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The NNE-trending Linglong Metamorphic Core Complex hosts the majority of the gold deposits in the Jiaodong
Peninsula of eastern China. Many of the deposits are hosted by the 163–155 Ma Linglong granite in the footwall
of the Linglong detachment fault. Argon thermochronology suggests that the granite had cooled to 400 °C by
143 ± 1.5 Ma possibly as a result of normal movement on the detachment. Nine zircon fission track (ZFT) ages
from samples collected along a NW–SE transect perpendicular to the central part of the Linglong detachment
fault at the −652 m level in the Xiadian deposit constrain the subsequent thermal evolution of Linglong Meta-
morphic Core Complex, which overlapped the period of major gold deposition.
The ZFT ages vary from 136.9 ± 3.3 Ma (1σ) to 130.1 ± 2.2 Ma (1σ). The unaltered Linglong granite in the foot-
wall and amphibolite in the hangingwall have similar ages at 136.9 ± 3.3 Ma (1σ) and 135.0 ± 3.0 Ma (1σ),
whereas ages for the disseminated- and stockwork-style ores appear to be younger at ca. 131–130 Ma, although
there is an overlap of ageswhen considering the 1σ precision. Interestingly, ZFT ages shownomarkeddifferences
between the hangingwall and footwall of the Linglong detachment fault, although significant movement along
the fault occurred.
The results are best interpreted to indicate that the Linglong granite was emplaced at ~160 Ma, and cooled to
240 ± 50 °C at ~135 Ma, as recorded by unaltered rocks in the footwall. Hydrothermal alteration along the
Linglong detachment fault led to annealing of zircon fission tracks and the consistent younger ages of
~131 Ma. Quartz aggregates associated with gold mineralization show evidence of recrystallization suggesting
that the hydrothermal event was initiated at temperatures of at least 300–350 °C, near the brittle–ductile transi-
tion, but cooled rapidly to ZFT closure temperatures within a country-rock environment that was already
relatively cool. Therefore these ZFT ages suggest that the timing of mineralization at the Xiadian deposit was
post-135 Ma and likely very close to 131 Ma. The mineralization and cooling occurred in the footwall of a
major detachment fault under an extensional regime, possibly related to the progressive slab rollback of the
paleo-Pacific plate, and controlled by the Linglong Metamorphic Core Complex.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Eastern Asia is characterized by widespread Late Jurassic to Early
Cretaceous magmatic activity and continental extension (Daoudene
et al., 2009; Charles et al., 2012) that led to the formation of NE–SW-
ological Processes and Mineral
n Road, Haidian District, Beijing
striking rift basins (Jahn et al., 2009; Wang et al., 2012; Daoudene
et al., 2013; Fig. 1), scattered metamorphic core complexes (MCCs)
(Davis et al., 2002; Liu et al., 2005; Mazukabzov et al., 2011; Wang
et al, 2011; Ni et al., 2013; Fig. 1), and large-scale gold mineralization
(Deng et al., 2003a,b, 2009; Goldfarb et al., 2014; Goldfarb and
Santosh, 2014; Song et al., 2015; Fig. 1). Formation of most MCCs in
Transbaikalia–northern Mongolia and northeastern China occurred in
the Early Cretaceous (Donskaya et al., 2008; Lin et al., 2008). However,
the development of the Linglong MCC in the Jiaodong Peninsula
(Fig. 1), which was previously regarded as a group of sheared plutons,
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Fig. 1. Late Mesozoic extensional structures in eastern Asia (modified after Daoudene et al., 2013; Wang et al., 2012). Abbreviations for MCCs: BU, Buteel–Burgutoy; ED, Ereendavaa; FS,
Fangshan; GZ, Ganzhuermiao; HG, Hongzhen; HH, Hohhot; LN, Liaonan; LS, Lushan; LZ, Louzidian; LL, Linglong; LX, Luxi; TH, Taihang; UU, Ulan Ude; YW, Yiwulüshan; YG, Yagan; XK,
Xinkailing; YM, Yunmeng Shan; and ZA, Zagan.
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is now recognized to be older at ca. 160–150 Ma (Charles et al.,
2013). Most importantly, the majority of gold resources in the
Jiaodong Peninsula, the largest gold producing area in China with a
proven reserve of N4000 t gold (Yang et al, 2014a,b), is hosted in
the Linglong MCC (Wang et al., 2014, 2015; Yang et al., 2014c;
Fig. 2a). Furthermore, a recent 40Ar/39Ar geochronological study of
sericite and muscovite from the ores in the Dayingezhuang deposit
(Fig. 2a), a large (N120 t Au) gold deposit occurring along the
Linglong detachment fault on the eastern margin of the Linglong
MCC, indicated that the earliest significant gold event took place at
130 ± 4 Ma in the Jiaodong Gold Province and may be related to
evolution of the Linglong MCC (Yang et al., 2014c). However, the cooling
and exhumation history of the Linglong MCC and the relationship be-
tween its evolution and gold genesis in the Jiaodong Peninsula are still
poorly constrained. Accordingly, the crustal dynamic processes that led
to large-scale goldmineralization in the Jiaodong Peninsula remain equiv-
ocal and contentious.

The N200 t Au Xiadian gold deposit, which is located 15 km to the
southwest of the Dayingezhuang deposit (Fig. 2a), is situated in the
central part of the Linglong detachment fault that defines the eastern
edge of the Linglong MCC. The deposit provides excellent exposures of
the hangingwall, footwall, and detachment itself, marked by mylonitic
to ultramylonitic, cataclastic and brecciated rocks, and late brittle faults
that are associated with well-developed silicification, sericitization, and
sulfidation (Fig. 3a, b). It thus provides an ideal location to study the
thermal evolution of the Linglong MCC, and associated ore-forming
activity. To date, no information on the geochronology of gold mineral-
ization at Xiadian deposit has been published. A zircon fission track
(ZFT) thermochronologic study has been undertaken here, examining
the undeformed and deformed rocks of the LinglongMCC that are asso-
ciatedwith the gold ores of the Xiadian deposit (Fig. 3b). Based on these
new data, the relationship between gold mineralization and evolving
continental dynamics of the Jiaodong area has been evaluated.

2. Geological setting

2.1. Linglong massif geology

The northwestern part of the Jiaodong Peninsula is dominated by
the NNE-trending Linglong massif situated in the Pingdu–Laizhou–
Zhaoyuan area (see “LL” on Fig. 2a; Deng et al., 2015a,b). The
Linglong massif mainly consists of Mesozoic migmatitic and granitic
rocks, which intruded the Late Archean and Paleoproterozoic rocks
(Fig. 2). Recent study shows that the Linglong massif is an asymmet-
ric MCC (Charles et al., 2013), comprising a footwall, separated from
a hangingwall to the east, by a master detachment zone (Fig. 2), as
detailed below.

The migmatites that are intercalated with isotropic granites con-
stitute the footwall of the Linglong MCC (Sang, 1984; Fig. 2a). These
granites yielded ages of 163–155 Ma (Ma et al., 2013; Yang et al.,
2012) by U–Pb dating of zircons using laser ablation-inductively
coupled plasma-mass spectrometry (LA-ICP-MS) and 143 ± 1.5 Ma by



Fig. 2. (a) Simplified geological map of the LinglongMetamorphic Core Complex (modified after Charles et al., 2013). Profiles A–B and B′–Cmark the line of cross-section in (b). U–Pb ages
on zircon are from Ma et al. (2013) and Yang et al. (2012). 40Ar/39Ar ages on muscovite are from Charles et al. (2013). Amphibole 40Ar/39Ar age comes from Faure et al. (2003).
(b) Schematic NW–SE section across the LinglongMCC (modified after Charles et al., 2011a). SSDF, Sanshandao Fault; JJF, Jiaojia Fault; LDF, Linglong detachment fault; LL, Linglongmassif.
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40Ar/39Ar dating onmagmaticmuscovite (Charles et al., 2013). These ages
are interpreted as the crystallization age of the melt and the granite
cooling age through the closure temperatures of muscovite, respectively.
Generally 400 ± 50 °C is accepted as the muscovite closure temperature
for a relatively rapid cooling rate, and 360–350 °C for a moderate cooling
rate (Hames and Bowring, 1994;McDougall andHarrison, 1999; Harrison
et al., 2009), with 270 °C commonly taken for slow cooling or extended
reheating (Snee et al., 1988).

From the center to the eastern and southern margins of the massif,
both the granitic and migmatitic rocks display progressively stronger
finite strain, forming mylonitic to ultramylonitic rocks towards the top
of the footwall (Fig. 2). The granites are characterized by the NE- and
ENE-striking and E-dipping mylonitic foliation, and associated 120–
140° trending mineral and stretching lineations marked by biotite and
quartz. Migmatitic fabrics along the eastern and southern borders strike
roughly parallel to the foliation in theneighboring granite (Charles et al.,
2011a; Fig. 2).

In the footwall, other granitoids have also been recognized. Within
the northern part of the massif, the younger Guojialing-type granitoids
are composed of porphyritic quartz monzonite, and granodiorite and
monzogranite with large K-feldspar megacrysts (Hou et al., 2007;
Zhang et al., 2010), and they intruded the Linglong migmatitic and gra-
nitic unit (Fig. 2a). These younger granitoids are characterized by sub-
solidus deformation andwell-developed C/S fabrics, and are considered
to be synkinematic intrusions (Charles et al., 2011a). Zircon U–Pb anal-
yses yielded 132–123 Ma crystallization ages for these plutons (Yang
et al., 2012; Liu et al., 2014a,b;Wang et al., 2014). Moreover, the central,
southwestern, and northeastern parts of the footwall were intruded by
theAishan-type granitoids, which are undeformed, post-tectonic bodies
(Charles et al., 2011b). Crystallization of these plutons occurred at
118–110 Ma, as shown by zircon U–Pb dating (Goss et al., 2010).

The hangingwall is composed of Late Archean tonalite–trondhjemite–
granodiorite (TTG) gneisses and Paleoproterozoicmetasedimentary rocks
(Zhou et al., 2008; Deng et al., 2011; Zhai and Santosh, 2011). The TTG
gneisses, exhibiting gneissic and migmatitic foliation, have protolith
ages of 3.4–2.6 Ga (Qiu, 1989; Wang et al., 1998), with amphibolite-
to granulite-facies metamorphic ages of ca. 2.5 Ga (Jahn et al., 2008).
The weakly deformed Paleoproterozoic metasedimentary rocks, lying
unconformably on the TTG gneisses, comprise schists, paragneisses,
calc-silicate rocks andmarbles, withminormafic granulite and amphib-
olite, and exhibit bedding that strikes oblique to the eastern border of
the Linglong massif (Fig. 2a, Charles et al., 2011a).

The Linglong detachment fault is marked by a 030–040° trending
ductile shear zone with a width of ~4 km, including ~0.5–1.0 km of
mylonitic–ultramylonitic rocks (Fig. 2). It is characterized by top-to-
the-SE normal sense of shear (Fig. 2a), which combinedwith the consis-
tent 120–140° stretching direction in the footwall, indicates that the
Linglong MCC was exhumed in a NW–SE-striking extensional regime.



Fig. 3. (a) Simplified geological map of the Linglong detachment fault in the area of the Xiadian gold deposit. (b) Schematic NE–SW cross-section A–A′ at the−652m level of the Xiadian
gold deposit showing the Linglong detachment fault (LDF) and sampling locations.
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Secondary white mica from the mylonites in the detachment fault
yielded a 134 ± 1.5 Ma 40Ar/39Ar age (Charles et al., 2013), interpreted
as the age of ductile deformation along the detachment, which contrasts
with the 143 ± 1.5 Ma age by 40Ar/39Ar on magmatic muscovite
(Charles et al., 2013). Cataclastic and brecciated rocks are also observed
along the detachment, which indicates that the fault was reworked
under brittle conditions (Fig. 2b).

The LinglongMCC is bordered to thewest by the 010–070°-trending
Jiaojia fault zone, with a dip of 20–50° to the NW and a length of 60 km
(Fig. 2). The fault zone is marked by cataclastic granitic rocks. Further-
more, all units of the Linglong MCC are affected by widespread, high-
angle, small-scale faulting (Fig. 2). The K-feldspar, plagioclase, and
quartz grains constituting the migmatites and the anatectic granites of
the footwall are commonly cut by fractures and microfaults, indicating
a superimposed brittle deformation (Charles et al., 2011a). These faults,
which are particularly abundant in the footwall, mainly trend NE and
show normal motion and form part of the overall NW–SE extensional
event.

The Linglong MCC hosts the majority of the gold resources in the
Jiaodong Peninsula (Wang et al., 2014, 2015). The gold deposits, typical-
ly hosted by the 163–155 Ma Linglong granite in the footwall of the
Linglong detachment fault, are characterized by quartz veinmineraliza-
tion and disseminations or quartz stockworks (Qiu et al., 2002; Deng
et al., 2000, 2006, 2008; Yang et al., 2006, 2007a, 2008; Wen et al.,
2015). The vein style of mineralization, such as that present at the
Wang'ershan and Linglong deposits, is characterized by a series of
sub-parallel NE-trending en-echelon auriferous veins that are controlled
by the high-angle, small-scale NE-trending faults within the Linglong
MCC (Fig. 2). The disseminated- and stockwork-styles of mineralization,
which characterizes the Jiaojia, Xincheng, Dayingezhuang, and Xiadian
deposits, occurs along NE- to NNE-trending structures bordering the
Linglong MCC (Fig. 2b).
2.2. Xiadian gold deposit geology

2.2.1. Alteration and gold mineralization
The Xiadian gold deposit, mainly characterized by disseminations

and stockworks with less significant quartz vein mineralization, is
hosted by the footwall granite and migmatite on the west side of the
Linglong detachment fault (Fig. 2), and is thus below the Late Archean
amphibolite and granulite in the barren hangingwall to the east
(Fig. 3). The hydrothermal alteration at Xiadian includes sericitization,
silicification, sulfidation, carbonation, and K-feldspathization, which
are largely restricted to the Linglong detachment fault zone (Fig. 3). A
K-feldspar alteration zone, with some of the K-feldspar clearly pre-
dating the gold, extends for several hundred meters beyond the
pyrite–sericite–quartz alteration (Fig. 3).

The less-common vein mineralization comprises a series of NE-
trending en-echelon auriferous veins with surrounding vein-related
pyrite–sericite–quartz altered rocks within the subsidiary faults,
and this is mainly developed in the more K-feldspar-altered granite
(Fig. 3). The occurrence of dynamically recrystallized quartz grains asso-
ciated with gold-bearing pyrite in the pyrite–sericite–quartz altered
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rock surrounding the veins (Fig. 4a, b) indicates early pyrite deposition
at temperatures of at least ~300–350 °C (Passchier and Trouw, 2005).

The disseminated and stockwork-style orebodies, comprising a
pyrite–sericite–quartz gold-bearing assemblage closest to the fault
gouge and representing the main part of the resource, are associated
with cataclasites and breccias. The minerals deposited with the gold
are chiefly sericite, quartz, and pyrite (Fig. 4c), with trace amounts of
chalcopyrite, galena, and sphalerite, indicating hydrothermal tempera-
tures between 225 °C and 400 °C (McCuaig and Kerrich, 1998). Gold
occurs mainly as non-refractory grains in microcracks within pyrite (Fig.
4d) , closely associated with sericite grains, which together overprint
the early dynamically recrystallized quartz veins (Fig. 4e). Thus they rep-
resent a relatively late, main gold-mineralization event associated with
brittle deformation. The estimated ore-forming temperature based on
fluid-inclusion studies is even narrower—240–300 °C—although there is
a wide range of homogenization temperatures (140–380 °C) reported
for the pyrite–sericite–quartz assemblage in the Xiadian gold deposit
(Xu et al., 2013).

A fault gouge, 10–30 cm-thick, marks the last important cataclastic
event along the Linglong detachment fault. It is related to small-scale,
NE-trending high-angle normal faulting that occurred in both the al-
tered granite and the Archean amphibolites. The fault gouge mainly
consists of illite, montmorillonite, and kaolinite (Gao, 2008), indicating
that it probably formed at temperatures below 240 °C (Zwingmann
et al., 2010).

In summary, the temperature of hydrothermal alteration related to
gold deposition in the Xiadian gold deposit is interpreted to be mainly
Fig. 4. Photomicrographs of microstructural features of some samples selected for zircon fissio
dynamically recrystallized quartz grains associated with pyrite. (b) Dynamically recrystallize
stockwork-style ores consisting of sericite, quartz, plagioclase, and pyrite. (d) Non-refractory go
the dynamically recrystallized quartz vein. (f) Undeformed Linglong granite with quartz, plagio
tures,with layers of hornblende and biotite alternatingwith layers of quartz andplagioclase. (h)
Bt, biotite; Hbl, hornblende; Kfs, K-feldspar; Pl, plagioclase; Qtz, quartz; Ser, sericite; Py, pyrite
from 240 °C to 300 °C, with perhaps a slightly higher initial temperature
for early pyrite. The fault gouge that marks the last main brittle move-
ment along the Linglong detachment fault is considered to have formed
at temperatures below 240 °C.

2.2.2. Deformation
Linglong granitic rocks hosting the ore at Xiadian underwent early

mylonitization related to the exhumation of the footwall during normal
movement along the detachment fault (Charles et al., 2013). These
rocks have typical features of sheared granitic rocks, with sigma
porphyroclasts of feldspars and garnets, and recrystallized quartz rib-
bons (Fig. 5a, b). Away from the mineralization, these rocks are reason-
ably fresh with only minor alteration, which includes minor calcite
veins, minor pyrite in strain shadows, and rare sphalerite. Where
rocks are more intensely altered, pyrite and sericite appear contempo-
raneous and help define the foliation. Pyrite, as aggregates forming
lenses parallel to the foliation that have been stretched (Fig. 5c, d) and
as folded aggregates, is interpreted to have been deposited during duc-
tile deformation.

Themost intensely altered rocks are complex breccias (Fig. 5e), with
multiple fracturing and brecciation events leading to the physical and
chemical breakdowns of the protolith. Clasts within the breccia of
quartz aggregates, possibly representing early quartz veins, record duc-
tile recrystallization. These clasts are embedded in a matrix of fine
quartz, feldspar, sericite, and calcite, showing that the early silica alter-
ation was ductile and was followed by brittle cataclasis forming the
breccia. Locally, however, this fine matrix also shows signs of ductile
n-track analyses. (a) Auriferous vein-related pyrite–sericite–quartz gold ore composed of
d quartz grains cut by microfaults filled with sericite aggregates. (c) Disseminated- and
ld grains inmicrocrackswithin pyrite. (e) Sericite aggregates associatedwith pyrite cutting
clase, K-feldspar and biotite from the footwall. (g) Amphibolite showing lepidoblastic tex-
Amphibolite composed of hornblende andplagioclase. (i) Zircon grains in studied samples.
; Zr, zircon. All photomicrographs in cross-polarized light except for (d).



Fig. 5. Photomicrographs of deformation under cross-polarized light (a, b, e) and reflected light (c, d, f, g). (a) Photomicrograph of sigma porphyroclast of K-feldspar. (b) Photomicrograph
of sigmaporphyroclasts of garnet, and recrystallized quartz ribbons. (c) Pyrite aggregates forming lenses parallel to the foliation that have been stretched. (d) Foliation-parallel pyrite trails,
indicating possible S–C fabric. (e) Complex breccia showing multiple events of fracturing and brecciation. (f) Zonation of pyrite with sphalerite inclusions on the outer rim. (g) Non-
refractory gold grains in microcracks within pyrite. Kfs, K-feldspar; Pl, plagioclase; Fsp, feldspar; Qtz, quartz; Ser, sericite; Grt, garnet; Cal, calcite; Py, pyrite; Sp, sphalerite.

170 L.-Q. Yang et al. / Ore Geology Reviews 72 (2016) 165–178
deformation. This is interpreted to indicate that the fine-grained,
sericitic alteration matrix was sufficiently weak to deform ductilely
even in the dominant brittle, cataclastic domain. Alternatively, breccia-
tion may have occurred at relatively high temperature, as a result of in-
creased pore pressure, and ductile deformation resumed after cataclasis
and a drop in pore pressure.
Pyrite grains in the aggregates are fractured (Fig. 5c) and this may
have occurred during the early ductile deformation or during subse-
quent brittle events. Sphalerite, by contrast, is late, probably post-
dating ductile deformation, as it is present as inclusions in the outer
rims of pyrite (Fig. 5f) and not in its cores, and also on the walls of frac-
tures that cut early pyrite. Furthermore, despite being malleable,
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sphalerite grains are not ductilely deformed. Gold is mostly in fractures
in pyrite (Fig. 5g). Because pyrite deforms in a brittle fashion under
most P–T conditions, fractures in pyrite could have developed at any
time during alteration and deformation.

In summary, the deformation seems to be characterized by continu-
ous hydrothermal events, startingwith ductile deformation and precip-
itation of quartz and pyrite. This is overprinted by multiple brittle
fracturing/brecciation events related to mineralization, which lead to
further growth of pyrite, and overgrowth of pyrite contemporaneous
with precipitation of sphalerite, and to gold precipitation in fractures in
pyrite. The altered groundmass weakened the rock so that it responded
ductilely even at relatively low temperatures.

3. Sampling and analytical methods

3.1. Sampling

Nine samples for ZFT analysis were collected systematically along a
NW–SE transect perpendicular to the Linglong detachment fault
(Fig. 3b) at the −652 m level of the Xiadian gold deposit. At this loca-
tion, the footwall and hangingwall of the LinglongMCC, the detachment
fault and its mylonitic to ultramylonitic rocks, the cataclastically de-
formed brecciated rocks and associated brittle faults and hydrothermal-
ly altered rock with the mineralization are all well exposed. In order to
constrain the cooling and exhumation history of the Linglong MCC and
establish the relationship between its evolution and gold genesis, rocks
that underwent different degrees of deformation in the footwall and
hangingwall of the detachment, as well as those in the gold ore zones,
were sampled. Each sample was at least 3 kg to ensure that sufficient
zircon grains could be obtained. From the footwall to the hangingwall
of the detachment fault, the collected rocks were: undeformed Linglong
granite (XD08) in the footwall; pyrite–sericite–quartz gold ore (XD54),
pyrite–sericite–quartz altered granitic mylonite (XD46), fault gouge
(XD41), pyrite–sericite–quartz altered ultramylonite (XD38), and
pyrite–sericite–quartz altered breccia (XD37), all within the detach-
ment zone; and amphibolite (XD34), fault gouge (XD32), and amphibo-
lite (XD31) in the hangingwall (Fig. 3b).

The undeformed Linglong granite sample XD08 shows medium- to
coarse-grained granular texture, andmainly contains quartz, plagioclase,
K-feldspar, and biotite (Fig. 4f). The disseminated- and stockwork-style
ore sample XD54 (pyrite–sericite–quartz gold ore) is composed of dy-
namically recrystallized quartz grains associatedwith gold-bearing pyrite
(Fig. 4a, b), with cracks filled with sericite aggregates (Fig. 4b). Samples
XD46 (pyrite–sericite–quartz altered granitic mylonite), XD38 (pyrite–
sericite–quartz altered ultramylonite), and XD37 (pyrite–sericite–quartz
altered breccia) consist of sericite, quartz, plagioclase, K-feldspar, pyrite
(Fig. 4c), and trace amounts of chalcopyrite, galena, sphalerite, and gold.
Fault gouge samples XD41 and XD32 consist mainly of illite, montmoril-
lonite, and kaolinite (Gao, 2008). Amphibolite sample XD34 exhibits
lepidoblastic textures with layers of hornblende and biotite, alternating
with layers of quartz and plagioclase (Fig. 4g). Amphibolite sample
XD31 is mostly composed of plagioclase and hornblende (Fig. 4h).

3.2. Analytical methods

Zircon grains were separated by conventional magnetic and heavy-
liquid techniques for fission-track analyses. All the analyses were per-
formed at the Institute of High Energy Physics of the Chinese Academy
of Sciences by the external detector method (Gleadow, 1981). Zircons
were embedded in polyfluoroalkoxy Teflon disc, and they were all
ground and polished to expose internal grain surfaces. The zircons
were etched in the KOH–NaOH eutectic mixture for 25 h at 220 °C. Irra-
diation of packages including the zirconmounts, aswell as low-uranium
muscovite external detectors, and CN2 uranium dosimeter glasses that
were used as a neutron fluence monitor for each sample (Yuan et al.,
2009), was carried out in the 492 Swim-Pool hot-neutron nuclear
reactor. The reactor is well thermalized with a cadmium ratio of N100
for Au, at the China Institution of Atomic Energy, Beijing. Following
irradiation, low-uranium muscovite, used as an external detector, was
etched in 40%HF for 20min at 25 °C to reveal the induced fission tracks.
The track densities in both natural (ρs) zircon grainswithoutfluid inclu-
sions and fractures (Fig. 4i), and induced (ρi) fission-track populations
in the muscovite external detectors, as well as the induced track densi-
ties of dosimeter glasses (ρd), were measured at 1000× magnification
on screen photos.

Where possible, N20 crystals of each sample were counted for age
determination. The central ages for the populations (Galbraith and
Laslett, 1993) were calibrated by the Zeta calibration method (Hurford
and Green, 1983), with a zeta value of 85.4 ± 4, and 1σ errors were cal-
culated using the techniques of Galbraith (1981, 1984). The Chi-square
(Χ2) test was employed to determine if the analyzed grains belong to a
single population of ages (Galbraith, 1981). The amount of uranium
present was calculated based on the track densities, known proportion
of isotopes of uranium, and the uranium content of the dosimeter
glasses.

Fission tracks generated in the partial annealing zone (Wagner and
Haute, 1992) continued to fade until the temperaturewas too low to re-
duce track densities (Guedes et al., 2013). This resulted in the apparent
age corresponding to the timewhen therewas no additional density re-
duction, rather than to the actual beginning of the generation of the fis-
sion tracks. In other words, ZFT ages constrained the time that zircon
grains cooled through their effective closure temperature (Dodson,
1973). The resulting ZFT ages were interpreted to represent the cooling
age of the zircon through the temperature of ~240 ± 50 °C (Bernet,
2009; Hurford, 1986; Zaun and Wagner, 1985) suggested by field-
based estimations, which is a lower range than the 200–360 °C
(Brandon et al., 1998; Yamada et al., 1995) given by annealing models.

4. Results and interpretation

Nine samples, collected from the three units of Linglong MCC (the
footwall, the hangingwall, and the detachment fault zone), yielded
nine ZFT central ages (Table 1). Representative single-grain age distri-
butions of these samples are shown in Fig. 6 using radial plots
(Galbraith and Laslett, 1993) created by RadialPlotter software
(Vermeesch, 2009). These central ages vary from 136.9 ± 3.3 Ma (1σ)
to 114.9 ± 8.7 Ma (1σ). The Χ2 test shows that five samples have
P(Χ2) of 0%, while the other four samples range from 6% to 39%
(Table 1). Typically, the low P(X2) values are considered to contain ≥2
grain age components (O'Sullivan and Parrish, 1995; Brandon, 2002).
Because the protolith along the detachment zone is the very same
Linglong granite (Fig. 3), the low P(Χ2) should not have been caused
by zircon grains from different sources. Different annealing properties
of different grains are related to differences in radiation damage and
mainly reflect variations in uranium content between grains in the
same sample (Tagami et al., 1990; Marsellos and Garver, 2010; B.
Kohn, 2015, personal communication). However, these grains lack
systematic changes with uranium content (Fig. 6), whereas their
uranium contents are typically low, varying in a narrow range be-
tween 95 and 196 ppm (Fig. 6). Given that the Linglong granite
with low-uranium zircon grains is relatively young (163–155 Ma),
little radiation damage is expected (Marsellos and Garver, 2010).
We argue, therefore, that it is unlikely the low P(X2) values are
due to radiation damage or multiple age groups.

It is most likely that thewide spread in ages leading to the low P(Χ2)
of some samples relates to introduced errors. In the radial plots, the
single grain ages are relatively concentrated, except for a few points
outside the main range. It is these few grains that lead to the failure of
the Χ2 test, which cannot cause any obvious influence on the central
ages (Galbraith, 1984). Therefore, we interpret the central ages as
most representative of the ZFT ages of the samples and use them in
this study. For hangingwall samples XD31 and XD32, with low P(X2)
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values of zero, a few zircon grains yielded anomalously higher ages and
cause a dispersal in the age pattern, which is indicated by the failure to
pass the Chi-square test. We removed the zircon grains that cluster at
these high ages (top right corner of diagram) and recalculated the
central age without them. Less dispersion is obvious and we obtain a
central age of 136.9± 3.3Ma (1σ) and 135.5±5.5Ma (1σ), respective-
ly, for the two hangingwall samples. The single-grain ages that were re-
movedmight indicate that there was a more complex cooling history of
the amphibolite, although given the very few grains, this is far from cer-
tain. Detailed ZFT results are summarized below.

4.1. The footwall and hangingwall

Sample XD08, from the undeformed footwall Linglong granite, located
~1 km to the west of the Linglong detachment fault, yielded a ZFT central
age of 135.0 ± 3.0 Ma (1σ) (Table 1).

Samples XD34 and XD31, from the fresh amphibolite in the
hangingwall, have zircon central ages of 135.0 ± 2.9 Ma (1σ) and
136.9 ± 3.3 Ma (1σ) (Table 1), which is younger than the 160 Ma
emplacement age of Linglong granite in the footwall, but identical
to its ZFT footwall cooling age (sample XD08).

Sample XD32 was collected from a 1–3 cm-wide gouge zone on the
NE-trending brittle fault in the amphibolite. It yielded a ZFT central age
of 135.5± 4.9Ma (1σ) (Table 1), which is similar to that of its host rock
(sample XD31) suggesting that late, low-temperature faulting did not
reset the ZFT age.

4.2. Linglong detachment zone

Sample XD54 from the pyrite–sericite–quartz altered disseminated
ore zone adjacent to an auriferous quartz vein, yielded a zircon central
age of 130.1 ± 2.2 Ma (1σ) (Table 1), younger but within error of the
unaltered footwall and hangingwall samples. Folded pyrite aggregates
and recrystallized quartz associated with gold-bearing pyrite (Fig. 4a,
b) deposited during ductile deformation suggest that mineralization
may have started at temperatures as high as 300–350 °C, which are
slightly higher than the closure temperature of the ZFT method. There-
fore, this could reflect a ZFT age that has cooled fromanearly hydrother-
mal stage to a slightly lower closure temperature of 240 ± 50 °C. Thus,
the three samples taken in the stockwork-disseminated ores along the
detachment fault, described below, might more convincingly reflect
the mineralization age because the temperature of the gold event was
likely similar to, or just slightly above, the ZFT closure temperature.

Three samples from the disseminated- and stockwork-style ores,
XD46, XD38 and XD37 (Table 1), have similar ZFT central ages of
130.5 ± 3.4 Ma (1σ), 130.8 ± 3.6 Ma (1σ), and 130.7 ± 3.8 Ma (1σ)
(Table 1). These ages are similar to that of sample XD54, and also repre-
sent magmatic zircons that have been reset by the hydrothermal alter-
ation, but at a temperature lower than that which was responsible for
the resetting of sample XD54.

Sample XD41, which was collected from a 2–5 cm-wide gouge
zone in the NE-trending brittle fault in pyrite–sericite–quartz altered
ultramylonite, yielded a zircon central age of 114.9 ± 8.7 Ma (1σ)
(Table 1). Because this is based on only three zircon grains, the signifi-
cance of this age is not clear and will not be considered further.

In summary, the ZFT ages for the three rock groups (unaltered
wallrocks including Mesozoic granite and Late Archean basement
rock, hydrothermally-altered wallrocks, and fault gouge) in this study
vary from 136.9 ± 3.3 Ma (1σ) Ma to 130.1 ± 2.2 (1σ). The unaltered
Linglong granite in the footwall of the Linglong detachment fault and
the two unaltered amphibolite samples in the hangingwall of the
Linglong detachment fault provide similar cooling ages for the MCC.
The fission-track data suggest the entire MCC cooled below about
240 ± 50 °C at ca. 137–135 Ma. Reset ZFT central ages from the
disseminated- and stockwork-style ores indicate cooling of the min-
eralization below 240 ± 50 °C at ca. 131–130 Ma (samples XD54,



Fig. 6. Radial plots of zircon samples. Single-grain ages are read off the intersection between a line linking the origin with the single grain point and the arc. The σ/t and t/σ on X-axis
indicate the relative error and precision, respectively, of each single-grain age, and the Y-axis depicts the standard error of eachmeasurement. Continuous thick lines represent the central
ZFT ages listed in Table 1. Color of single-grain ages are coded and linked to the color bar at the bottom of each plot and represent the uranium content of single zircon grains. Single-grain
ages circled by the dashed line (top right corner of the plot) for samples XD31 and XD32 have not been used to calculate the central ages.
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XD46, XD38, and XD37). Whereas the one-sigma error bars still sug-
gest that overlap is possible, the two distinct groups of determined
ages provide fairly convincing evidence that the gold event took
place about 5 million years subsequent to cooling of the MCC
below the ZFT closure temperatures.

5. Discussion

5.1. Evolution of the Linglong Metamorphic Core Complex

The ZFT ages and their effective closure temperatures of 240 ±
50 °C are plotted in Fig. 7 to assess the cooling histories. The time–
temperature evolution of the Linglong MCC is further constrained
by the zircon U–Pb ages of 163–155 Ma (Ma et al., 2013; Yang
et al., 2012) and the magmatic muscovite 40Ar/39Ar age of 143 ±
1.5 Ma (Charles et al., 2013) for the Linglong granite (Figs. 2a and
7), and an amphibole 40Ar/39Ar age of 207 ± 4 Ma (Faure et al.,
2003) for the amphibolite in the hangingwall (Figs. 2a, 7). We as-
sume the minimum crystallization temperature for magmatic zircon
to be ~700 °C (Watson and Harrison, 2006), and the 40Ar/39Ar clo-
sure temperatures for amphibole and muscovite to be 575 ± 25 °C
(Daoudene et al., 2013) and 400 ± 50 °C (Hames and Bowring,
1994; McDougall and Harrison, 1999), respectively, at a relatively
rapid cooling rate. In the following discussion, only average cooling
rates based on the central ages, without the addition and subtrac-
tion errors, are calculated. Monotonic and relatively rapid cooling
is required for thermochronological data in calculating cooling
rates through the closure-temperature model (Braun et al., 2006).
Due to the wide range of closure temperatures and errors of cooling
ages, the uncertainties of the cooling rates are high (Spotila, 2005;
Braun et al., 2006).

Combined with the amphibole 40Ar/39Ar age of 207 ± 4 Ma for the
amphibolite from the northeastern part of the Linglong MCC, the ZFT
ages of 136.9 ± 3.3 Ma and 135.0 ± 2.9 Ma obtained in this study
for the hangingwall amphibolites indicate cooling from ~575 °C to
~240 °C at an average rate of 5 °C/m.y.. However, rare zircon grains
with older ages for samples XD31 andXD32might indicate amore com-
plex cooling history.



Fig. 7. Temperature–time evolution of the Linglong Metamorphic Core Complex drawn on the basis of U–Pb, 40Ar/39Ar, and fission-track ages. Ages other than fission-track ages are for
zircon U–Pb ages of 163–155 Ma (Ma et al., 2013; Yang et al., 2012), an amphibole 40Ar/39Ar age of 207 ± 4 Ma (Faure et al., 2003), and a magmatic muscovite 40Ar/39Ar age of 143 ±
1.5 Ma (Charles et al., 2013).
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Using the LA-ICP-MS zircon U–Pb age of ca. 163–155 Ma for crystal-
lization of the Linglong granite (Figs. 2a, 7), and its 40Ar/39Ar muscovite
age of 143 ± 1.5 Ma, from a sample ~25 km to the west of the Linglong
detachment fault (Fig. 2), we infer that the footwall cooled to 400 °C at
an average rate of ~19 °C/m.y. after granite emplacement (Fig. 7). The
next granite cooling step from about 400 °C to 240 °C has large uncer-
tainties because of the large errors on the ZFT ages,which hinder precise
constraints. Using the central ZFT age of the 135.0±3.0Ma range deter-
mined for the granite (Fig. 7), we estimate an average cooling rate of
20 °C/m.y., broadly in line with the preceding history.

The ZFT ages of 135.0± 2.9Ma and 136.9± 3.3Ma of fresh amphib-
olite samples from thehangingwall overlapwithin error that of the foot-
wall granite at 135.0 ± 3.0 Ma (Fig. 8), and the ZFT ages of ore samples
are between 134.5 and 126.9 Ma at one-sigma uncertainty and thus
within error of the cooling ages of the surroundings. We infer that min-
eralization occurred against a background of temperatures close to the
ZFT closure temperatures, where hydrothermal fluids were mainly in
the range of 240–300 °C, as shown by thefluid-inclusion studies. Miner-
alization is also contemporaneous with the crystallization of the
132–123 Ma Guojialing granitoids, which were presumably part of the
same tectonothermal extensional event, although they shownoobvious
spatial association with the gold deposits.

The fault gougemost likely developed at temperatures below 240 °C
given its clay mineralogy, and its ZFT age of 114.9 ± 8.7 Ma (sample
Fig. 8. Low-temperature thermochronometric age–distance plots showing zircon fission-track a
in Fig. 3. LDF, Linglong detachment fault. Legend as in Fig. 7.
XD41); this age was based on only three zircons and is therefore not
discussed in detail. However, the presence of the fault gouge cutting
the ca. 130 Ma mineralization suggests significant normal movement
on this detachment that may have induced different levels of denuda-
tion, but this has not resulted in significantly different cooling ages
between the hangingwall and footwall. We find that there are four pos-
sible reasons for this: (a) all significant fault movement occurred at
temperatures above the 240 ± 50 °C ZFT closure temperature after
which the hangingwall and footwall cooled as a single block; (b) move-
ment was sufficiently slow so as not to shift significantly the position of
the isotherms across the fault; (c) displacement of the isotherms were
significant, but the uncertainties in the cooling ages are too large and
mask any cooling time differences; and (d) our hangingwall samples
were too close to the fault and were rapidly equilibrated with the
footwall temperatures. Option (a) is unlikely because the presence
of a well-developed fault gouge overprinting ductile mylonites sug-
gests late faulting in a relatively cold environment, at temperatures be-
tween the annealing temperatures of zircon and apatite (Zwingmann
and Mancktelow, 2004). Options (b) and (c) are two aspects of the
sameproblem. The displacement of the isotherms resulted fromabalance
between themovement rate on the fault causing upward displacement of
the isotherms in the footwall, and denudation of the uplifted block that
would cool the block. At relatively shallow crustal levels,wherewe expect
the fault gouge to have developed, the geothermal gradient imposed by
geswith 1σ error bars, respectively, for samples projected at right angles onto profile A–A′



Fig. 9. Cooling and exhumation histories of the Linglong Metamorphic Core Complex.
(a) Early intrusion of Linglong magma associated with initiation of regional extension
(163–155 Ma; Charles et al., 2013; Ma et al., 2013; Yang et al., 2012); (b) Cooling and ex-
humation of Linglong granitoids (155–132 Ma; Charles et al., 2013). (c) Intrusion of
Guojialing granitoids (132–123 Ma; Yang et al., 2012; Liu et al., 2014a, b; Wang et al.,
2014); hot hydrothermal fluids (main phase of gold mineralization) at ca. 131–130 Ma;
(d) Brittle faulting of Linglong detachment, late cooling, and exhumation.
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the fixed temperature at the cool surface of the Earth restricts relatively
fast cooling. Compounding theproblem, the largeuncertainties associated
with the cooling ages, between 5 and 10m.y. at the two sigma level or 7%
of the ZFT ages, maymask differences in cooling time. The combination of
fast cooling (options (b and c)), large uncertainties (option (c)), and the
proximity of the hangingwall sample to the fault (option (d)), could to-
gether explain the apparent age coincidence between cooling ages of
the hangingwall and footwall samples.

Based on the above, the evolution of the Linglong MCC can be
constrained (Figs. 7, 9). The hangingwall of the MCC cooled to below
about 240 °C at 136 Ma (Fig. 7), more than 20 m.y. after intrusion and
crystallization of the Linglong granitoid host (163–155 Ma: Yang,
et al., 2012), which correlates with the initiation of regional extension
(Charles et al., 2013; Fig. 9a). The Linglong granitoids cooled to about
400 °C by 143Ma at the rate of about 19 °C/m.y. (Fig. 9b) and continued
to cool at approximately the same rate to 240 ± 50 °C by 135.0 ±
3.0Ma, during exhumation along the Linglong detachment fault. Hydro-
thermal fluid flow along the fault, responsible for gold deposition and
the alteration, reset the zircons at about 131–130 Ma, which was also
contemporaneous with intrusion of the Guojialing granitoids (Fig. 9c).
At this time, we envisage a relatively cool country-rock environment
temperature of about 240 °C, although granitoid intrusion would have
imposed a local steep horizontal geothermal gradient. Faulting contin-
ued as the thermal event ended, giving rise to the fault gouge that
cuts the mineralization (Fig. 9d).

5.2. Timing of ore-forming hydrothermal activity in the Xiadian and
adjacent gold deposits

Abundant age constraints of variable quality have been published for
the gold deposits in the Linglong MCC (Yang et al., 2007a; Guo et al.,
2013), suggesting that hydrothermal alteration took place at ca.
120±10Ma (Yang et al., 2007b). In detail, the large gold deposits locat-
ed adjacent to the Jiaojia fault zone, on the western margin of Linglong
MCC, formed between 125 and 115 Ma (Li et al., 2003; Zhang et al.,
2003). For example, the sericite 40Ar/39Ar plateau ages for the Jiaojia,
Xincheng, and Wang'ershan deposits yield a consistent age centered
around 120 Ma with very small errors of 0.6 m.y., 0.3 m.y., and
0.2 m.y., respectively (Li et al., 2003). Along the eastern margin of the
LinglongMCC, there are fewage data. However, recent 40Ar/39Ar sericite
and muscovite dating of the Dayingezhuang gold deposit, 15 km north
of the Xiadian deposit (Fig. 2) suggest that the main phase of gold min-
eralization there was also 130 ± 4 Ma (Yang et al., 2014c). This further
supports our suggestion that resetting of country-rock zircons during a
hydrothermal gold event can result in fission-track dating methods
being useful in providing a meaningful approximation of the age of
the event.

Sample XD54 from themineralized detachment fault zone yielded a
ZFT age of 130.1 ± 2.2 Ma (Table 1; Fig. 6). This sample has evidence of
ductile deformation in the form of recrystallized quartz grains associat-
ed with gold-bearing pyrite (Fig. 4a, b). This suggests that initial hydro-
thermal temperatures were maintained at 300–350 °C long enough for
ductile strain to accumulate. The other three ore-zone samples yielded
similar ZFT ages of 130.5 ± 3.4 Ma, 130.8 ± 3.6 Ma, and 130.7 ±
3.8 Ma. Given that the surrounding country rocks were already close
to or below ZFT closure temperature by ca. 135 Ma, these consistent
ages suggest a 131–130 Ma ore-forming event. Brittle deformation
and associated hydrothermal activity (Fig. 5) were probably part of
the same overall event.

5.3. Structural control of the Linglong Metamorphic Core Complex on gold
mineralization

Microstructures show that the deformation started with ductile
events and deposition of pyrite (Fig. 5), and the ductile features were
overprinted bymultiple brittle fracturing/brecciation events and hydro-
thermal alteration leading to further growth of pyrite, and precipitation
of sphalerite and gold. Ductile deformation of altered rocks may have
taken place at relatively low temperatures due to the considerable
modal proportions of fine-grained sericite, giving rise to a weak rock.
Therefore, we suggest that the Xiadian deposit is a product of a major
gold-forming hydrothermal event occurring near the brittle–ductile
transition along the detachment between the metamorphic rocks of
the hangingwall and Mesozoic intrusions of the footwall (Fig. 9c).

The Jiaodong Peninsula is one of the largest known granitoid-hosted
gold provinces in the world (Li et al., 2012) and its gold deposits are
unlike those of Archean cratons, such as those in Canada and Western
Australia. In Jiaodong, gold deposits are hosted dominantly by late
Mesozoic granitoids, which formed at least 2 b.y. after metamorphism



176 L.-Q. Yang et al. / Ore Geology Reviews 72 (2016) 165–178
of the Archean Jiaodong basement rocks (Chen et al., 2004; Fan et al.,
2005; Goldfarb et al., 2007; Wang et al., 2015).

It is widely accepted that during the Early Cretaceous, eastern Asia
experienced NW–SE extensional tectonism, as supported by data from
the many MCCs (Yagan–Onch Hayrhan, Yiwulüshan, South Liaonan,
Gudaoling) across the North China Craton and the widespread
130–110 Ma magmatism (Davis et al., 1996; Lin et al., 2008; Yang
et al., 2012; Wang et al., 2014; Boorder, 2015; Yang and Santosh,
2015; Fig. 1). Recent studies show that 156–138 Ma ages represent
the initial formation of the Ereendavaa MCC in Mongolia (Daoudene
et al., 2013), and that Late Jurassic to Early Cretaceous extensional tec-
tonics occurred in the South Liaodong Peninsula as supported by the de-
velopment of the South Liaonan MCC (Lin et al., 2008). Furthermore,
Late Jurassic sediments, which fill the Songliao Basin, suggest a Late Ju-
rassic extensional setting for this area (Lin et al., 2003). In the Jiaodong
Peninsula, the LinglongMCC developed contemporaneously with intru-
sion of the synkinematic 132–123 Ma Guojialing granitic suite that was
followed by the post-tectonic 118–110 Ma Aishan granitic suite. Thus,
MCC development, large-scale magmatism, and gold mineralization
took place contemporaneously during the Early Cretaceous.

Thermomechanical convective removal of lithosphere, post-orogenic
collapse, and mantle plume events, have all been invoked to explain a
continental extensional tectonic event (Meng, 2003; Lin and Wang,
2006; Zhao et al., 2007). However, all of the models above are difficult
to apply in explaining such a long extensional period that lasted for at
least ~60m.y. (Corti et al., 2003; Charles et al., 2011a, 2013). The long du-
ration of extensional tectonics in eastern Asia is likely explained by the
progressive slab rollback of the paleo-Pacific plate from 160 Ma onward
(Maruyama et al., 1997; Charles et al., 2013). We suggest therefore that
the Early Cretaceous gold mineralization in Jiaodong occurred in an ex-
tensional regime caused by the progressive slab rollback of the paleo-
Pacific plate.

TheMCCs along themargins of theNorth China Craton controlmuch
of the goldmineralization (Fig. 1). For example, severalMCCs (Sun et al.,
2013) control many gold deposits within the southern margin of the
craton (Fig. 1b), the second largest gold producing area in China. The
Yiwulüshan (Zhu et al., 2002) and Liaonan MCCs (Liu et al., 2005) also
control numerous gold deposits (Fig. 1) within the northern border of
the craton. These gold orebodies formed during movement on the
detachment faults. For instance, the Queshan MCC and its detachment
system controlled the formation of the Guocheng and Pengjiakuang
gold deposits at ca. 120 Ma (Yang et al., 2000; Shen et al., 2002; Zhang
et al., 2003). Such temporal and spatial coincidences imply that the
MCCs have apparently controlled the gold mineralization. Large gold
orebodies are typically concentrated within 100 m of the footwall of
the detachment faults,where late brittle deformation and large-scale al-
teration overprint the early brittle–ductile transition zone, both in the
Linglong MCC and in other similar environments in the eastern North
China Craton.

6. Conclusions

Fission-track data from the Xiadian gold deposit constrain the
cooling history of the Linglong MCC and the timing of mineralization.
The Linglong granite in the footwall of the Linglong detachment fault
was emplaced at ca. 163–155 Ma, cooled to about 400 °C by 143 Ma,
and then to 240 °C by 135.0±3.0Ma (1σ), presumably as a result of ex-
humation along the detachment fault. Mineralization took place at tem-
peratures close to ZFT closure and therefore ZFT ages provide an
approximate age for mineralization. Four samples from the altered
granite of the Xiadian deposit yielded consistent ZFT ages centered at
ca. 131–130 Ma and likely mark themain gold event. This age is similar
to that estimated for the Dayingezhuang gold deposit also on the east
margin of the LinglongMCC, but is unlike that for deposits on the west-
ernmargin of the complex,which formed at ~120Ma, suggesting a tem-
poral evolution of the mineralization from east to west.
Movement of the Linglong detachment fault continued after the end
of mineralization process as evidenced by the presence of low-
temperature fault gouge truncating the mineralization, separating the
Archean–Paleoproterozoic metamorphic rocks from the orebodies and
the Mesozoic intrusions. The mineralization and cooling occurred in
an extensional regime that may have resulted from the progressive
slab rollback of the paleo-Pacific plate.
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