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Diapiric ascent of magmas through power law crust and mantle 

Roberto Ferrez Weinberg • and Yuri Podladchikov 2 
The Hans Ramberg Tectonic Laboratory, Institute of Earth Sciences, 
Uppsala University, Uppsala, Sweden 

Abstract. There has never been a convincing explanation of the way in which diapirs of molten 
granite can effectively rise through mantle and crust. We argue here that this is mainly because 
the country rocks have previously been assumed to be Newtonian, and we show that granitoid 
diapirs rising through thermally graded power law crust may indeed rise to shallow crustal levels 
while still molten. The ascent velocity of diapirs is calculated through an equation with the form 
of the Hadamard-Rybczynski equation for the rise of spheres through Newtonian ambient fluids. 
This well-known equation is corrected by factors dependent on the power law exponent n of the 
ambient fluid and the viscosity contrast between the drop and the ambient fluid. These correction 
factors were derived from results reported in the fluid mechanical and chemical engineering 
literature for the ascent of Newtonian drops through power law fluids. The equation allows 
calculation of the ascent rates of diapirs by direct application of rheological parameters of rocks. 
The velocity equation is numerically integrated for the ascent of diapirs through a lithosphere in 
which the temperature increases with depth. The depth of solidification of the diapir is 
systematically studied as a function of the geothermal gradient, buoyancy of the body, solidus 
temperature of the magma, and rheological parameters of the wall rock. The results show that 
when the wall rock behaves as a power law fluid, the diapir's ascent rate increases, without a 
similar increase in the rate of heat loss. In this way, diapirs rising at 10 to 10 2 m/yr can ascend 
into the middle or upper crust before solidification. Strain rate softening rather than thermal 
softening is the mechanism that allows diapirism to occur at such rates. The thermal energy of 
the diapir is used to soften the country rock only at late stages of ascent. The transport of 
magmas through the lower crust and mantle as diapirs is shown to be as effective as magmatic 
ascent through fractures. 

Introduction 

Silicic volcanism demonstrates that granite magmas 
commonly reach shallow crustal levels. Many authors 
challenge diapirism as a feasible ascent mechanism because 
it has never been convincingly demonstrated that magmatic 
diapirs can reach the shallow crust in geologically 
reasonable times [e.g., Paterson et al., 1991; Clemens and 
Mawer, 1992]. The ascent of a diapir may be closely 
approximated by the slow translation (negligible inertia) of 
a viscous drop through a viscous fluid [e.g., Marsh, 1982; 
Schmeling et al., 1988; Cruden, 1988, 1990; Weinberg, 
1992]. The flow of an infinite Newtonian fluid past a 
sphere (Stokes flow; Figure 1) is a well-documented 
problem in fluid dynamics [e.g., Batchelor, 1967], and 
therefore most studies dealing with the ascent of diapirs 
simplify the wall rock to a Newtonian fluid and disregard 
the effects of temperature [Biot and Odd, 1965; Whitehead 
and Luther, 1975; Marsh, 1979; Marsh and Kantha, 1978; 
Ramberg, 1981; Schmeling et al., 1988; Cruden, 1988, 
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1990; Kerr and Lister, 1988; ROnnlund, 1989; Lister and 
Kerr, 1989; Polyakov and Podladchikov, 1990; Weinberg, 
1992]. 
Several workers have used the structures around granitoid 

plutons to conclude that the viscosity of the plutons must 
have been sufficiently similar to their wall rocks during 
their Stokes-like ascent and that the granitoids must have 
been highly crystallized [Berger and Pitcher, 1970; 
Ramberg, 1970; Soula, 1982; Bateman, 1984]. Another 
group of workers follow Grout [1932] and suggest that 
deformation of Newtonian wall rock is confined to narrow 

aureoles which are thermally softened by heat from the 
aliapit (hot-Stokes models [Marsh, 1982; Morris, 1982; 
Ribe, 1983; Daly and Raefsky, 1985; Mahon et al., 
1988]). According to calculations by Marsh [1982] a 
sphere 3 km in radius would be able to rise only halfway 
through a Newtonian lithosphere before solidifying. 
Subsequent bodies following the same path, while it is 
still warm, could reach higher levels. The effect on 
diapiric ascent of increasing viscosity of the ambient fluid 
has been studied recently by Kukowski and Neugebauer 
[1990]. 
However, it is well known from laboratory experiments 

that at natural strain rates, pressures, and temperatures, 
mantle and crustal rocks are likely to behave as power law 
fluids according to 

• = A e -E/RT c•n for uniaxial stress (1) 
(see notation list and Kirby [1983], Paterson [1987], and 
Willcs and Carter [1990, and references therein]). When n = 
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Figure 1. Streamlines in and around a sphere translating 
through Newtonian fluid (a) viscous sphere (b) solid sphere 
(Stokes case; redrawn from Schmeling et al. [1988]). The 
streamlines shown will concentrate towards a sphere 
translating through power law fluids. 

1, strain rate varies linearly with stress, the constant 
viscosity is independent of the strain rate, and the fluid is 
said to be Newtonian. When n is larger than 1, as in most 
rocks, the relationship between strain rate and stress is 
nonlinear, and the effective viscosity of the material 
decreases with increasing strain rates or stress. Although 
extrapolating the results of laboratory experiments on rock 
theology to geological systems is difficult (see the 
thorough discussion by Paterson [1987]), rock theology 
determined by these studies probably better approximates 
the actual behavior than does the simplification to 
Newtonian behavior. 

Some recent studies try to assess the effects of powerlaw 
wall rocks on diapiric rise rate [Morris, 1982; Mahon et 
al., 1988; Miller et al., 1988; England, 1992]. Mahon et 
al. [1988] found low ascent velocities for diapirs rising 
through wall rock of olivine theology at crustal 
temperatures. Miller et al. [1988] use the theology of 
Westerly granite to calculate the ascent rate of diapirs and 
to estimate the strain rates, with which they determine the 
effective viscosity of the wall rock, on the calculations by 
Mahon et al. [1988]. The influence of power law behavior 
of the wall rock on diapirism has been hindered by the 
absence in the literature of a simple equation for the rise of 
a Newtonian drop through power law fluids. Another 
hinderance is the lack of a rule for the definition of 

effective viscosity of media with strong spatial variation in 
strain rate. 

This paper presents an equation for the final velocity of 
viscous buoyant drops rising through power law ambient 
fluids. This equation is then applied to the problem of 
magmatic diapirs rising through the lithosphere. We start 
by reviewing the fluid mechanical and chemical 
engineering literature on the rise of drops through power 
law fluids and rewriting those solutions in the form of the 
well-known Hadamard-Rybczynski equation (2). We then 
extrapolate the known solutions to higher values of n that 
are of interest in geology, and we show how the 
rheological parameters of rocks can be used in the equation. 

The equations controling diapiric ascent are integrated 
numerically to calculate the depth and time of solidification 
of magmatic diapirs rising through lithosphere with defined 
geothermal gradients. Several parameters are found to 
control the ascent. The diapir's velocity, temperature, 
viscosity, and Peclet and Nusselt numbers are calculated, 
together with the effective viscosity of the surrounding 
medium and the thickness of the diapir's thermal boundary 
layer. The calculations take account of the effects of 
thermal softening of the wall rock by including the drag 
correction derived by Daly and Raefsky [1985]. We 
illustrate the approach by applying our equations to two 
examples: (1) a diapir with the well-constrained 
characteristics of the Tara grantdiorite in Australia, 
ascending through a crust with the properties of Westerly 
granite [Miller et al., 1988], and (2) the rise of a 10-km 
radius mantle diapir from a subducting slab 100 km deep. 
This diapir rises to the base of a 40-km-thick crust where 
it triggers the formation of a crustal diapir that ascends 
through a layered crust. 

The results indicate that magmatic diapirs may rise 
through the mantle or lower crust one order of magnitude 
faster than predicted by earlier studies. In effect, diapirism 
through power law surroundings can account for magmas 
reaching shallow crustal levels. In contrast to previous 
results, we show here that diapirs can rise from the Moho 
to shallow crust in time spans of only 104 to 105 years. 
Alternatively, melts can rise diapirically from the melting 
zone of subducting plates to high crustal levels in 105 to 
106 years. This approximates the delay between the 
initiation of subduction and the start of arc volcanicity 
[Marsh, 1982]. 

Previous Studies 

The slow translation of spheres through fluids has been 
thoroughly studied. Hadamard [1911] and Rybczynski 
[1911] extended to viscous spherical drops, Stoke's 
equation for the velocity of a solid sphere falling through 
an infinite Newtonian fluid: 

1 Apg r 2 (It +3gsP h ) V= 5 It [,It + 5gsphJ 
(2) 

(see notation list for symbols). Subsequent works have 
treated the translation of spheres through fluids of other 
rheologies. Rather than the simple uniaxial stress in (1), 
the main interest here is the translation of spheres through 
power law fluids which, for two- or three-dimensional 
stresses, must be described by the more general equation 
[Turcotte and Schubert, 1982; Wilks and Carter, 1990] 

O'ij :K• m-1 • 
where m= 1./n, and • is the second invariant of the strain 
rate tensor eij: 

(3) 
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The velocity equation for drops rising through power 
law fluids can be written as (see Appendix A for derivation) 

2 (APR)n rn+l 
V = 9• K n X n . (5) 

Mhatre and Kintner [1959] found experimentally that the 
terminal velocity of viscous drops falling through power 
law fluid is predicted by the apparent Newtonian viscosity 
of the power law fluid. Crochet et al. [1984] summarizes 
several approaches described in the literature to determine 
the values of X for solid spheres as a function of n. More 
recent work on solid spheres was carried out by Dazhi and 
Tanner [1985] and Kawase and Moo-Young [1986]. The 
former also studied how walls of different geometries aff•t 
the velocity of spheres. The study of motion of inviscid 
bubbles in •ower law fluids started with Astarita and 
Apuzzo [1965], who used semiquantitative arguments to 
find the expression for the drag coefficient. Nakano and 
Tien [1968] found analytically the upper bound of the drag 
coefficient of a Newtonian spherical drop of variable 
viscosity moving through a power law fluid of n values up 
to 1.667 (m=0.6). Bhavaraju et al. [1978a, b] found that 
the ratio between the velocity of a swarm of bubbles and a 
single bubble increases as n increases. This result was 
extended to high n values by Chhabra [1988], who found 
that for n > 2, swarms of bubbles may rise faster than a 
single bubble, and for n=3.33, bubble swarms may rise 
twice as fast as a single bubble. 

The transfer of the heat or mass of spheres to 
surrounding power law fluids was studied by Hirose and 
Moo-Young [1969] and Kawase and Moo-Young [1986, 
and references therein]. We use here the results obtained by 
Hirose and Moo-Young [1969] to calculate the heat transfer 
from the sphere to the ambient fluid. The efficiency of 
heat (or mass) transfer is usually described as a dependency 
of the Nusselt number Nu on the Peclet number Pe. Since 

neither of these parameters depend on the theologies of the 
fluids, they retain the same definition for both power law 
and Newtonian fluids (see notation list). Although the 
definition of Nu and Pe need not be changed for power law 
fluids, the relationship between Nu and Pe does need to be 
corrected by a factor that depends on the only 
dimensionless parameter in the theological law, namely, 
the power law exponent n (see equations (19) and (20)). 

Rewriting Known X Values to Fit the 
Hadarnard-Rybczynski Equation 

Introduction 

The velocity of a viscous sphere rising through power 
law fluids may be calculated from (5) if the correction 
factor X is known. The value of X for solid spheres (called 
X$ol here), is a known function of n. Equation (9) and 
Figure 2 show the polynomial fitting of the values of X$o 1 
given by Crochet et al. [1984]. From the Hadamard- 
Rybczynski equation, the dependency of X on the viscosity 
ratio for Newtonian fluids (n = 1), follows from (2) 

X(S) = (g; l'5gsph• + gsph J 
(6) 

For the limiting cases of a solid sphere falling through 
power law fluids, and for viscous drops falling through 
Newtonian fluid, the dependency of X can be extrapolated 
in a self-consistent way to all values of n and S = 
[tsph/Yteff by 

V = 1Aogr2 (X•o 3 }.teff 1 Ggeff + [tsph • (G M [teff + 1.5 [tsph) (7) 
where geff is the effective viscosity of the ambient power 
law fluid 

K n 6 n- 1 
= (8) geff (Apgr)n_ 1 

and the parameters Xsol, M, and G are functions of m= 1In 

Xsol = 1.3 (1-tn2) + m 

M = 0.76+0.24m 

G = 2.39 - 5.15tn + 3.77tn2. (9) 

Whereas Xsol corrects the velocity for a solid sphere, a 
combination of Xsol, M and G is necessary to correct the 
velocity of a viscous drop. M and G were obtained by 
recalculating the data of Nakano and Tien [1968] in order to 
fit (7) (Figure 2). Values resulting from the 
multiplication of Xsol and M equal 3/2 of the correction 
factor for the inviscid sphere of Nakano and Tien [1968] (Y 
in their Figure 1). 
Effective viscosity is usually defined by assuming some 

value of the strain rate. It is impossible to make such an 
assumption in the case studied here. Instead, it is possible 
to calculate the characteristic stress o=Apgr, for the 
uniaxial condition (1) 

o o K n K n 
geff- = - 

• A e -E/RT o n o n-1 - (Apgr) n-1 

The constant 6n-1 that appears in (8) results from our 
particular geometry and gives a quantitatitve meaning to 
our definition of effective viscosity. If we consider a 
buoyant drop and substitute the ambient power law fluid 
with a Newtonian fluid with viscosity equal to the effective 
viscosity calculated in (8), the ascent velocity will remain 
the same [Mhatre and Kintner, 1959]. This definition of 
effective viscosity also predicts that the transition of the 
drop velocity from the solid to the inviscid regime occurs 
at viscosity contrasts S--l, similar to Newtonian fluids (for 
which S is simply the ratio of Newtonian viscosities). 
Equations (5) and (7) are essentially similar; they differ 

only in the definition of the effective viscosity and in the 
expansion of X into two terms: Xsol and the viscosity- 
dependent term. Equation (7) reduces to Hadamard- 
Rybczynski's equation when n=l, and it fits the existing 
data well (Figure 2). There are two advantages of our 
definition of geff: first, there is no need to fix the strain 
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Figure 2. The correction factors for spheres: Xsol from 
Crochet et al. [1984] and G and M obtained by the fit of 
the data of Nakano and Tien [1968] by equation (7). 

rate in order to estimate •teff, and second, the velocity 
equation is similar to Hadamard-Rybczynski's equation. 
Since Xsol, G, and M always approximate unity, rough 
estimations of the velocity of natural diapirs may disregard 
these factors and simply use Hadamard-Rybczynski's 
equation together with (8). 

Procedure for Extrapolation 

The values of X for inviscid spheres known from the 
literature extend only up to n=1.667 (m=0.6 [Nakano and 
Tien, 1968]). In order to extend these to geologically 
interesting values of higher n, we extrapolated the 
correction values by the same functional dependence (9). 
Errors due to extrapolation are expected to be only minor 
due to the shape of the equation and to the small variations 
in their values. Further research in this area and the 

derivation of values for these factors to higher n could 
easily correct our extrapolation. 

From Rheological Parameters of Rocks 
to the Velocity Equation 

The geological literature contains several laboratory 
studies of the rheologies of rocks [e.g., Kirby, 1983; 
Paterson, 1987; Wilks and Carter, 1990] as well as 
rheologies of magmas and melts of different compositions 
at diverse temperatures, pressures and crystal and bubble 
contents [McBirney and Murase, 1984; Spera et al., 1988]. 
For simplicity, we assume here that all magmas are 
Newtonian fluids, and we calculate the value K n in (7) 
through the equation 

1 

- A e -E/RT 3( n+1)/2 (10) 

where the values of A in Pa -n s-1, E in J/mol, and n can 
be taken directly from the geological literature [e.g., Kirby, 
1983]. 
The velocity of spherical diapiric bodies rising through 

any power law rock may be calculated by (7), (8), and (10). 
The next section discusses the influence of ellipticity of 
the drop on the rising velocity as a function of the power 
law exponent n. Following that we describe the computer 
code used to explore the effects of power law rheology and 
lithospherical temperature gradients on diapiric systems. 

Velocity Versus E!!ipticity 

The correction factors derived above are based on results 

related to spherical bubbles and drops. Although this work 
and all previous works that attempted to integrate the rise 
of diapirs through the lithosphere assume the spherical 
diapirs [e.g., Marsh, 1982; Miller et al., 1988; Mahon et 
al., 1988], diapirs may deform as they rise due to 
heterogeneities of the wall rock properties, interaction with 
other rising diapirs, asymmetrical thermal aureole around 
the diapir and, most importantly, the upward increase in 
viscosity of the wall rock due to temperature decrease. The 
latter effect causes diapirs to expand laterally on the 
horizontal plane and to shorten vertically (flat-lying ellipse 
in Figure 3). In an earlier paperWeinberg [1993] studied 
the velocity of two-dimensional (2D) solid ellipses rising 
through power law fluids and showed that the velocity of 
flat-lying ellipses decreases as n increases, whereas the 
velocity of ellipses rising parallel to their long axes 
(upright ellipses), increases. The velocity change with 
ellipticity is small for aspect ratios up to 2, but increases 
with n of the ambient fluid. The ratio between the 

velocity of a solid circle and a flat-lying solid ellipse of 
such an aspect ratio is 1.5, for n=3. Although these 2D 
results are only qualitatively valid for the 3D case, they are 
likely to be an upper bound for an oblate flat-lying 
ellipsoid. 
Figure 3 extends the work of Weinberg [1993] to low 

viscosity flat-lying ellipses and to higher n values, 
simulating inviscid magmatic diapirs flattened due to the 
rise through a lithosphere with upward increase in 
viscosity. The velocities were calculated numerically 
using a finite difference computer code developed by H. 
Schmeling and described in Weinberg and Schmeling 
[1992]. Low-viscosity ellipses show an enhanced 
difference between the velocity of circles and ellipses as 
compared to similar results for solid ellipses. However, 
the velocity decrease is still as small as a factor of 2 when 
n=3 for an ellipse aspect ratio of 2. The influence on 
velocity of a weak sphere deformation (aspect ratios close 
to one) can then be assumed to be negligible in our 
calculations. In the mantle and in the deep crust the 
isoviscous lines caused by the geothermal gradient have 
large vertical spacing as compared to the radii of common 
diapirs. Thus in these regions diapirs may be assumed to 
be spherical. However, as diapirs rise to shallower crustal 
levels the vertical distance of isoviscous lines decreases and 

lateral expansion and vertical flattening of diapirs become 
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Figure 3. The influence of ellipticity on the velocity of 
two-dimensional objects rising through power law fluids of 
different power-law exponents n. The ellipses rise parallel 
to the short axis as shown in the insert. The velocities are 

given as the ratio of the velocity of circles (Vc) to that of 
the ellipse (Ve). "Inviscid ellipses" correspond to ellipses 
3 orders of magnitude less viscous than the ambient fluid, 
and three different ellipticities are shown for n=5. "Solid 
ellipses" correspond to ellipses 3 orders of magnitude more 
viscous than the ambient fluid [from Weinberg, 1993]. 
All calculations were carried out for ellipses of equal 
buoyancy and box width of 5a (a is the horizontal axis of 
the ellipse). Solid ellipses are less influenced by the shape 
than inviscid ones, and both show that increasing n the 
influence of the shape on the velocity increases. 

t*=H2/k 

L*= H 

p. = Ap 

T*=E/R 

The remaining six variables (geothermal gradient dT/dH, 
Tsol, g, r, K n, and n) were used to form six independent 
dimensionless numbers that control the final depth'of 
crystallization of the diapir: 

the compositional Rayleigh nmnber Ra modified here for 
power law fluid 

Ra = (Apœr) n r H 
k K n 6 n-1 

where 

g n = 
3n+ 1/2 A 

the dimensionless geothermal gradient gt 

•T HR 
gt=•H E 

the effective viscosity of the sphere 

[tsp h k 
Ap grH • 

the solidus temperature 

more important. At these shallow levels our velocity 
estimates, calculated below for wall rocks of n = 3, may be 
overestimated by a factor of 2 if their horizontal radius 
becomes twice that of the vertical radius before the diapir 
solidifies. However, a deceleration during late stages of 
emplacement will have very little influence on the depth of 
solidification of the diapir (see Figure 5). 
The calculations carried out below could be improved 

and correspond more closely to nature if both the shape 
evolution of the diapir and the correction of diapir's 
velocity as a function of its shape were known. However, 
on the basis of the discussion above, we believe that the 
assumption of a spherical shape will not considerably 
change our results. We will show that a much more 
important source of error in the calculations is the 
relatively high error bar in the determination of the flow 
law parameters of rocks. 

Computer Code 

A computer code was developed in order to integrate the 
velocity equation for the ascent of spherical (or cylindrical) 
diapirs through the lithosphere. The ascent rate of the 
diapir considered here is controlled by 10 variables. Four 
of these were chosen to be the characteristic dimensions 

T'sol - Tsol R/E 

and the radius r'=r/H, and r• 

Table 1. Parameters Controlling the Ascent of the Tara 
Granodiorite 

Tara 

Granodiorite 

r(km) 3.0 

H(km) 25.0 

Tinit magma (øC) 770230 

Tso I (øC) 6 5 0 

k (m2/s) 7x 10 '7 

Ap (kg/m 3) 550 

Geothermal gradient (øC/km) 3 0 

E (kJ/mol) 14 2 

A (MPa'n/s) 2x 10 '4 
n 2.0 

Paramaters are fromMiller eta/. [1988]. The values of E, A, 
and n are from Westerly granite [Hansen and Carter, 1982] 
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The code considers tile effect of heat softening of the 
wall rock on the velocity and calculates the cooling of the 
diapir at each ascent step (a detailed description of the code 
and the equations used is given in Appendix B). We 
studied systematic variations in five of the six 
dimensionless parameters that control ascent and depth of 
solidification of the diapir. We did not study g'sph because 
the diapir was assumed to have a viscosity well below that 
of the wall rock, behaving as an invis½id body. Results fit 
by the least squares method are presented in Appendix C in 
the form of an equation that allows calculation of the depth 
of solidification as a function of all five parameters. To 

illustrate the use of the program, and to give an idea of the 
dependence of solidification depth on the several 
parameters, results for relatively well-known geological 
systems are presented below. 

Application to Selected Geological Systems 
The Tara Granodiorite 

As a first example, we simulate the ascent of the Tara 
granodiorite through the Cootlantra granodiorite in 
southeastern Australia [Miller et al., 1988]. We chose this 
diapir because the parameters controlling its ascent are 
relatively well constrained (Table 1). Figures 4a-4c show 
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Figure 4. (a) Velocity and effective viscosity of the wall rock [left for spheres rising with and 
without thermal softening of the ambient rock and constant density contrast. Calculation of [left is 
based on (8) using the regional temperature at the diapir's depth and ignoring softening due to heat 
released by the diapir. Thermal softening of the wall rock is included in the calculation of drag 
reduction. (b) Regional temperature (T), temperature of the sphere (Tsph), thickness of the metamorphic 
aureole (fit), and aureole temperature (Tmet) as a function of depth. The viscosity of the sphere increases 
as it rises, but is always sufficiently lower than that of its wall rocks for it to be considered inviscid. (c) 
Pe and Dr. 



WEINBERG AND PODLA[X2HIKOV: DIAPIRIC ASCENT OF MAGMAS 9549 

c) 
0.3 

14 

16 

18 

• 20 

22 

24 

26 
1 

Drag reduction (Dr) 
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 

I '•1 I I I I I 

10 1 O0 1000 104 

Log Pe 

Pe no heat softening 
Pe heat softening 
Drag reduction (Dr) 

Fig. 4. (continued) 

the results of calculations for two cases, one in which the 
rise rate is corrected for thermal softening of the wall rock 
and one without such corrections. Both diapirs rise from a 
starting depth of 25 km at 28 m/yr but rapidly decelerate 
following the same evolutionary path (Figure 4a-4c) until 
7=2. At this point, the code starts to calculate the drag 
reduction (Dr) for the thermally softened case, causing the 
abrupt acceleration at a depth of 17.5 km (Figure 4c). This 
unnatural jump arises only because of the absence of 
solutions for Dr when ¾<2. In nature the velocities of the 
two cases are expected to gradually diverge, so that the 
thermally-softened case finally crystallizes at a slightly 
more shallow depth than predicted here. The depth of 
solidification of both diapirs (i.e., when Tsph = Tsol = 
650øC) is around 15 km, and the thermally softened case 
rises only 300 m further than that without thermal 
softening (Figure 4a). 
The diapir rises significantly more slowly at higher 

crustal levels, as I•eff increases, with decreasing T (Figure 
4a). Two thirds of the total ascent time is spent in rising 
the last 3 km before solidification. The temperature profile 
of the crust and diapir (T and Tsph, respectively), and the 
thickness and temperatures of the metamorphic aureole (fit 
and Tmet, respectively) are summarized in Figure 4b. 
During the first 5000 years the diapir cools 25øC as it 
ascends 7.5 km through a crust cooling according to the 
geothermal gradient (in degrees Celsius per kilometer). 
The maximum temperature difference is 230øC at a depth 
of 17 km. From then on, the diapir cools at 
approximately the same rate as the geothermal gradient but 
is 210øC warmer than its wall rocks, and it eventually 
solidifies at a depth of 15 km. The diapir rises so fast 
through rocks so hot in the first 7-8 km of ascent that it 
loses very little heat. As the diapir slows at higher crustal 
levels, the cooling rate per risen meter increases and the 
metamorphic aureole widens considerably (fit, Figure 4b). 
At this stage, Pe decreases below 100 and thermal 
softening becomes more and more important (decrease in 
Dr, Figure 4c). Eventually, the diapir solidifies and all its 
remaining heat is conducted to the wall rock, causing 

maximum thermal disturbance. 

The unrealistically high Pe just before solidification 
(Figure 4c) results from the constant density difference Ap 
used throughout the calculation. In nature, Ap is expected 
to decrease as the cooling magma crystallizes. To 
illustrate this, we calculated the ascent of the same diapir 
but with a linear decrease in Ap from 550 kg/m 3 to zero at 
solidification (Figure 5). Comparison between Figures 4a 
and 5 shows that lower Pe leads to solidification occurring 
500 m deeper after slower ascent and that thermal softening 
becomes more important at final emplacement. 

Systematic study of the way in which various 
parameters control the depth of solidification of a Tara-like 
granodiorite was carried out by varying one parameter and 
keeping all others constant as in Table 1 (Figure 6). 
Changes in the two values controlling the buoyancy of the 
diapir have little influence (Figure 6a) bat, as is clear from 
(7), the radius r is more important than Ap. The 
logarithmic shape of the dependencies indicates increased 
control of buoyancy on the solidification depth. Initial and 
solidus temperature of the magma also have little influence 
on the solidification depth (Figure 6b). 

The main parameters controling the solidification depth 
are A, E, and n (Figures 0c and 6(1). All three parameters 
were varied here by the uncertainties of the values obtained 
in laboratory experiments (for example, see the rheology of 
olivine of Kirby [1983]). Increasing n has little effect but 
leads to shallower emplacement for the Tara-like 
granodiorite. The most important controls on the depth of 
solidification studied here are A and E. A likely span for 
the preexponential parameter A causes changes in the final 
pluton depth of nearly 5 kin, whereas the activation energy 
E changes it by nearly 16 km. At one extreme of E, the 
diapir hardly leaves its source; at the other extreme the 
diapir almost reaches the surface. Miller et al. [1988] 
estimated the solidification depth of the Tara granodiorite 
to 10-12 km. As demonstrated above, this depth can easily 
be obtained by adjusting slightly the values of the 
theological properties of the wall rock (the Westerly 
granite). 
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Figure 5. V and •teff for spheres rising with and without thermal softening of the ambient rock where 
Ap decreases linearly from 550 kg/m 3 to zero just before solidification. 

Diapiric Ascent From a Subducting Slab 

This calculation is a simplified model of the rise of a 
batch of basic magma from a subducting slab. The batch 
rises through the overlying mantle to underplate light 
continental crust below the Moho. The arrival of the 

mafic magma at the Moho melts a smaller silicic diapir 
which ascends through the continental crust. The 

parameters used in the calculations are listed in Table 2. Iu 
the first 60 km we use the geothermal gradient of the 
mantle and the theology of olivine [Kirby, 1983]. The 
continental crust is 40 km thick and divided into two 

layers: a lower 15 km formed by Adirondacks granulite 
(rheology given by Wilks and Carter [1990]) and an upper 
25 km of Westerly granite (theology given in Hansen and 
Carter [1982]). 
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Figure 6. Systematic variation of parameters controlling the depth of emplacement of a Tara-like 
granodiorite: (a) r and Ap, (b) initial and solidus te•nperature (Tinit and T$ol, respectively), (c) E and A, 
and (d) n. Each parameter was varied individually while the others were kept constant (see Table 1). 
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Fig. 6. (continued) 

In this calculation we have not built in any pause 
between the arrival of the mantle diapir at the Moho and 
the departure of the crustal silicic diapir; instead, the diapir 
is assumed to rise straight through the Moho despite its 
change in chemistry. The appropriate pause could be added 
to the total ascent time if its duration were known. 

Although Hupp_ert and Sparks [1988] calculated that it 
would take 102-103 years for a basic magma to melt a 
layer at the bottom of the crust, the incubation time taken 

by this layer to initiate its ascent as a Rayleigh-Taylor 
instability is unknown and could be similar to the total 
ascent time. 

The results for this system (Figure 7) show a diapir 
rising through 60 km of mantle in 0.18 m.y. (Figure 7a) 
and reaching the base of the crust 167 K warmer than the 
surrounding temperature (Figure 7b). It then melts a 
volume of acidic magma that rises as a sphere of 4 km 
radius (melting process is not considered) that rises in 0.17 
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m.y. to a depth of 15.8 km, where it solidifies. Two 
jumps in the velocity can be seen in Figure 7a. The first 
corresponds to the change from mantle to lower crustal 
diapir at a depth of 40 km, and the second corresponds to 
the change in rheology from granulite to Westerly granite 
at a depth of 25 km. Despite the decrease in density 
contrast the sphere rises through the granite 1000 times 
faster than through the granulite at the transition depth. 
This is because effective viscosity of the granite is low 
compared to the granulite at the same temperature (Figure 

7a). A smaller jump also occurs in each rock type, every 
time ¾ becomes > 2.0, and Dr begins to affect the ascent 
velocity (Figure 7c). 

Discussion 

All the results presented here refer to diapirs rising in the 
absence of external tectonic stresses. Such stresses could 

considerably affect our conclusions and change the ascent 
velocity, depth of solidification, and shape of the body. 

Table 2. Parameters Controlling the Ascent of a Mantle Diapir That Melts a Continental Crustal Diapir 

Mantle Diapir Lower Crust Upper Crust 
(Adirondacks Granulite) (Westerly Granite) 

r(km) 10.0 5.0 5.0 

H(km) 100.0 40.0 25.0 

Tinit magma (øC) 1302 1001 

Tsol magma (øC) 850 650 650 

k (m2/s) 10 '6 10 '6 10 '6 

Ap (kg/m 3) 500 500 400 

Geothermal gradient (øC/kin) 5 25 25 

E (kJ/mol) 533 243 142 

A (MPa'n/s) 6.34x104 8x10 '3 2x10 '4 
n 3.5 3.1 2.0 

Values of E, A, and n for the mantle are averages for olivine from Kirby [1983], Adirondacks granulite from 
Wilks and Carter [ 1990] simulates the lower crust and Westerly granite from Hansen and Carter [1982] the 
upper crust. 
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Figure 7. A diapir rises from a subducting slab through a mantle with olivine theology. At its 
arrival at the Moho, the mantle diapir melts a smaller crustal diapir which then rises through a layered 
crust formed by Adirondacks granulite at the base and by Westerly granite at the top. (a) Velocity and 
geff as a function of depth, (b) Tsph, Tm and True t, (c) drag reduction Dr when ¾ > 2; for smaller 7 
values, Dr=-l. 

Time and Velocity Constraints 

The velocity and time taken for diapiric ascent derived 
here fit the few geological constraints available reasonably 
well. Mahon et al. [1988] argue that granitoid diapirs have 
to ascend in more than 104 years and less than 105 years. 
This is because it takes more than 104 years for thermal 
softening of the wall rock to be effective, and less than 105 
years for large diapirs to solidify. This work shows that 
strain rate is so much more important than thermal 
softening as to render the lower limit of 104 years hardly 

significant. The upper time limit is in accord with the 
solidification time of the diapirs modeled here. Marsh 
[1982] found that in the subduction zone beneath Scotia, 
the response time of volcanism to a young subducting 
plate is 1 m.y. He argued that the viscosity of the wall 
rocks in contact with the diapir needs to be 1017 to 1018 
Pa s for diapirism to occur within reasonable times. Our 
calculations did not consider the time to produce batches of 
crustal magma from the mantle magma. Nonetheless, the 
diapirs took a very reasonable 0.35 m.y. to rise from 
source to 15 km from the surface. The effective viscosity 
of the wall rock approximates the requirements of Marsh's 
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calculations (Figure 7a). A diapir formed near the 
subducting lithosphere must rise faster than 3cm/yr in 
order not to be dragged deeper into the mantle with the 
descending plate [Marsh 1979]. The mantle diapir has an 
initial velocity of 190 m/yr, for the parameters in Table 2 
(Figure 7), and only diapirs having a radius smaller than 
1.4 km would be dragged downward by the subducting 
plate. To form such large magma bodies, shearing along 
the top of the subducting plate (and in the overlying 
mantle wedge) and consequent disruption of magma batches 
into small bodies have to be slower than the processes of 
melting and accumulation of magmas. 

The depth of solidification of a diapir may differ from 
that calculated above if (1) the theological parameters are 
slightly different, (2) two or more diapirs follow the same 
path (see Marsh [1982] for hot-Stokes models), (3) a 
swarm of diapirs rise simultaneously (faster ascent rates 
[see Chhabra, 1988]), and/or (4) a rigid top boundary is 
present. 

Thermal Aureole 

In order for diapiric ascent to occur at practical rates, 
Marsh [1982] invoked in his hot-Stokes models warming 
of the country rocks to their solidus temperature. Paterson 
et al. [ 1991] argued against diapirism based on the lack of 
extensive migmatites around most upper and mid crustal 
plutons. However, we have shown here that strain rate 
softening of the wall rock is an effective substitute for 
thermal softening. There is therefore no need to expect 
wide aureoles of migmatites around diapirs. 

Magma Transport Through Fractures 

Most recent challenges on the diapiric ascent of magmas 
have been based mainly on the absence of a sound theory 
that explains how diapirs can ascend through stiff 
lithospheric rocks in geologically masonable times [e.g., 

Bateman, 1984; Paterson et al., 1991; Clemens and 
Mawer, 1992]. The low ascent rates of diapirs in previous 
calculations make the ascent of magmas through fractures a 
clearly more effective transport mechanism. Here we will 
discuss some difficulties related to fracturing due. to 
buoyancy forces and compare the relative effectiveness of 
magma transport by the two mechanisms. 

Beris et al. [1985] showed that for a sphere to rise 
through Bingham fluids, the dimensionless group Yg, 
corresponding to the ratio of the yield stress to the external 
force acting on the sphere, has to be smaller than 0.143: 

2x¾•r 2 
Yg - 4•:Apr3g 3 

_ 3 xy <0.143 (11) 
2 Apgr 

where Xy is the yield stress for the ambient rocks. For 
normal stresses o n = pgH (lithostatic pressure) of 200 - 
2000 MPa 

Xy = 50 + 0.60 n (12) 

where Xy is the yield stress [Byerlee, 1978]. Substituting 
(11) in (12) yields 

50 + 0.6 pœH 
Apgr > 0.0953 

Thus, in order for the diapir to move at all, its buoyancy 
stress has to be approximately 6 times larger than the 
normal stress measured at the center of the body. It is clear 
that the diapir will not move through a plastic fluid if its 
buoyancy does not exceed the yield strength. Extremely 
large magma bodies, high pore pressure, proximity to a 
free surface, external regional stresses, or concentration of 
these regional stresses at the tip of a dike must be invoked 
in order for the rise through fracturing to be possible. 

Clemens and Mawer [1992] offered transport of magma 
through self-propagating fractures as an alternative to 
diapirism. However, a dike cools much faster than a 
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sphere of the same volume. Marsh and Kantha [1978] 
concluded that for a given volume of magma to reach the 
same depth, it must travel 104 times faster in a dike than 
in a spherical diapir. Our results suggest that diapiric 
ascent rates of 10-50 m/yr may be common in the lower 
crust. Such velocities are 1 order of magnitude more 
efficient in transporting magma at 3x104 m/yr along a 1- 
km-long and 3-m-thick dike [from Clemens and Mawer, 
1992, p. 349]. However, as the diapir rises and decelerates, 
fracturing becomes easier due to decreased lithostatic 
pressure (On) and may at a certain critical point become 
more efficient in transporting magma than diapirism. It is 
possible that at a certain depth the system changes from 
diapirism to fracturing [Rubin, 1993]. 

Another argument used against diapirs of buoyant 
magma [e.g., Clemens and Mawer, 1992] is the nature of 
the structures in experiments carried out by Ramberg 
[ 1981], where low-viscosity model magmas rose through 
high-yiscosity overburden. However, it is known from 
Hadamard-Rybczynski ecluation (2) and confirmed by (7) 
that diapirs more than 10 z times less viscous than the wall 
rock will behave like inviscid bubbles, and further decrease 
in viscosity will not alter the behavior. The structures 
observed by Ramberg [1981, pp. 333-340] result not from 
the low viscosity of the model magmas, but from their 
enormous volumes. In Ramberg's experiment M, the 
"magma body" had the volume of a sphere with a diameter 
equivalent to two thirds of the total thickness of his model 
"crust". The resulting fracturing of his model crust and the 
disruption of the initial "magma body", on the one hand 
proves the above statement that diapirs cannot overcome 
the moving criterion for spheres in Bingham fluids (11), 
and on the other hand shows that fracturing is preferable 
only for such large magma bodies and close to a free 
surface. Ramberg's model cannot be directly extrapolated 
for smaller bodies deep in the crust or lithosphere. 

Comparison Between Hot-Stokes and Power 
Law Models 

Thermal softening of the ambient rocks (hot-Stokes 
models) has surprisingly little influence in the rate of rise 
of a normal-sized diapir. Thermal softening is negligible 
during the initial stages of ascent because the temperature 
contrast between diapir and country rocks is usually small 
(low ¾ values). By contrast, strain rate softening allows 
the diapir to rise so fast that it looses very little heat while 
ascending. As the warm diapir reaches the cooler crust, ¾ 
increases and viscous drag starts to decrease due to thermal 
softening. However, this occurs only when the diapir is 
close to its final solidification level, and its thermal energy 
is rapidly lost due to the slow ascent rates. The diapir may 
still be buoyant when it solidifies, and the high 
temperature difference between it and its wall rock, and its 
low Pe, may considerably reduce drag so that the 
crystalline diapir rises considerably faster than expected 
without thermal softening effects. 

Conclusions 

This work has expressed the velocity of spherical drops 
rising through power law fluids in the form of Hadamard- 
Rybczynski's equation. The correction factors Xsol, G, 

and M calculated from known results for drops were 
extrapolated to high n values and then applied to geological 
systems. The most important advantages of our equations 
(7) and (8) are that with our definition of the effective 
viscosity (8), the velocity equation becomes similar to 
Hadamard-Rybczynski's equation; the known values of the 
theology of rocks can be directly applied to calculate the 
effective viscosity of the wall rock (].teff); it is not 
necessary to assume a strain rate in order to calculate geff, 
instead the buoyancy stress of the diapir is used; and since 
the correction factors are always close to unity, the 
velocity may be approximated by calculating geff and 
using Hadamard-Rybczynski's equation. Any errors arising 
from the extrapolation of the correction factors to high n 
may be remedied when these factors are eventually 
determined for high n values. More important sources of 
error are the uncertainties concerning the theologies of 
rocks [Paterson, 1987]. We have shown that the 
theological parameters A and E are the main variables 
controlling the depth at which a diapir solidifies. Improved 
knowledge of these parameters will considerably deepen our 
understanding of crustal diapirs and allow more accurate 
predictions of their development. 

The high velocities calculated here result from our 
definition of Irefl. Diapirs are able to rise faster through 
power law fluids than through Newtonian fluids, and such 
fast rise is not accompanied by large heat loss (the main 
problem with the hot-Stokes models). Thus diapirs are 
emplaced at much higher levels than earlier predicted, and 
their thermal energy eases late stages of ascent. Thermal 
softening of the wall rocks has never been considered 
adequate to account for granite plutons reaching high 
crustal levels. Earlier workers had difficulties in 

accounting for the way in which hot-Stokes diapirs rise 
more than a few radii before solidifying. We have shown 
that thermal softening has little effect on the depth of 
solidification of a diapir and that strain rate softening of 
power law rocks is a far more effective alternative, 
allowing magmatic diapirs to ascend sufficiently fast to 
reach depths of 10-15 km. 

In summary, instead of assuming a strain rate in advance 
as has been usual in the past, we use the buoyancy stress 
of the sphere and the theological parameters of rocks to 
calculate a more realistic effective viscosity of the wall 
rock. Diapirs may thus transport large quantifies of melt 
efficiently through power law mantle and crust without 
needing to heat their wall rocks to solidus temperatures. 

Appendix A: Velocity Equation for Settling 
Spheres Through Power Law Fluids 

A convenient way to study the rate of translation of a 
drop through power law fluids is to measure how much it 
deviates from the expected rate of translation through 
Newtonian fluids. This is usually done by measuring the 
difference in the drag force (D) exerted on the sphere by its 
viscous surroundings, in terms of the dimensionless drag 
coefficient (CD) 

8D 

CD pV2•(2r) 2 . (A1) 
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The Hadamard-Rybczynski equation shows that the drag 
coefficient CD for a viscous drop moving slowly through a 
Newtonian fluid is 

where 

24 (!1 + 1.5 Ilsph) CD = •ee It + !lsph (A2) 

2rV 
Re = . (A3) 

For power law fluids, CD and Re must be redefined as 
[Crochet et al., 1984] 

Re 2mrmv2-mp = K (A5) 

where X is a correction factor that depends on n and the 
viscosity ratio between the drop and the ambient fluid. For 
solid spheres in Newtonian ambient fluids, X=I, and for a 
drop of any viscosity (from (A2)) 

S • 
1+ 1.5S 

I+S 

where S=•tsph/g. X also describes the influence of 
nonlinearity for the more general case (n or rn ½ 1). 
Several workers have determined the drag coefficient CD 

for spheres translating through power law fluids [e.g., 
Crochet et al., 1984]. Once CD is known, the velocity 
equation of a sphere can be written by setting the drag force 
equal to the buoyancy force 

D 4 = • •r 3 Apg (A6) 

and substituting D in (A1) and then in (A4), with Re 
defined as in (A5). Reorganizing, we obtain the equation 
for the velocity of a buoyant spherical drop rising through 
a power law fluid 

V = 2 (Al)g)nr n+l 9n Knxn (A7) 

(A7) reduces to Hadamard-Rybczynski equation (2) when 

Appendix B' The Computer Code "Rise" 

The computer code "Rise" starts by reading the six 
dimensionless parameters that control diapiric ascent and 
calculates the effective viscosity of the wall rock geff given 
the buoyancy stress due to the diapir and the temperature of 
the ambient rock and diapir (assumed initially to be the 
same). The program assumes a uniform temperature inside 
the sphere when it calculates the velocity of the top (or 

center) of the body. After calculating geff, the program 
then calculates the velocity of the sphere, its Peclet 
number (Pe) and the distance in front of the sphere where 
the temperature decays to 1/e of the temperature at the 
sphere's surface (fit as defined by Daly and Raefsky 
[1985]). The dimensionless relationships used by the 
program are 

[t'ef f = Ra e(-1/T') 

V' Rae(-l/7')( g'effG + [t's.P5hg • = 3 [•Xsol(GMg'ef f + 1 'sphi 
Pe = V'r'. (B1) 

The Nusselt number (Nu) for an inviscid diapir (very small 
S) is calculated by using the equation for a Newtonian 
ambient fluid given by Daly and Raefsky [1985, equation 
25], corrected by the factor YM for power law fluids given 
by Hirose and Moo-Young [1969] 

Nu = 0.795+0.459 YM Pe 1/2 

where 

YM = (1-4m(m-1))l/2 (2m-l) 
(B3) 

We chose not to use the whole equation for Nu given in 
Hirose and Moo-Young [1969] because, when used for a 
Newtonian ambient fluid, their solution is not in 
accordance with that established in Levich [1962] and 
corrected in Daly and Raefsky [1985]. 
The velocity in (B 1) does not take account of the drag 

reduction due to softening of the wall rocks caused by heat 
released from the rising diapir. Thus the program corrects 
the velocity in (B1) and the Nu in (B2) for the drag 
reduction, according to the results obtained by Daly and 
Raefsky [1985]. Although their solution was derived for 
ambient Newtonian fluids, we believe it to be a good 
approximation even for power law wall rocks. This is 
because the length scale of thermal softening (fraction of a 
radius) is much smaller than the length scale of strain rate 
softening (a few radii). No drag reduction is applied in the 
first step, since the temperature contrast between the diapir 
and its wall rock is likely to be low during initial ascent. 
The program calculates ¾ for every subsequent step; T is 
defined as log 10 of the total viscosity variation due to the 
temperature gradient from the surface of the diapir to the 
temperature of the ambient fluid at infinity [Daly and 
Raefsky, 1985] 

log 10 e- 1/(T'sph-T') . (B4) 

Daly and Raefsky's solution is limited to values of ¾ > 2, 
so for ¾ greater than this value the program calculates the 
parameter A and the drag reduction, Dr, using 

A = œNu 

0.62A 

Dr = 0.60 + A (B5) 
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where 

e=¾3 10-Y 

Nu=0.795+0.459 YM (Pe œ-0.2)1/2 

and divides the velocity from (7) by Dr. Drag reduction is 
important only when Pe is between I and 100 [Daly and 
Raefsky, 1985], and it will be shown later that these 
values occur only when the diapir is close to its final 
emplacement level. 

At every step, cooling of the sphere and its new 
temperature is calculated according to [from Marsh and 
Kantha, 1978] 

dT = 3Nu (T'sph-T3 dt - ra for sphere. (B6) 

The program assumes uniform temperature rather than the 
complex crystallization processes in a natural diapir. 
When the temperature of the rising body achieves 1.1 
T'sol, its viscosity begins to increase and it eventually 
rises 10 orders of magnitude just before total crystallization 
[Cruden, 1990]. If the diapir loses its buoyancy by 
crystallizing (when T's=T'sol), the program stops 
calculating. 

Appendix C' Solidification Depth of a Diapir 

The results of calculations for the depth of solidification 
H of a diapir as a function of the five dimensionless 
parameters have been fit by the least squares method. The 
following equation fits the numerical results with a 
maximum relative error of 5.6% (calculated by the 
difference of predicted and calculated values divided by the 
sum of both) 

H = 0.6434 - 0.1444gt - 0.2279Ra + 0.0464Ra .gt + 
0.1316T'sol - 0.0404 T'sol gt -0.0632T'sol Ra + 
0.0192T'sol Ra gt + 0.0455 n - 0.0218 n gt - 0.0074 
n Ra + 0.0049 n Ra gt- 0.0271 n T'sol + 0.0118 n 
T'sol gt + 0.0142 n T'so 1 Ra -0.0062 n T'sol Ra gt 
+ 0.0573 r -0.0253 r gt - 0.0336 r Ra + 0.0137 r Ra 
gt - 0.0226 r T'sol + 0.0050 r T'sol gt + 0.0110 r 
T'sol Ra - 0.0024 r Tsol Ra 'gt - 0.0226 r n + 
o.0111r n gt + 0.0090 r n Ra-0.0045 r n Ra gt + 
0.0115 r n T'sol- 0.0042 r n T'so 1 gt- 0.0059 r n 
Tøsol Ra + 0.0022 r n T'sol Ra gt 

Notation 

A 

CD 
Dr 

E 

g 

preexponential parameter, Pa-n s-1 
dimensionless drag coefficient 

drag reduction caused by thermal softening 
activation energy, J/mol 

acceleration due to gravity 

gt 

G 

H 

K 

k 

L* 

in 

M 

Nu 

l-'e 

q 

R 

l" 

Re 

Ra 

S 

dt 

dT 

T 

V 

X(n) 

Yg 

YM 

dimensionless geothermal gradient (dT/dx HR/E) 

correction factor function of n, defined in (9) 

depth of the top of the diapir 

o/•; 1In in Pa s l/n, uniaxial case 
thermal diffusivity 

length scaling parameter 
1In 

correction factor function of n, defined in (9) 

power law exponent 

Nusselt number, q r / )• (Tsph-T) 
Peclet number 

heat flux out of the hot sphere 

gas constant, 8.314 J/mol K 

sphere radius 

dimensionless radius (r'--r/H) 

Reynolds number defined in (A3) and (A5) 

compositional Rayleigh number, (Ap g r) n r H/ 
Knk6n-1 

[tsph / geff 
time 

time step in numerical calculations 

temperature decay of the sphere per time step (dt) 

temperature (without any subscript corresponds 
to the wall rock or ambient fluid) 

dimensionless solidus temperature 

sphere's or diapir's velocity 
width of the box used in numerical calculations 

dimensionless width (w/r) 

correction factor 

correction factor function of n and gsph/geff 
the ratio of the yield stress to the external force 
acting on the sphere, defined in (11) 
correction for Nu of power law fluids, defined in 
(B3) 

Greek symbols 

dij 

geff 

log 10 of the total viscosity variation in (B4) 
[Daly and Raefsky, 1985] 

second invariant of the strain rate tensor • j 
defined in (B5) from Daly and Raefsky [1985] 

thickness of the metamorphic aureole 
uniaxial strain rate 

strain rate tensor 

heat conductivity 

viscosity of the Newtonian ambient fluid 

effective viscosity of the ambient fluid defined 
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by 

•'sph 

Ap 

(8) 

dimensionless viscosity of the sphere, g'sph = 
(•tsph k)/(Ap grH 2) 
density difference (p- Psph) 
uniaxial stress 

stress tensor 

lithostatic pressure o n = pgH 
yield stress 

Subscripts 

crit critical 

eft effective 

init initial 

m ambient fluid 

met metamorphic aureole 

(n) function of n 

S function of S 

sol solid or solidus when used with temperature 

sph sphere 
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