))
as a function of the embedded fibre length for the case of
� ¼ 0. The parameters listed in the inset of Fig. 7 are used.
It can be seen that the maximum pull-out force increases
significantly with the embedded length l when the embed-
ded length is short, and rapidly approaches its limit at a
certain embedded length. After that, further increase in
the embedded fibre length leads to very limited increase
in the maximum fibre pull-out force. So, for a given mate-
rial system, there is a critical effective embedded fibre
length at which the load transfer efficiency of the fibre is
nearly saturated. The critical effective length can be
obtained by solving Eq. (41) or Eq. (42) with a given max-
imum pull-out force. It needs to be emphasised that if
there is a strong interfacial friction between the matrix
and the debonded fibre (Nairn, 2000), which is not consid-
ered in this analysis, the relation between the maximum
pull-out force and the embedded fibre length should be
different from that shown in Fig. 9.
function of the embedded fibre length.



Fig. 10. Comparison of the predicted fibre pull-out curves.
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4.4. The fibre pull-out curve

From the solutions for different stages of deformation,
the fibre pull-out curve can be derived. Fig. 10 compares
the pull-out curves � ¼ 0ð Þ predicted by the analytical solu-
tion and the finite element model by using the parameters
listed in Fig. 7. In Fig. 10, the pull-out force rf lð Þ (the axial
stress in the fibre at the loaded end) is plotted as a function
of the interfacial separation at the loaded end f ¼ lð Þ. For
the analytical model, the shear separation within the inter-
facial failure zone (debonded zone) is approximated as

d fð Þ � d1 þ
rmax

f � rf lð Þ
Ef

f� l0
� �

l0 6 f 6 l
� �

ð46Þ

Compared with the finite element prediction, the analyti-
cal model overestimates the maximum pull-out force.
One reason is due to the one-dimensional characteristics
in the simplifications and assumptions adopted in the
shear-lag model, while the finite element model is a 3-D
simulation and the stress concentration effect may cause
earlier damage initiation. Another reason is that the inter-
facial softening duo to damage is approximately modelled
by assuming that the virtual stress system does not affect
the deformation (interfacial separation) and the damage
evolution law is met only at the right and left ends of the
damage zone in the approximate analytical model. This
may underestimate the interfacial damage and softening,
and thus overestimate the shear stress and the pull-out
force, as indicated by the results shown in Fig. 7. Overall,
the approximate analytical model predicts the stress distri-
butions at different interfacial deformation stages and the
fibre pull-out behaviour satisfactorily well.
Fig. 11. Comparison of analytical predictions to experimental results of
the fibre strain distribution.
5. Comparison to experimental results

The stress-transfer characteristics in fragmentation pro-
cesses in carbon fibre/epoxy resin systems has been stud-
ied by using the technique of Laser Raman spectroscopy
(Melanitis et al., 1993). A set of fragmentation tests on a
short high-modulus carbon fibre embedded in epoxy resin
were conducted to obtain the stress distribution along the
fibre at different levels of applied strain. Details about the
experimental procedures and results are given in the liter-
ature (Melanitis et al., 1993).

Fig. 11 compares the measured fibre strain along the
length of the fibre at an applied strain of 0.6% to the predic-
tions of the shear-lag analysis. The mechanical properties
and geometries of the fibre/matrix system (Melanitis
et al., 1993; Nairn, 2004) and the interfacial cohesive prop-
erties used in the analysis are listed in the inset of Fig. 11.
The experimental measurements showed that the interfa-
cial shear stress reached a maximum at the bonded fibre
ends and decayed to zero at the middle of the fibre. The
average maximum interfacial shear stress at the applied
strain of 0.6% was 36.7 MPa. This maximum shifted
inwards along the fibre fragment and decreased as the
applied strain increased. In the fragmentation test, the
applied strain was transferred to the fibre through
the matrix and both end faces of the fibre were free from
the matrix. To model the fragmentation test, we first
set the boundary condition parameter � ¼ 1 in Eq. (24),
and apply a load rp to the right end ðz ¼ 2:8 mmÞ of the
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fibre to produce a maximum shear stress of 36.7 MPa at
both ends of the fibre by using the elastic pull-out solution
equation (25). The fibre axial stress in the fragmentation
test is then obtained by superposing the pull-out solution
with a constant axial stress to produce the zero net axial
stress at both ends (free from the matrix) of the fibre. It
can be seen from Fig. 11 that the model predictions with
using the interfacial cohesive properties fit the experimen-
tal data satisfactorily well.
6. Concluding remarks

We have derived the governing equations of a shear-lag
model with a cohesive fibre–matrix interface which is
modelled by a bilinear cohesive traction-separation law.
Analytical solutions for the distribution and evolution of
the interfacial shear stress and the axial stress in the fibre
during the fibre pull-out have been obtained.

The analytical solution provides a unified expression for
the case that the embedded fibre end face is fully bonded
with or completely free from the matrix. The accurate solu-
tion for the cohesive interface in the initial linear elastic
deformation regime is reduced to the result of the classical
shear-lag model when the interfacial shear stiffness times
the fibre radius is far greater than the axial tensile modulus
of the matrix. In addition, the function proposed for the
assumed shear stress distribution in the matrix fixes the
problem of zero shear-lag parameter when b=a approaches
infinity, enabling the shear-lag analysis to deal with low
fibre volume fractions.

Interfacial damage and softening are approximated by
superposing two elastic stress systems and requiring the
damage evolution law to be met at the two ends of the
damage process zone, and approximate analytical solu-
tions are obtained. Depending on the geometrical and
mechanical properties of the fibre–matrix system, interfa-
cial damage and debonding may occur from different ends
of the fibre in different sequences of events.

The maximum fibre pull-out force increases with the
embedded fibre length. There is a critical embedded fibre
length that the load transfer efficiency of the fibre is nearly
saturated, beyond which, the increase in the maximum
fibre pull-out force is insignificant.

Compared with the cohesive finite element calculations,
the approximate analytical solutions underestimate the
interfacial shear stress, and hence overestimate the axial
stress in the fibre when interfacial damage and debonding
occur. However, considering the one-dimensional charac-
teristics of the shear-lag analysis, the analytical solutions
generally agree well with the finite element calculations,
and provide a simple method for the analysis of the inter-
facial damage and debonding during fibre pull-out. The
analytical solutions with using appropriate interfacial
cohesive properties fit the experimental results satisfacto-
rily well.
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Appendix A. Solution for interfacial debonding

A.1. Scenario 1: damage initiates at right end f ¼ lð Þ

As determined by Eq. (31), interfacial damage will
initiate from the right end if 2c� � < 1. For this case, the
cohesive fibre–matrix interface may experience the follow-
ing stages during the fibre pull-out if rR

0 < rR
1 < rL

0 < rL
1.

Stage 1: fully elastic deformation 0 6 r 6 rR
0

� �
.

The solution for the whole linear elastic cohesive inter-
face 0 6 f 6 lð Þ is

rf ¼ru f; l;að Þ sa¼�
r
2
x f; l;að Þ d¼ r

2K0
x f; l;að Þ ðA:1Þ

where r is the applied load, and rR
0 ¼

2K0d0
x l;l;að Þ ¼

2K0d0Sinh alð Þ
a Cosh alð Þ���c Cosh alð Þ�1½ �f g.

Stage 2: damage zone initiates from right end
rR

0 6 r 6 rR
1

� �
.

The cohesive interface consists of a left linear elastic

zone 0 6 f 6 lR
0

� �
and a right damage process zone

lR
0 6 f 6 l

� �
. rR

1 represents the applied load when the sep-

aration at the right end f ¼ lð Þ of the initial elastic system
reaches d1, and is given by

rR
1 ¼

2K0d1

x l; l;að Þ ¼
2K0d1Sinh alð Þ

a Cosh alð Þ � �� c Cosh alð Þ � 1½ �f g

For the left linear elastic zone 0 6 f 6 lR
0

� �
, the solution is

given by Eq. (A.1).

The solution for the right damage zone lR
0 6 f 6 l

� �
is

given by

rf ¼ ru f; l;að Þ þ r̂R
0 1� Cosh b f� lR

0

� �h in o

sa ¼ �
r
2
x f; l;að Þ þ br̂R

0

2
Sinh b f� lR0

� �h i

d ¼ r
2K0

x f; l;að Þ ðA:2Þ

where r̂R
0 is determined by satisfying the damage evolution

law equation (1) at f ¼ l, i.e.

s f ¼ lð Þ ¼ K1 d1 � d f ¼ lð Þ½ � ðA:3Þ

which results in

r̂R
0 ¼

2 K2d f ¼ lð Þ � K1d1½ �
bSinh b l� lR

0

� �h i ðA:4Þ

The applied load at the right end is

rf f ¼ lð Þ ¼ r� r̂R
0 Cosh b l� lR

0

� �h i
� 1

n o
ðA:5Þ

For a given l0 (exactly lR
0 here), i.e. when the right damage

zone evolves leftwards to l0, the corresponding load, r, is

given by the damage initiation criterion s f ¼ lR
0

� �
¼ s0 as
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r¼ 2s0Sinh alð Þ
a Cosh al0ð Þ � �Cosh a l0 � lð Þ½ � � c Cosh al0ð Þ �Cosh a l0 � lð Þ½ �½ �f g

ðA:6Þ
Or, inversely, for a given rR
0 6 r 6 rR

1

� �
; l0 is obtained by

solving Eq. (A.6) as
lR;L
0 ¼

1
a

ln
2s0
ar Sinh alð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s0
ar Sinh alð Þ
� �2 � 1� cþ c� �ð Þe�al½ � 1� cð Þ þ c� �ð Þeal½ �

q
1� cþ c� �ð Þe�al½ � ðA:7Þ
Stage 3: failure initiates at right end r ¼ rR
1

� �
.

As the interfacial shear separation at right end reaches
the critical value d1, i.e. d f ¼ lð Þ ¼ d1, the interfacial failure
(debonding) initiates at the right end. The solution is the
same as that for Stage 2 with r̂R

1 given by

r̂R
1 ¼

2 K2d f ¼ lð Þ � K1d1½ �
bSinh b l� lR

0

� �h i ¼ 2 K2d1 � K1d1½ �
bSinh b l� lR0

� �h i
¼ 2K0d1

bSinh b l� lR
0

� �h i ðA:8Þ

Stage 4: right failure zone grows leftwards
During this stage, the cohesive interface consists of a

left linear elastic zone 0 < f < lR
0

� �
, a middle damage zone

lR
0 < f < l0

� �
, and a right failure zone l0 < f < l

� �
.

The solutions for the elastic zone and the damage zone
can be obtained directly by replacing l with the effective
embedded length l0 as:

The left linear elastic zone 0 < f < lR
0

� �

rf ¼ ru f; l0;a
� �

sa ¼ �
r
2

x f; l0;a
� �

d

¼ r
2K0

x f; l0;a
� �

ðA:9Þ

The middle damage zone lR
0 < f < l0

� �

rf ¼ ru f; l0;a
� �

þ r̂R
1 1� Cosh b f� lR0

� �h in o

sa ¼ �
r
2

x f; l0;a
� �

þ br̂R
1

2
Sinh b f� lR

0

� �h i

d ¼ r
2K0

x f; l0;a
� �

ðA:10Þ

where r̂R
1 ¼

2K0d1

bSinh b l0�lR0ð Þ½ �, and r ¼ 2K0d1Sinh al0ð Þ
a Cosh al0ð Þ���c Cosh al0ð Þ�1ð Þ½ �,

which decreases with l0.
The right failure zone l0 < f < l

� �
rf ¼rf f¼ l0

� �
¼

2K0d1Sinh al0
� �

a Cosh al0
� �

���c Cosh al0
� �

�1
� �� �

sa¼0

ðA:11Þ
Stage 5: left damage zone initiates and grows rightwards
As the effective embedded length l0 decreases, the left

damage zone may initiate and grow rightwards. In this
stage, the cohesive interface consists of a left damage zone

0 < f < lL
0

� �
, a middle elastic zone lL

0 < f < lR
0

� �
, a right
fully developed damage zone lR
0 < f < l0

� �
, and a right fail-

ure zone l0 < f < l
� �

.

The solution for the left damage zone 0 < f < lL
0

� �
is

rf ¼ ru f; l0;a
� �

þ r̂L
0 1�

Cosh b f� lL0
� �h i

Cosh blL
0

� �
2
4

3
5

sa ¼ �
r
2

x f; l0;a
� �

þ br̂L
0

2

Sinh b f� lL
0

� �h i
Cosh blL

0

� �

d ¼ r
2K0

x f; l0;a
� �

ðA:12Þ

where r̂L
0 ¼

2 K1d1�K2d f¼0ð Þ½ �Coth blL0ð Þ
b .

The solution for the middle elastic zone lL
0 < f < lR

0

� �
is

rf ¼ ru f; l0;a
� �

þ r̂L
00 sa ¼ �

r
2

x f; l0;a
� �

d

¼ r
2K0

x f; l0;a
� �

ðA:13Þ

where r̂L
00 ¼ r̂L

0 1� 1
Cosh blL0ð Þ

	 

.

The solution for the right damage zone lR
0 < f < l0

� �
is

rf ¼ ru f; l0;a
� �

þ r̂L
00 þ r̂R

1 1� Cosh b f� lR
0

� �h in o

sa ¼ �
r
2

x f; l0;a
� �

þ br̂R
1

2
Sinh b f� lR

0

� �h i

d ¼ r
2K0

x f; l0;a
� �

ðA:14Þ

The solution for the right failure zone l0 < f < l
� �

is

rf ¼ rf f ¼ l0
� �

¼
2K0d1Sinh al0

� �
a Cosh al0

� �
� �� c Cosh al0

� �
� 1

� �� �
þ r̂L

00 þ r̂R
1 1� Cosh b l0 � lR

0

� �h in o
sa ¼ 0

ðA:15Þ
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�

Fig. 12. A new moving coordinate system.

Z. Chen, W. Yan / Mechanics of Materials 91 (2015) 119–135 133
Stage 6: left and right damage zones merge before failure
initiates at the left end

In this stage, the left and right damage zones merge. The
cohesive interface consists of a left damage zone
0 < f < l0ð Þ, a right damage zone l0 < f < lð Þ, and a right

failure zone l0 < f < l
� �

.
The solution for the left part of the damage zone

0 < f < l0ð Þ is

rf ¼ ru f; l0;a
� �

þ r
�L

1 þ c1ebf þ c2e�bf
� �

sa ¼ �
r
2
x f; l0;a
� �

� b
2

c1ebf � c2e�bf
� �

d ¼ r
2K0

x f; l0;a
� �

ðA:16Þ

where

c1¼
B�Ae�bl0

ebl0 �e�bl0
c2¼

B�Aebl0

ebl0 �e�bl0
r
�L

1¼�
2B�Aebl0 �Ae�bl0

ebl0 �e�bl0

A ¼ 2 K1d1 � K2d f ¼ 0ð Þ½ �
b

B ¼ 2 K1d1 � K2d f ¼ l0ð Þ½ �
b

:

The solution for the right part of the damage zone
l0 < f < lð Þ is

rf ¼ ru f; l0;a
� �

þ r
�R

0 þ c3ebf þ c4e�bf
� �

sa ¼ �
r
2
x f; l0;a
� �

� b
2

c3ebf � c4e�bf
� �

d ¼ r
2K0

x f; l0;a
� �

ðA:17Þ

where

c3 ¼
Febl0 � Eebl0

e2bl0 � e2bl0
c4 ¼ �

Fe�bl0 � Ee�bl0

e�2bl0 � e�2bl0
r
�R

0

¼ r
�L

1 þ c1ebl0 þ c2e�bl0 � c3ebl0 þ c4e�bl0
� �

E ¼ c1ebl0 � c2e�bl0 F ¼ �2K0d1

b

Here l0 is determined by the condition that the shear sep-
aration has a minimum at f ¼ l0ð Þ as

l0 ¼
1

2a
ln

1þ cð Þ � �� cð Þeal0

1þ c� �� cð Þe�al0
ðA:18Þ

The solution for the right failure zone l0 < f < l
� �

is

rf ¼ rf f ¼ l0
� �

¼ 2K0d1Sinh al0ð Þ
a Cosh al0ð Þ���c Cosh al0ð Þ�1ð Þ½ � þ r�R

0 þ c3ebl0 þ c
�

sa ¼ 0
ðA:19Þ

Stage 7: left failure zone initiates and middle damage zone
shrinks

In this stage, a failure zone 0 < f < lL
1

� �
initiates from

the left end, and the damage zone lL
1 < f < l0

� �
shrinks

until the total interfacial debonding. The solution in Stage
6 is still valid with A ¼ �2K0d1=b. And it is easy to express
the solution by introducing a new coordinate, with its ori-

gin moving rightwards with lL
1.

A.2. Scenario 2: damage initiates at left end f ¼ 0ð Þ

As determined by Eq. (31), interfacial damage will initi-
ate from the left end if 2c� � > 1. For this case, the cohe-
sive fibre–matrix interface may experience the following
stages during the fibre pull-out.

Stage 1: fully elastic deformation 0 6 r 6 rL
0

� �
.

The solution for the whole linear elastic cohesive inter-
face 0 6 f 6 lð Þ is

rf ¼ ru f; l;að Þ sa ¼ �
r
2

x f; l;að Þ d ¼ r
2K0

x f; l;að Þ

ðA:20Þ

where r is the applied load, and rL
0 ¼

2K0d0
x 0;l;að Þ ¼

2K0d0Sinh alð Þ
a 1��CoshðalÞ�c½1�CoshðalÞ�f g.

Stage 2: damage zone initiates from left end
rL

0 6 r 6 rL
1

� �
.

The cohesive interface consists of a left damage process

zone 0 6 f 6 lL
0

� �
and a right linear elastic zone

lL
0 6 f 6 l

� �
. rL

1 represents the applied load when the inter-

facial shear separation at the left end f ¼ 0ð Þ of the initial
elastic system reaches d1, and is given by

rL
1 ¼

2K0d1

x 0; l;að Þ ¼
2K0d1Sinh alð Þ

a 1� �Cosh alð Þ � c 1� Cosh alð Þ½ �f g

The solution for the left damage zone 0 6 f 6 lL
0

� �
is given

by

rf ¼ ru f; l;að Þ þ r̂L
0 1�

Cosh b f� lL
0

� �h i
Cosh blL

0

� �
2
4

3
5

sa ¼ �
r
2
x f; l;að Þ þ br̂L

0

2

Sinh b f� lL
0

� �h i
Cosh blL

0

� �

d ¼ r
2K0

x f; l;að Þ ðA:21Þ

where r̂L
0 ¼

2 K1d1�K2d f¼0ð Þ½ �Coth blL0ð Þ
b .
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The solution for the right elastic zone lL
0 6 f 6 l

� �
is

rf ¼ ru f; l;að Þ þ r̂L
00

sa ¼ �
r
2

x f; l;að Þ

d ¼ r
2K0

x f; l;að Þ ðA:22Þ

where r̂L
00 ¼ r̂L

0 1� 1
Cosh blL0ð Þ

	 

.

Stage 3: failure initiates at left end r ¼ rL
1

� �
.

As the interfacial shear separation at the left end
reaches the critical value d1, i.e. d f ¼ 0ð Þ ¼ d1, the interfa-
cial failure (debonding) initiates at the left end. The solu-
tion is the same as that for Stage 2 with replacing r̂L

0

with r̂L
1, and r̂L

00 with r̂L
10 as

r̂L
1 ¼

2 K1d1 � K2d f ¼ 0ð Þ½ �Coth blL
0

� �
b

¼
2 K1d1 � K2d1½ �Coth blL

0

� �
b

¼ �
2K0d1Coth blL

0

� �
b

r̂L
10 ¼ r̂L

1 1� 1

Cosh blL
0

� �
2
4

3
5

Stage 4: left failure zone grows rightwards
During this stage, duo to the partial interfacial debond-

ing from the left end, the effective fibre length reduces
from the initial length l to l0. It is much convenient to
express the solution by introducing a new moving coordi-
nate g as shown in Fig. 12.

The solution for the left failure zone 0 < f < l� l0
� �

is

rf ¼ r� sa ¼ 0 ðA:23Þ

The solution for the middle damage zone

l� l0 < f < l� l0 þ lL
0; or equivalently 0 < g < lL

0

� �
is

rf ¼ ru g; l0;a
� �

þ r̂L
1 1�

Cosh b g� lL
0

� �h i
Cosh blL

0

� �
2
4

3
5

sa ¼ �
r
2

x g; l0;a
� �

þ br̂L
1

2

Sinh b g� lL
0

� �h i
Cosh blL

0

� �

d ¼ r
2K0

x g; l0;a
� �

ðA:24Þ

where r̂L
1 ¼

2K0d1

x 0;l0 ;að Þ ¼
2K0d1Sinh al0ð Þ

a 1��Cosh al0ð Þ�c 1�Cosh al0ð Þ½ �f g, which

decreases as l0 decreases.

Note, here lL
0 is a function of the effective fibre length l0.

The solution for the right elastic zone lL
0 < g < l0

� �
is

rf ¼ ru g; l0;a
� �

þ r̂L
10
sa ¼ �
r
2

x g; l0;a
� �

d ¼ r
2K0

x g; l0;a
� �

ðA:25Þ

Stage 5: right damage zone initiates and grows leftwards
In this stage, the cohesive interface consists of a left fail-

ure zone 0 < f < l� l0
� �

, a left damage zone 0 < g < lL
0

� �
, a

middle elastic zone lL
0 < g < lR

0

� �
, and a right damage zone

lR
0 < g < l0

� �
.

The solutions for the left failure zone, the left damage
zone and the middle elastic zone are the same as those
in Stage 4.

The solution for the right damage zone lR
0 < g < l0

� �
is

rf ¼ ru g; l0;a
� �

þ r̂L
10 þ r̂R

0 1� Cosh b f� lR
0

� �h in o

sa ¼ �
r
2

x g; l0;a
� �

þ br̂R
0

2
Sinh b f� lR

0

� �h i

d ¼ r
2K0

x g; l0;a
� �

ðA:26Þ

where r̂R
0 ¼

2 K2d g¼l0ð Þ�K1d1½ �
bSinh b l0�lR0ð Þ½ � .

Stage 6: right and left damage zones merge before failure
initiates at right end

The solution for the left failure zone 0 < f < l� l0
� �

is
the same as that in Stage 4.

The solution for the left damage zone 0 < g < l0ð Þ is

rf ¼ ru g; l0;a
� �

þ r
�L

1 þ c1ebg þ c2e�bg
� �

sa ¼ �
r
2

x g; l0;a
� �

� b
2

c1ebg � c2e�bg� �

d ¼ r
2K0

x g; l0;a
� �

ðA:27Þ

where

c1 ¼
B� Ae�bl0

ebl0 � e�bl0
c2 ¼

B� Aebl0

ebl0 � e�bl0
r
�L

1 ¼ � c1 þ c2ð Þ

¼ �2B� Aebl0 � Ae�bl0

ebl0 � e�bl0

A ¼ �2K0d1

b
B ¼ 2 K1d1 � K2d g ¼ l0ð Þ½ �

b

The solution for the right damage zone l0 < g < l0
� �

is

rf ¼ ru g; l0;a
� �

þ r
�R

0 þ c3ebg þ c4e�bg
� �

sa ¼ �
r
2

x g; l0;a
� �

� b
2

c3ebg � c4e�bg� �

d ¼ r
2K0

x g; l0;a
� �

ðA:28Þ

where
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c3 ¼
Febl0 � Eebl0

e2bl0 � e2bl0
c4 ¼ �

Fe�bl0 � Ee�bl0

e�2bl0 � e�2bl0
r
�R

0

¼ r
�L

1 þ c1ebl0 þ c2e�bl0 � c3ebl0 þ c4e�bl0
� �

E ¼ c1ebl0 � c2e�bl0 F ¼
2 K1d1 � K2d g ¼ l0

� �� �
b

Stage 7: right failure zone initiates and grows leftwards,
and middle damage zone shrinks

In this stage, a failure zone l0 < g < l
� �

initiates from the
right end and grows leftwards, and the middle damage
zone 0 < g < l0

� �
shrinks until total interfacial debonding.

The solution in Stage 6 is still valid with F ¼ �2K0d1=b.
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