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Determination of transformation stresses of shape memory alloy thin films:
A method based on spherical indentation
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The forward and reverse transformation processes of superelastic shape memory alloys �SMAs�
under spherical indentation are analyzed. We found that there exist two characteristic points, the
bifurcating point and the returning point, in an indentation curve. The corresponding bifurcation
force and return force, respectively, rely on the forward transformation stress and the reverse
transformation stress. A method to determine the transformation stresses of SMA from the measure
of the bifurcation and return forces is proposed. Additionally, we suggest a slope approach to
determine the values of the two forces with high accuracy. © 2006 American Institute of Physics.
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Shape memory alloys �SMAs�, such as NiTi, are well
known for their extraordinary shape memory and superelas-
tic properties. These properties are due to the intrinsic ther-
moelastic martensitic transformation under mechanical load-
ing at different temperatures. For instance, in the case of
superelasticity, the transformed martensite produced due to
mechanical loading can transform back to austenite during
unloading, recovering a large amount of the prior deforma-
tion. Both the shape memory and the superelastic properties
have been exploited to design SMA-based structures. Re-
cently, thin film SMA has been recognized as a promising
and high performance material in the field of microelectro-
mechanical system. The reversible phase transformation in
shape memory alloys also signals extraordinary mechanical
properties such as high wear resistance and interesting dy-
namic response during indentation.1–5 In characterizing the
mechanical properties of structures in very small dimensions
such as thin films, the transformation stresses are usually
much more difficult to measure than the traditional bulk
samples. This stimulated the present research to perform the
spherical indentation of SMAs. We choose a spherical in-
denter to avoid plastic deformation as in sharp indenters so
that we can focus on the contributions of transformation
properties on the indentation response.

Consider a typical superelastic NiTi SMA whose simpli-
fied stress-strain curve under uniaxial loading is shown in
Fig. 1. The forward and reverse transformation processes are
treated as perfect, i.e., the forward and reverse transforma-
tion stresses � f and �r, are kept constant during the forward
and reverse transformations, respectively. In this simple
model, only seven material parameters are used to define the
superelastic behavior of a shape memory alloy. Besides � f
and �r, we also have �tr, the maximum transformation strain
in uniaxial tension, i.e., the maximum magnitude of the
transformation strain, Ea and Em, the elastic Young’s modu-
lus of austenite and martensite, and va and vm, the Poisson’s
ratio of austenite and martensite. This model can be easily
extended to the case of transformation hardening by adding
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two more parameters. It must be mentioned that here, Ea and
Em are considered as constant properties, which is a good
approximation for many superelastic NiTi alloys at a given
temperature.6,7 Due to the mixture of elastic deformation and
a small amount of transformation or martensite reorientation,
the apparent Ea and Em might vary during an apparent elastic
loading in some cases,7,8 which are excluded from the cur-
rent study.

The bifurcating point and the bifurcation force. We now
consider that a rigid diamond spherical indenter tip with ra-
dius R is pressed into a superelastic SMA. The finite element
method is applied to simulate such a frictionless indentation
process by using ABAQUS �Ref. 9� combined with a three
dimensional �3D� SMA model.10 Generally, the indentation
force F depends on the indentation depth h and the indenter
radius R, as well as the material parameters � f, �r, Ea, Em,
�tr, va, and vm, i.e.,

F = Z�� f,�r,Ea,Em,va,vm,�tr,h,R� . �1�

Before the start of the forward transformation, the material is
in a linear elastic state. Within the limits of small deforma-
tion, the Hertz contact theory can be applied to describe this
purely elastic contact problem. The elastic indentation force
before phase transformation is therefore determined by11

F =
4

3
Ea

*R1/2h3/2, �2�

where Ea
*=Ea / �1−va

2�. Once the maximum equivalent stress
inside the material reaches the forward transformation stress,
FIG. 1. An idealized superelastic model under uniaxial loading.
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austenite will start to transform to martensite,10 and the in-
dentation force-depth curve will start to deviate from the
pure elastic curve as demonstrated in Fig. 2�a�. A bifurcating
point can be defined as the point in the indentation loading
curve that starts to deviate from the elastic indentation curve,
see Fig. 2�b�. The force corresponding to the bifurcating
point is called the bifurcation force Fb.

Because this bifurcating point signals the start of the
forward transformation in the sample, it is an important char-
acteristic point in a superelastic indentation curve. The bifur-
cation force Fb should not rely on the properties of the prod-
uct phase, i.e., the elastic Young’s modulus and Poisson’s
ratio of martenite. Furthermore, it does not depend on the
degree of hardening of the forward transformation stress-
strain curve nor the maximum magnitude of the transforma-
tion strain �tr. In this sense, Fb is analogous to the initial
transformation stress � f in Fig. 1. However, the bifurcation
force is the response of the indented structure and must rely
on the properties of the austenite and the geometry of the
indenter. Therefore, we have the following functional
relationship:

Fb = Y�� f,Ea,va,R� . �3�

The corresponding dimensionless function is

Fb

R2Ea
= �1�� f

Ea
,va� . �4�

The dimensionless function Eq. �4� can be determined either
numerically or analytically by applying Hertz contact theory

11

FIG. 2. �a� Comparison between an elastic indentation curve and a super-
elastic indentation curve, and �b� definitions of the bifurcating point and the
corresponding bifurcation force Fb and the returning point and the corre-
sponding return force Fr.
for small deformation, the latter gives
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R2Ea
= 17.92�� f

Ea
�3

�5�

for va=0.3 as shown in Fig. 3. It is seen that a higher forward
transformation stress will result in a higher bifurcation force
or vice versa.

The returning point and the return force. During the un-
loading process, the martensite phase will become unstable
and will transform back to the austenite phase for superelas-
tic SMAs. The reverse transformation stress �r will now af-
fect the unloading response of the indentation. The dimen-
sionless function for the indentation force during unloading
can be expressed as12

F

R2Ea
= �2�� f

Ea
,
�r

Ea
,
Em

Ea
,�tr,va,vm,

hm

R
,
h

R
� , �6�

where hm is the maximum indentation depth before unload-
ing. Before the load reduces to zero, the reverse transforma-
tion process will be completed for a superelastic SMA. Cor-
respondingly, the final part of the unloading curve will
eventually return to the elastic loading-unloading curve as
shown in Fig. 2. The returning point indicates the completion
of the reverse transformation in the material. The corre-
sponding force at this point is named as the return force Fr.
It is another important quantity in a superelastic indentation
curve. According to the uniqueness theorem of the solution
for an elastic stable problem, we can prove that the return
force Fr does not depend on � f, Em, va, �tr, and the transfor-
mation processes.12 In other words, the return force does not
depend on the transformation history, and we have

Fr

R2Ea
= �3��r

Ea
,va� . �7�

Because the return force corresponds to an elastic field �just
at the end of the reverse transformation process� with the
maximum equivalent stress equal to �r, we have further
proved that the dimensionless function �1 in �4� for the bi-
furcation force is identical to the dimensionless function �3
in �7� to determine the return force.12 Within the limits of
small deformation, we similarly have the following explicit

FIG. 3. Relationships between the normalized bifurcation force Fb / �R2Ea�
and the normalized forward transformation stress � f /Ea and between the
normalized return force Fr / �R2Ea� and the normalized reverse transforma-
tion stress �r /Ea for va=0.3 under small deformation condition.
form for Fr:
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Fr

R2Ea
= 17.92��r

Ea
�3

�8�

for va=0.3 as shown in Fig. 3. It is seen that if Fb and Fr can
be determined from experiment, then � f and �r can be im-
mediately obtained.

The slope method to determine the bifurcation force and
the return force. We can use the relationships �5� and �8� to
develop a method to determine the transformation stresses
from the measured bifurcation and return forces by a spheri-
cal indentation test once we know the elastic constants of the
austenite. Obviously, the accuracy of such extracted transfor-
mation stresses relies on the accuracy of the measured bifur-
cation and return forces. Practically, it would be very diffi-
cult to obtain their accurate values from the indentation
loading and unloading curves. For instance, in the case
shown in Fig. 2�b� with � f =1000 MPa, Ea=50 GPa, va
=0.3, and R=10 �m, the estimated bifurcation point from
the indentation curve is at h=39 nm and Fb=1800 �N,
which is very different from the theoretical point �h
=39 nm, Fb=717�N� by Eqs. �2� and �5�.

To solve this problem, we propose using the elastic slope
and superelastic indentation slope curves in loading and un-
loading to determine the bifurcating and returning points.
The calculated slope curves corresponding to the F-h curves
in Fig. 2 are shown in Figs. 4�a� and 4�b�, respectively. We
can see that the bifurcating and returning points are very
distinct and therefore can be more accurately determined. In
this example, the theoretical values of Fb and Fr are, respec-
tively, 717 and 46 �N from �5� and �8� for the given SMA
sample with Ea=50 GPa, va=0.3, � f =1000 MPa, �r
=400 MPa, and indenter radius R=10 �m. From the slope
curves in Fig. 4, the bifurcation force and the return force are
estimated as 971 and 58.6 �N, which are close to the theo-
retical values of 717 and 46 �N. The estimated forward and
reverse transformation stresses from �5� and �8� or Fig. 3 are,
respectively, 1106 and 434 MPa, which are even closer to the
theoretical values of 1000 and 400 MPa with about a 10%
error since F� ���3. Therefore, we conclude that the pro-

FIG. 4. �a� Determination of the bifurcating point from the elastic slope and
superelastic slope curves for the loading process, and �b� determination of
the returning point from the elastic slope and superelastic slope curves for
the unloading process.
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posed slope method is more accurate and reliable to deter-
mine the bifurcating point and the returning point, and could
be used to extract the transformation stresses from a spheri-
cal indentation test. In a real experiment, the extracting pro-
cedure is as follows:

�a� Draw the superelastic indentation loading slope and un-
loading slope curves from the measured spherical in-
dentation loading and unloading curves.

�b� Draw the elastic indentation slope curve based on
Hertz elastic contact theory in the same diagram as
shown in Fig. 4 for comparison.

�c� Determine the bifurcating point by comparing the elas-
tic indentation slope curve with the superelastic loading
slope curve. The indentation depth hb corresponding to
the bifurcating point can be extracted and the bifurca-
tion force Fb can be determined from Eq. �2�.

�d� Determine the forward transformation stress � f accord-
ing to Eq. �5� or Fig. 3.

�e� Determine the returning point by comparing the elastic
slope and superelastic unloading slope curves. The in-
dentation depth and force �hr ,Fr� corresponding to the
returning point can be obtained as in �c�.

�f� Determine the reverse transformation stress �r accord-
ing to Eq. �8� or Fig. 3.

In summary, we have identified two characteristic points,
the bifurcating and returning points, by comparing the pure
elastic indentation curve with the superelastic indentation
curve. We proved that the corresponding bifurcation and re-
turn forces uniquely rely on the forward and reverse trans-
formation stresses of the material, respectively, besides the
elastic constants of the austenite and the indenter tip radius
R. These unique relationships provide the theoretical basis
for the proposed method to determine the transformation
stresses of small samples such as thin films from the mea-
sured values of the two forces. In order to improve the accu-
racy of the results, an indentation slope method is further
proposed to locate the bifurcating and returning points and
therefore to determine the two forces. The proposed method
would be very convenient to implement in a real experiment
and also have the potential to characterize the transformation
properties of other material systems at a very small scale by
using the micro-/nanoindentation technique.
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