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Magmamixing andmingling are described from different tectonic environments and are keymechanisms in the
evolution of granitoids. The literature focuses on the interaction betweenmafic and felsicmagmaswith only lim-
ited research on the interaction between similar magmas. Here, we investigate instead hybridization processes
between felsic magmas formed during the ~500 Ma Delamerian Orogeny on the south coast of Kangaroo Island.
Field relations suggest that a coarse, megacrystic granite intruded and interacted with a fine-grained diatexite
that resulted from combined muscovite dehydration and water-fluxed melting of Kanmantoo Group turbidites.
The two magmas hybridized during syn-magmatic deformation, explaining the complexity of relationships and
variability of granitoids exposed. We suggest that granite intrusion enhanced melting of the turbidites by bring-
ing in heat and H2O.With risingmelt fraction, intrusivemagmas became increasingly unable to traverse the par-
tially molten terrane, creating a positive feedback between intrusion and anatexis. This feedback loop generated
the exposed mid-crustal zone where magmas mixed and homogenized. Thus, the outcrops on Kangaroo Island
represent a crustal and felsic melting-assimilation-storage-homogenization (felsic MASH) zone where, instead
of having directmantlemagma involvement, as originally proposed, these processes developed in a purely crust-
al environment formed by felsic magmas.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The production of granitic magmas by partial melting of metamor-
phic rocks and their consequent rise in the continental crust is one of
the fundamental mechanisms in the evolution of the Earth and the
main driver of crustal differentiation (Brown, 2013; Sawyer et al.,
2011). To understand the nature of magmas that incrementally feed
upper crustal plutons, it is necessary to investigate all stages of this pro-
cess, from the sources of granite magmas to the pathways that link to
the top. This includes the initial steps of melt generation in a heteroge-
neous crust (Patiño Douce and Harris, 1998; Stevens et al., 1997;
Weinberg and Hasalová, 2015), the mechanism of melt extraction and
ascent (Vanderhaeghe, 2001;Weinberg and Regenauer-Lieb, 2010), in-
teractions between magma and their surroundings during ascent, and
processes related to accumulation within subsolidus crust (Diener
et al., 2014; Hall and Kisters, 2016). It is the superposition and temporal
variation of these different processes that gives granite plutons their
distinct character (Clemens and Stevens, 2012).

Because exposure of continuous granitic systems from migmatite
sources in the lower crust to upper crustal granite plutons is rare (see
Reichardt and Weinberg, 2012a), our current knowledge is based on
. Schwindinger).
integrating studies of different parts of this system. Due to a number
of seminal papers in the 1980s, water-absent dehydration melting of
crustal rocks at granulite facies metamorphism has been commonly
seen as the most efficient producer of granitic magmas contributing to
form large plutons (e.g. Patiño Douce and Johnston, 1991; Yakymchuk
and Brown, 2014). However, water-fluxed melting has also been
shown to be of regional importance, with voluminous melt production
at upper amphibolite facies conditions, underlining its contribution
to granite magmatism (Carvalho et al., 2016; Collins et al., 2016;
Weinberg and Hasalová, 2015). Regardless of protolith and melt reac-
tion, anatectic melt is likely to bemodified before its final emplacement
by mechanisms such as crystal fractionation (Carvalho et al., 2016), en-
trainment of residual (Chappel et al., 1987) and peritectic phases
(Reichardt andWeinberg, 2012b; Stevens et al., 2007) ormagmamixing
(Gray and Kemp, 2009; Keay et al., 1997).

The significance of magma mixing in the evolution of granitic
magmas remains actively debated (Regmi et al., 2016). While many au-
thors consider magmamixing as a leading process in granite petrogen-
esis (e.g. Collins, 1996; Regmi et al., 2016), some regard it as a late,
shallow crustal feature, without any significance for the large-scale
geochemical variety of granite magmas (Clemens and Stevens, 2012).
Eye-catching features of magma mingling, with dispersion of dark-
coloured magmas in a more leucocratic host, are taken by many geolo-
gists as typical features of magma mixing. This interpretation is
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Fig. 1. Position of Kangaroo Island in the southernAdelaide Fold Belt showing the extent of
the Kanmantoo Group, the location of syntectonic granites and geological features
mentioned in the text. Granite intrusions between Stun'Sail Boom and Vivonne Bay are
surrounded by migmatite. Other granites are intruded into shallower crustal levels, such
as Cape Willoughby and Encounter Bay Granites. All ages are SHRIMP zircon ages
(Fanning, 1990) except for SHRIMP monazite ages from Six Mile Lagoon migmatites
(Weinberg et al., 2013). The study area is marked by a black rectangle. Map modified
after data from Foden et al. (2006), Mancktelow (1990) and Weinberg et al. (2013).
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generally supported by a hybrid isotopic signature indicative of mixing
(Foden et al., 2002; Waight et al., 2000). Common arguments against
mixing are based on inconsistencies in mixing arrays between major,
trace element and isotope ratios (Clemens and Stevens, 2012; Farina
et al., 2014). It is suggested instead that source composition is the
most significant parameter controlling granite magma composition.

Almost three decades ago Hildreth and Moorbath (1988) proposed
that hybridization between crustal and mantle magmas in magmatic
arcs occurs in a zone at the base of the continental crust where melting,
assimilation, storage and homogenization takes place in what they
called MASH zones. In such zones, basaltic mantle magmas cause melt-
ing or remelting of lower crustal rocks, with which they hybridize and
homogenize before rising and fractionating. Originally envisaged for
magmatic arc settings, these hypothetical zones, and the similar deep
crustal hot zones (Annen et al., 2006), have been used in numerous pub-
lications to explain the mixed isotopic composition of granitoids in all
sort of tectonic setting, including the accretionary orogens of eastern
Australia (Collins, 1996; Foden et al., 2002).

Criticism of the role of MASH in granite petrogenesis is commonly
based on different properties of felsic and mafic magmas and fast melt
extraction rates from the source, inhibiting interaction between differ-
ent magmas. In addition there seems to be a lack of examples of such
zones in the geologic record (Clemens and Stevens, 2016). Experiments
showed that the efficiency of magma hybridization is strongly depen-
dent on the rheology of the participating magmas, as well as their
solidus temperatures and relative density contrasts, withmost homoge-
neous hybrids resulting from mixing of similar end-member magmas
(Perugini and Poli, 2012; Sparks and Marshall, 1986). Despite these
physical difficulties, most studies have focused on the interaction be-
tween a felsic crustal magma and a mafic, mantle-derived magma,
whereas the hybridization between magmas of similar composition
has attracted less attention, with only a few examples in the literature,
all of which in migmatites (Hasalova et al., 2011; Reichardt et al.,
2010; Weber and Barbey, 1986). However, it is precisely that these
magmas may interact efficiently.

This paper addresses hybridization of magmas with similar compo-
sition by describing the hybridization processes between intrusive gra-
niticmagmas andmigmatites preserved in exposures on the south coast
of Kangaroo Island (Foden et al., 2002; Weinberg et al., 2013). We start
the paper with a brief summary of the regional geology, followed by a
description of the different lithologies involved, and then investigate
their patterns of interaction, from which we infer a series of processes
that gave rise to a felsic MASH zone formed entirely by crustal magmas.

2. Regional geology

Kangaroo Island is located at the most westerly extension of the ar-
cuate Adelaide Fold Belt, which was deformed during the Cambro-
Ordovician Delamerian Orogeny (514–490 Ma, Foden et al., 2006). The
belt hosts deformed sedimentary successions ranging in depositional
age from Late Neoproterozoic to Early Cambrian, terminating with the
deposition of the Cambrian Kanmantoo Group as the youngest strati-
graphic member. This group comprises a thick marine succession of
immature turbiditic sand- and mudstones with wide exposure in the
southern Adelaide Fold Belt (Fig. 1, Flöttmann et al., 1998). The
Kanmantoo Group hosts multiple felsic, igneous intrusions of the
Delamerian Orogen and is the protolith for the migmatites studied
here (Foden et al., 2002; Weinberg et al., 2013). On Kangaroo Island
these are exposed south of the Kangaroo Island Shear Zone, a regional
structure which divides the island into two tectonostratigraphic units:
the unmetamorphosed platformal Kangaroo Island Group to the north,
and the deformed andmetamorphosed Kanmantoo Group sedimentary
rocks to the south (Fig. 1).

Delamerian crustal shortening commenced only ~8 m yr after the
onset of the Kanmantoo Group deposition at 522 Ma (Jenkins et al.,
2002) and included intense deformation and metamorphism of the
turbiditic sequences (Foden et al., 2006; Mancktelow, 1990), forming
what is now theAdelaide Fold Belt. Estimates for the beginning of defor-
mation vary from the appearance of first syntectonic granites at 514 ±
4 Ma (Foden et al., 1999), to an earlier Neoproterozoic onset of
Delamerian deformation (547–544 Ma, Turner et al., 2009). During
low-pressure-high-temperature “Buchan-style” metamorphism, peak
conditions reached 4–4.5 kbar at 650 °C (Dymoke and Sandiford,
1992), with highest metamorphic grades associated with migmatites
in the vicinity of several granite intrusions (Sandiford et al., 1992).
This relationship is also observed in the area covered by this study be-
tween Stun'Sail Boom River and Vivonne Bay (Fig. 1). Here the
Kanmantoo Group has been intruded by several syn-tectonic, I-S type
granites (503 ± 4Ma, 504± 8Ma; Fanning, 1990) and undergone par-
tial melting forming migmatites (Foden et al., 2002; Weinberg et al.,
2013).

These syn-tectonic Delamerian granites are interpreted to be the re-
sult of multi-stage mixing between mantle-derived mafic magmas and
crustal material at deep crustal levels, with S-type granites being repre-
sentative ofmagmas that are derived frommelting of the Cambrian sed-
iments (Foden et al., 2002). In situmelting ofmeta-sedimentary rocks to
formmigmatite has been inferred to be the product of muscovite dehy-
dration melting, which is indicated by the local presence of sillimanite
(Tassone, 2008). Higher metamorphic conditions exceeding the stabili-
ty field of biotite are unlikely, because biotite appears stable and ferro-
magnesian peritectic minerals are absent.

Weinberg et al. (2013) investigated the role of deformation in the
extraction of magmas from migmatites and defined four syn-
magmatic deformation phases, which only partly correlate to the re-
gional deformation phases recorded in lower grade rocks of the orogen
(Mancktelow, 1990). The syn-magmatic deformation was subdivided
into compressional phases, in which melt migrated along fold limbs
into axial-planar dikes, and transtensional deformation phases charac-
terized by melt accumulation on shear planes and formation of
diatexites. U–Pb SHRIMP dating of monazite from the diatexites at Six
Mile Lagoon indicate protracted syn-tectonic anatexis between 495
and 465 Ma (Weinberg et al., 2013). This result extends the age range
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to younger values when compared to results from monazite extracted
from leucosomes (498–488Ma, Tassone, 2008). These ranges are appar-
ently contradicted by a Rb–Sr cooling age of an intrusive leucogranite
further east at Vivonne Bay (487.4 ± 3.5 Ma, Foden et al., 2002) and
the 500 ± 7 Ma zircon ages of composite dikes at Cape Gantheaume
(Fig. 1, Fanning, 1990), that were interpreted to be related to a regional
post-convergent extensional phase. A resolution to this apparent con-
tradiction may lie in different exposure crustal and the nature and un-
certainties of the different dating methods. It is also possible that low-
T melting in the Kanmantoo Group continued into the extensional
stage of the orogen (Foden et al., 2006). This stage was associated
with a renewed influx of hot mantle, and transition from convergent
to extensional tectonics was accompanied by a compositional shift to
bimodal magmatism and A-type granite intrusions (493–480 Ma),
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3. Results

Fig. 2 presents the geological map of the Stun'Sail Boom area and
photographs of the most common lithologies. The outcrops are
subdivided into three broad zones (Fig. 2a). Schollen-rich diatexite in
the west, diatexite with variable proportions of megacrystic granite in-
trusions (20–40 vol.% by area) in the centre, and metatexite in the east.
The lithological boundaries, in particular between diatexite and
megacrystic granite in the central zone, vary from well-defined to dif-
fuse, and from planar to strongly irregular. We will first describe the
main rock types in order of increasing former melt content from
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grained plagioclase and quartz and has diffuse margins to the surrounding finer-grained residual metasedimentary rock. Type 1 muscovite (Ms1) represents early metamorphic grains,
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metatexite to intrusive granites (Figs. 2–4), followed by a description of
contact relationships (Figs. 5–9).We use the term leucosome to refer to
magmatic segregations interpreted to be originated in situ, and granite
5 cm

Fig. 4. Composite enclave within megacrystic granite comprising a layered
metasedimentary enclave in the core surrounded by a rim of coarse-grained, foliated
gneissic granite (dashed line outlines parts of the margin). A thin gneissic rim is present
around the K-feldspar megacryst at the bottom left of the photograph. Except for the
gneissic foliation, the granite in the composite enclave is texturally and modally similar
to the surrounding coarse-grained granite suggesting erosion of a pre-existing granite
formed during the same anatexis.
intrusions to refer to externally-derived magmas that invaded the
migmatites.
3.1. Lithologies

3.1.1. Metatexite
Metatexite retains pre-melting structures and consists of alternating

bands of grey feldspathic psammites and black biotite-rich pelite layers,
with indication of in situmelt generation (Fig. 2b). The psammite layers
are dominated by quartz (30–38 vol.%), plagioclase (~25 vol.%) and bi-
otite (24–28 vol.%) withminor or absent K-feldspar (0–5 vol.%), where-
as in the pelite, biotite makes up to 40 vol.% next to plagioclase, quartz
with minor muscovite and K-feldspar (b5 vol.%). Themodal abundance
of muscovite is small typically b3 vol.%, reaching a maximum of 5 vol.%.
Two types of muscovite are distinguished. Type 1 muscovite is fine-
grained and associated with biotite with both minerals defining the fo-
liation of the rock. Type 2 muscovite form flakes (b1 cm) with random
orientation and irregular spacing between crystals. This coarse musco-
vite has rare fibrous sillimanite inclusions, restricted to patch or
stromatic leucosomes and mica-rich zones in the surrounding of late
pegmatite intrusions. Accessory phases in the metatexite are monazite,
zircon, apatite, and ilmenite that are commonly associated with biotite.
The leucosomes comprise quartz, plagioclase, biotite, minor muscovite
and variable amounts of K-feldspar, reflecting a compositional variation
from tonalite (more common) to granite (Fig. 3a). These leucosomes are
less than 2 cmwide and either parallel to bedding or to the axial-planar
orientation of folds, forming stromatic and network metatexite
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(Fig. 2b). With an increase in the total melt fraction in the rock, the
metatexite disaggregates to form diatexite migmatite (Fig. 2c).

3.1.2. Diatexite
The most characteristic features of diatexites are their grey colour,

fine- to medium grainsize and dispersed remnants of disaggregated
5 cm

b

DiatexiteDiatexite

GraniteGranite

d

DiatexiteDiatexite

GraniteGranite

5 cm

c

a b

Fig. 6. Clean, sheeted contacts between grey diatexite with stretched schlieren and elongated
diatexite or megacrystic granite are continuous over up to 8 m with semi-planar, yet irregular
increased irregularities and incipient magma interaction (c,d). Note in (b) that the foliation d
sheet contact. In (d) K-feldspar megacrysts from granite are found in diatexite (white arro
schollen fragments.
metasedimentary rocks. They are compositionally heterogeneous
being dominated by a granitic matrix with numerous centimetre to
metre-sized Kanmantoo Group schollen, schlieren and biotite clots
(Fig. 2c). The proportions of these mafic elements are variable and out-
crops range from schollen-and-schlieren diatexites to homogenous,
grey diatexitic granites with only few small remnants (Fig. 2c–d).
DiatexiteDiatexite
5 cm

GraniteGranite

5 cm

small schollen, and coarser-grained megacrystic granite (dashed lines). Single sheets of
contacts and only minor signs of interaction between the two (a,b). Other contacts have
efined by alignment of Kfs megacrysts, biotite clots and elongated schollen, is parallel to
ws) across a crenulated and diffuse contact. Black arrows show biotite-schlieren and
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Fig. 7. Increasingly heterogeneous hybrid rocks characterized by disrupted lenses and transitional contact zones. (a) Irregular, disrupted bands of megacrystic granitite (black arrows)
inside fine-grained, grey diatexite with schollen. (b) Single Kfs-megacryst in the centre of a sigma-shaped lens of coarse granite forming wings, inside fine-grained, heterogeneous
granite. Note several, cm-wide bands of coarser matrix typical of the megacrystic granite (white arrow) and biotite-schlieren typical of the diatexite. (c) Megacrystic granite on right-
hand side intruding into schollen-rich diatexite along schollen margins. The intrusion process was frozen in the process of transferring a schollen from diatexite to megacrystic granite
suggesting coeval anatexis and intrusion. Leucosomes in schollen are in petrographic continuity with the outside diatexitic magma (left-hand side of the image). (d) Pervasive,
foliation-parallel intrusion of megacrystic granite into diatexite with diffuse contacts. Best preserved end-member magmas are found in tails connected to schollen (black arrows) or
disrupted lenses of granite (white arrow).
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Phenocrysts are rare and the granitic matrix consists of quartz, plagio-
clase, K-feldspar, biotite, muscovite and accessory tourmaline, zircon
and monazite (Fig. 3b, c). Similar to metatexite, coarse-grained, type 2
muscovite forms scattered and randomly oriented grains that cut the fo-
liation defined by the alignment of biotite-schlieren and clots. These can
have modal abundances of b3 vol.%.
3.1.3. Intrusive megacrystic granite
The migmatites are intruded by multiple phases of granite from

metre-sized dikes and sills to large stocks covering several hundred
metres of coastal outcrop (Figs. 1–2). They comprise medium- to
coarse-grained biotite granites with rounded to rectangular or square
K-feldspar megacrysts of 5–10 cm diameter (Fig. 2e). Megacrysts are
rich in inclusion that form concentric rings or irregular clusters of
euhedral to sub-rounded grains of biotite and plagioclase, which are as-
sociated with irregular films of quartz and muscovite. Beyond quartz
and feldspars, the granites are made of 10–14 vol.% biotite, muscovite
(b2 vol.%), and accessory monazite, zircon and magnetite (Fig. 3c).

An earlier phase of megacrystic granite is subtly different from the
main one: it has slightly coarser grainsize and a more marked foliation
defined by the alignment of coarse biotite, resulting in a gneissic ap-
pearance. This “gneissic granite” can form continuous regions with ir-
regular contact with the megacrystic granite or form metre-sized
rounded to irregular enclaves within the megacrystic granite. Many of
these enclaves are composite, with a block of metasedimentary rock in
their centre, suggesting that these formed a rigid core that protected
the gneissic rim from physical abrasion during its breakdown to form
the enclaves (Fig. 4) in the younger granite. This gneissic rim is also
present as narrow rims around some of megacrysts in the younger
granite.

Both the early, foliated and the younger, unfoliated megacrystic
granites have rectangular to rounded xenoliths of typical Kanmantoo
Group rocks, and a small number of rounded quartz-diorite enclaves.
The latter have amagmatic texture and comprise large, euhedral plagio-
clase phenocrysts in a groundmass of plagioclase, quartz, biotite, K-
feldspar, hornblende with accessory magnetite, ilmenite, titanite, mon-
azite and zircon. Transfer of K-feldspar across the boundaries suggests
mingling between the magmatic enclaves and their hosts, which is
also reported from other intrusions in the Adelaide Fold Belt, such as
the Encounter Bay Granite at higher crustal levels (Fig. 1, Foden et al.,
1990).

3.1.4. Leucogranite
Leucogranites intruded migmatites and range from cm- to m-wide

dikes and sills. They have medium to coarse grainsize and comprise
quartz, K-feldspar and 3–5% of primary muscovite (Fig. 3d). Larger
bodies outcrop further east in the Vivonne Bay area (Fig. 1) and
are assembled by multiple 20–50 cm wide magma sheets with
intergrown patches of tourmaline or garnet with quartz. In contrast to
the K-feldspar megacrysts of the intrusive granites, K-feldspar in the
leucogranites has few inclusions, typically only quartz (Fig. 3d).

3.2. Field relationships

The distribution and relationships between different magmatic
rocks define a number of zones, and their nature holdmeaningful infor-
mation regarding the relative timing and rheology of phases at the time
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of intrusion.We divided the region into sheeted-, lensed- and heteroge-
neous zones. These are described first, followed by the description of a
set of distinct leucogranite and pegmatite dike intrusions (Fig. 5).

3.2.1. Sheeted zones
These are common at the margins of large intrusive granite bodies

and are characterized by interleaving between up to 1 m-wide layers
of megacrystic granite and fine-grained diatexites (Figs. 5, 6a–b). The
difference in grainsize, colour and the presence of megacrysts in one
rock and residual source material in the other, creates sharp and planar
contacts. Some contacts aremore diffuse andhave lobated or crenulated
to interfingering contacts with minor exchange of solid material across
(Fig. 6c–d).

3.2.2. Lensed zones
In lensed zones, themargins aremore irregular and diffuse (Fig. 5). A

common feature is disrupted sheets of granite and leucogranite that are
stretched to irregular lenses of varied sizes inside the diatexite (Fig. 7a–
b). Megacrystic granite pervasively intrudes and disaggregates
diatexite, which leads to exchange of residual material and K-feldspar
megacrysts between them (Fig. 7c–d). Despite the reduction in width
and lateral continuity of megacrystic granite and diatexite layers, and
the exchange of components between them, the nature of the twomag-
matic rocks is still recognizable in this zone.

3.2.3. Heterogeneous zones
Here, it becomes difficult to recognize the two end-members and

classify them as megacrystic granite or diatexite. Rocks combine a
variety of grey tones and typical elements of both end-members
(Fig. 8). Megacrystic granites contain schollen, schlieren and scattered
biotite-clots. Similarly, megacrysts and disrupted sheets of coarse-
grained granite are dispersed inside diatexite, which now has variable
colours, reflecting different modal contents, and heterogeneous
grainsizes (Fig. 8c). Such zones are typically related to domains of
more intense deformation with significant stretching of former
magma sheets (Fig. 8d).

3.2.4. Leucogranite and pegmatite dikes
Multiple generations of leucogranites and pegmatite dikes and sills

cut across themigmatite. Like themegacrystic granites, these intrusions
display various types of contacts with the diatexite (Fig. 9). Early dikes
vary from irregular, disrupted and folded sections, to strongly disaggre-
gated intrusions broken down to individual grains (Fig. 9a–b). Late in-
trusions form planar dikes with sharp curved contacts and variable
widths (Fig. 9c, N–S oriented dike). In between these extremes are
dikes with contorted geometries that have irregular, lobated or crenu-
lated contacts with diatexites (Fig. 9c, E–W oriented dike).

3.3. Deformation

Weinberg et al. (2013) recognized four syn-anatectic deformation
phases towards the east of the area covered here. In their work D1
and D2 are compressional deformation phases with melt migration
along fold limbs and axial planar dikes. D3 and D4 are transtensional
events with dextral shearing, melt accumulation and formation of
diatexites. At Stun'Sail Boom, evidence for the early deformation phases
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Fig. 9. Different generations of leucogranite dikes intruding diatexite. (a) Coarse leucogranite at the base of the photograph grades upwards into a wedge-shaped band of diatexite with
dispersedmegacrysts of K-feldspar and quartz, suggesting disaggregation of the leucogranite. (b) Leucogranite dike disrupted into isolated blockswith irregular, folded contacts, forming a
trail in diatexite. (c) Steep outcrop surface showing two generations of leucogranite intruding diatexite. An E–Wtrending leucogranite dike, intruded at high angles to dominantmagmatic
foliation, has strongly irregular contacts indicating partially molten surroundings. Small patches of leucogranite in the diatexite disconnected from the dike (white arrows) point to
possible disaggregation during intrusion. This dike is crosscut by a late, N–S trending, coarse-grained leucogranite with sharp and more planar contacts sub-parallel to the foliation in
the diatexite.
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is only preserved in metatexite and large schollen in diatexite where
bedding records centimetre-scale, isoclinal folding and mesoscale, up-
right folding. Foliations related to these events have been exploited as
melt migration pathways and are marked by networks that connect
layer-parallel with axial-planar leucosomes (Fig. 2b). These features
correlate to the early syn-anatectic upright folding D2 event in
Weinberg et al., 2013. In Stun'Sail Boom however, a syn-magmatic
thrusting event overprints most of the earlier events and correlates to
their D4.

This dominant deformation phase is characterized by twomain foli-
ations in diatexites. Both are NW-dipping and defined by the asymmet-
ric organization of schollen and schlieren (Fig. 10a–b). The steeper plane
with average dips of 50°NWcomprises schollen rich areas. The foliation,
as well as schollen tips and schlieren rotate into planes with average
dips of 30°NW, comprising magma-rich diatexite with few schollen
and schlieren. This pattern represents a thrust duplex, where S-planes
are dragged into the gently dipping shear planes and result in sigma-
shaped schollen, with an asymmetry indicative of top-to-ESE shearing.
A stretching lineation related to thrusting could not be identified, but
folded leucosomes in metatexite have fold axes with plunges close to
the down-dip direction of the shear planes (30–40° towards 310°)
and are interpreted to be parallel to the transport direction during
thrusting (Fig. 10c and stereonet inset). We note that planes perpendic-
ular to this direction show a systematic asymmetry in the arrangement
of schollen and schlieren, suggesting an additional dextral component
during thrusting.

Despite the mesoscale evidence for thrusting, diatexites are weakly
deformed at the microscale. Igneous textures such as euhedral
plagioclase and interstitial quartz grains dominate, and indicators for
sub-solidus deformation are limited to chessboard extinction of quartz
(Fig. 10d). These features imply that deformation and flow of diatexite
took place in the magmatic state, followed by weak straining after
magma solidification (Sawyer, 1998; Weinberg et al., 2013). We con-
clude that strain was preferentially accommodated by flow along
melt-rich shear planes, preventing solid-state deformation and devel-
opment of a strong mineral lineation.
4. Discussion

4.1. Magma hybridization

We interpret the contacts depicted in Figs. 5–9 to represent different
stages ofmagmahybridization between in source anatecticmagmas and
external magmas, in a multi-step process. As recognized by Foden et al.
(2002), irregular and interfingering contacts suggest that megacrystic
granite and diatexite were magmas when they interacted. Mingling re-
sulted in material transfer from one magma to the other: K-feldspar
megacrysts were transferred to the diatexite, while megacrystic gran-
ites gained schlieren and schollen from the diatexite. The intensity of
hybridization varies from almost none in the “sheeted zone” where
only a few, isolated grains or schollen were transferred across well-
defined contacts (Fig. 6d), to disruption of the sheets in the “lensed
zones”, to the development of strongly hybridized magmas sharing
characteristics of both end-members in the “heterogeneous zone”
(Fig. 8c).
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Fig. 10. Syn-magmatic thrusting. (a, b) Top-to-E thrusting of diatexite marked by asymmetric arrangement or sigmoidal schollen and melt-rich sheets on a vertical exposure, defining a
mesoscale duplex. Shear bands have average dips of 30° NW. The diatexite in (b) is a hybrid with Kfs-megacrysts (white arrows) and disaggregated biotite-clots and schlieren (black
arrows). (c) Folded leucosomes in metatexite. Fold axes have consistent NW-plunge, close to down dip of shear plane, suggesting development related to the shearing.
(d) Photomicrograph of diatexite showing weak sub-solidus deformation, marked by high-T chessboard extinction in quartz (cross-polarized light). Inset is a lower-hemisphere
projection, equal area stereonet showing orientation of C-planes as great circles and poles (black dots, n = 22) and leucosome fold axes, interpreted to represent the transport
direction (red circles n = 14). Open triangles represent poles to the steeper S-planes (n = 47). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Advanced hybridization stages are best developed in zones of in-
tense deformation, suggesting a key role for deformation in mixing
and magma distribution on Kangaroo Island. Active shearing generates
low pressure planes that attract and channel fluids and magmas
(Mancktelow, 2006), thus providing preferential magma pathways
(Brown and Solar, 1998; Reichardt et al., 2010; Weinberg et al., 2009).
The outcrops described here show a similar behaviour. Gently dipping
shear planes attracted melt from the schollen-rich diatexite domains
in between (Fig. 10). Furthermore, the existence of hybridized magmas
in the same planes (Fig. 8d) indicates intrusive magmas flowed along
the same pathways in response to a combination of tectonic and buoy-
ancy stresses. The presence of solids of varied shapes and sizes in both
magmas created flow perturbations that maximized the stretching
and folding of magmas that led to mingling (Figs. 6–9, Perugini and
Poli, 2012; Ubide et al., 2014). Continued flow gradually equalized rhe-
ological and physical properties making mixing increasingly easier.

Contact relationships between leucogranite dikes and diatexite
allow us to differentiate between several intrusion phases (Figs. 5, 9):
(i) early intrusions were crystallized and disaggregated into angular
blocks and individual isolated crystals as the melt fraction in the sur-
roundings gradually increased and reached a critical proportion
to allow bulk flow (Fig. 9a); (ii) intrusions contemporaneous with
peak anatexis interacted with diatexite and formed irregularly folded
and disrupted trails of leucogranite blocks (Fig. 9b and E–W oriented
dike in Fig. 9c); (iii) late intrusions that intruded close to the solidus
of the wall rock remained reasonably continuous and planar, with vari-
able widths and curved contacts with only minor hybridization (Fig. 9c,
N–S oriented dike).

Further to the process of hybridization with local magmas, we
have recognized that two very similar megacrystic granites intruded
the current exposure levels. The contacts between the two range
from sharp and truncating, including composite enclaves of gneissic
granite in the intrusive megacrystic granite (Fig. 4); to diffuse and
interfingering contacts, suggesting that in some sections the younger
megacrystic granite intruded the gneissic granite while this was still a
mush. These features are identical to the intrapluton erosion and
recycling described in Paterson et al. (2016) and indicate that several
intrusive batches reached this anatectic zone and interacted amongst
themselves.

In summary, the variety of hybridization features results from the
combination ofmultiple intrusion into an anatectic zone and contempo-
raneous magma flow during deformation. This is consistent with a long
anatectic history of up to 30 m yr recorded by monazite (495–465 Ma,
Weinberg et al., 2013). During this time, different sections may have
reached maximummelt fraction at different stages resulting in varying
styles of interaction and distinct degrees of mingling with intrusive
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magmas. The efficiency of hybridization in this environment is a func-
tion of many variables such as the physical state of the two magmas,
the nature of flow resulting from new magma intrusions and pressure
gradients imposed by gravity, external stresses and the evolving
geometry.

4.2. Origin of magmas

Foden et al. (2002) characterized the different magmatic rocks on
Kangaroo Island based on their geochemistry and showed that
the Kanmantoo Group is an important constituent of both the in-
trusive granite and local diatexite. The intrusive granites have been de-
rived from unexposed, lower regions as a result of different degrees
of interaction with hot mafic magmas. In contrast, the diatexites are
in source products of crustal melting. Regional P–T estimates from
earlier studies describe the Adelaide Fold Belt as a typical low-
pressure/high-temperature orogen with pressures below 4.5 kbar
(Alias et al., 2002; Dymoke and Sandiford, 1992). A minimum
pressure for the migmatites can be estimated from the intrusive
muscovite-rich leucogranites (Fig. 3d), which are considered as segre-
gated and fractionated crustal melts (Foden et al., 2002). Primary
muscovite in leucogranites commonly crystallizes close to the solidus
in peraluminous magmas, but requires pressures above 3.5 kbar (e.g.
Scaillet et al., 2016).

A minimum temperature has been constrained by the presence of
peritectic sillimanite in the migmatites, regarded to represent musco-
vite dehydration melting (Tassone, 2008), which takes place between
680 and 740 °C, depending on pressure. This is consistent with the sta-
ble appearance of biotite and the absence of ferromagnesian peritectic
minerals, implying that temperature did not reach biotite dehydration
conditions, typically at T N 750 °C. However, sillimanite in migmatites
is rare and only occurs in a few pelite layers as fine needles included
in skeletal, late-formed muscovite, therefore raising questions about
the importance of this reaction.

Most of the exposed unmelted Kanmantoo Group in the northern
side of the island is poor in muscovite (b5 vol.%), which explains the
variable but low modal proportion of either muscovite or sillimanite
in the migmatites, and suggests that breakdown of muscovite would
have been a limiting factor in melt production. In addition, peritectic
K-feldspar, another product of muscovite dehydration, is sparse or
absent in most residual layers. For these reasons, dehydration
melting only cannot explain the high melt volumes necessary to form
diatexites.

We argue thatmeltingwas assisted by the influx and heterogeneous
distribution of H2O-rich fluids (Weinberg and Hasalová, 2015; White
et al., 2005). This is demonstrated by a simple mass balance. Assuming
average muscovite contains 4 wt.% H2O bound in the crystal structure,
and an upper bound of 5 wt.% muscovite presents throughout the
protolith, then the effective H2O budget in the rock is 0.2 wt.%. At esti-
mated metamorphic conditions of 680–740 °C and 4–5 kbar, a granitic
melt requires 5–9.5 wt.% H2O to be stabilized (Johannes and Holtz,
1996). It follows that only ~2–4%ofmelt could be produced ifmuscovite
was the only source of water. We therefore suggest that melting oc-
curred via a combination of melting reactions ranging from muscovite
dehydration:

Msþ Qtzþ Pl ¼ Meltþ Kfsþ Silþ Bt ð1Þ

(Patiño Douce and Harris, 1998)

responsible for small melt volumes, assisted by melting in the presence
of H2O-rich fluid, such as:

Msþ Plþ Qtzþ H2O ¼ Melt ð2Þ

(Patiño Douce and Harris, 1998)
or

Qtzþ Plþ Kfsþ H2O ¼ Melt ð3Þ

(Sawyer, 1998, minerals abbreviation after Kretz, 1983)

We note however, that rock disaggregation and formation of
diatexites are likely a combined result of melt produced in situ and
internal migration of melt within the source. The common existence
of diatexite in areas rich in injected granite also suggests a genetic rela-
tionship with intrusion, such as the addition of heat and fluids to the
protoliths.

4.3. Source of water — multiple intrusions of granite magmas

The relationships between granite intrusions and surrounding
migmatite formation in the Adelaide Fold Belt have been ascribed to ad-
vective heat transfer from the external magmas (Foden et al., 2002;
Sandiford et al., 1992; Sandiford et al., 1995). An additional role of
these felsic intrusions as a carrier of H2O has not been considered, al-
though water-fluxed melting has been proposed to explain large
magma volumes in parts of the orogen (Cartwright et al., 1995).

During prograde metamorphism any water that exists in excess to
the saturation of hydrous phases in a rock is consumed at thewet solidus,
wheremelting buffers the temperature until exhaustion of at least one of
the reactants (e.g. typically H2O). Provided appropriate conditions, it is
possible to introduce fluids into suprasolidus crust and prevent H2O
from being consumed at the solidus isotherm. There are several possibil-
ities to overcome this natural barrier and to transport fluids into the core
of hot, anatectic terranes (Weinberg and Hasalová, 2015). One way is to
concentrate fluids in efficient channels, such as shear zones or fracture
systems, allowing the direct influx of water into the hot terrane
(Sawyer, 2010). Another option is the intrusion and crystallization of
water-rich magmas from deeper levels. The potential of crustal felsic
magmas to heat the crust is lower than for basaltic magmas, but they
can carry large volumes of dissolved H2O. Upon decompression or crys-
tallization, these granitic magmas expel water to their surrounding
where they may cause extensive melting if surrounding temperatures
are above the water-saturated solidus (Finger and Clemens, 1995; Holk
and Taylor, 2000). Likewise, chemical potential gradients develop due
to different water activities in water-rich intrusions and their water-
poor surrounding that can drive H2O diffusion (White and Powell,
2010). Weinberg and Hasalová (2015) hypothesized that the ingress of
a water-rich magma into a hot terrane with a lower water activity
could cause development of an anatectic front around the intrusions, as
water diffuses to equalize these potential gradients.

OnKangaroo Island all themechanismsmight combineduring a pro-
gressive evolution. We consider that the outcrops record processes in a
hot section of the crust whichwas a passageway of deeper crustal gran-
ite magmas that interacted with mafic magmas (Foden et al., 2002).
These intrusivemagmas advected both heat andH2O, triggering profuse
melting by reactions (2) and (3). Possible evidence for early stages of
this process are shown in Fig. 11 where granite surrounds and intrudes
turbidite schollen that melted at their contact, forming a leucocratic,
fine-grained granitic phase, identical to those interpreted to be derived
from anatexis in metatexite.

Early intrusions would have been unable to mingle with local
magmas, however they contributed to a step-wise increase in the local
melt fraction, by raising the heat and water budget of the system
(Fig. 12). Over extended time and multiple intrusions, the system be-
came hotter and wetter, forming a mushy diatexite that impeded new
intrusions to traverse the area. These were temporarily trapped in this
zone, leading to a more efficient thermal and chemical equilibration
with the surroundings and creating opportunities for mixing as
diatexite and intrusive magmas flowed together due to imposed defor-
mation (Fig. 12, top right inset). Over the duration of the anatectic
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Fig. 11. Intrusivemagma aspossiblemelting agent. (a) Irregular contact between coarse-grainedmegacrystic granite andfine-grainedgrey granite, packedwith rotated schollen. (b) Large,
layered and dominantly unmelted psammite schollen surrounded by megacrystic granite and disrupted into blocks separated by narrow stringers of grey anatectic granite. In both
photographs the fine-grained granite is similar to leucosomes in metatexite (compare to Fig. 2b), suggesting that they are in situ melts.
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event, external magmas flowed in, became trapped, partly homoge-
nized and then flowed out again. Whether magmas flowed in or out of
the region is controlled by both the evolving tectonic pressure gradients
and the buoyancy of the magmas.

In such a system, the total melt fraction at any point in time and
space depends on the changing distribution of heat and H2O, which
may have been highly variable. It is this net balance between inflow
and outflow of heat and H2O that controls the long-term existence of
this mixing zone. As long as heat and fluid advection is maintained by
magma intrusion, water-fluxed melting will take place and tempera-
tures will be buffered by melting. A decrease in the advection of heat
and fluids, caused by changes such as regional exhumation or decreased
influx of mantle heat, will lead to the end of the melting and hybridiza-
tion process. Late intrusions that crosscut the hybrid magmatic rocks
and migmatites mark these final stages. Volatiles exsolved from these
late magmas may have caused retrogression, explaining the generation
Ascent of hybridized magmas?
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Fig. 12. Magmatic processes giving rise to a felsic MASH region analogous to processes
envisaged by Hildreth and Moorbath (1988) for magmatic arc roots. The difference here
is that instead of juvenile magmas, the melting agent is the intrusive crustal, granitic
magma carrying heat and H2O (lower left inset) creating a low viscosity environment
where new intrusions are trapped and reinforce in situ melting. This gives rise to a
region where magmas are stored and homogenized (top insets). Early intrusions
become disaggregated in this felsic MASH zone. As the system cools, late dikes are
discordant to earlier structures (top left inset). Bottom left inset adapted fromWeinberg
and Hasalová (2015).
of irregular shaped, retrograde muscovite formed after K-feldspar and
sillimanite (Type 2 muscovite in migmatites; Solar and Brown, 2001).
4.4. Felsic MASH and granite variety

Traditionally magma mixing is associated with the very different
felsic crustal and mafic mantle magmas. Instead, we envisage mixing
as a multiple step interaction between any variety of magmas that
may take place several times and anywhere in a granitic system, from
its roots to the emplacement levels in plutons. Though less obvious in
the field, magmas of similar composition are more easily mixed. For ex-
ample, a felsic granitic magma can readily mix with other granitic
magmas derived from different sources and varied melting reactions,
or with evolved magmas derived from the fractionation of mantle
magmas, creating complex magma suites. Similar processes have been
described in the Tynong Province in southeastern Australia by Regmi
et al. (2016), and in the Karakoram Ranges where Reichardt et al.
(2010) reported hybridization between different crustal melts along
their pathways to plutons. The latter is consistent with studies that
show the redistribution or local storage of magma pulses within the
hot crust before final ascent, allowing periods of felsic magma interac-
tion near their sources (Diener et al., 2014; Hall and Kisters, 2016).

The self-reinforcing process between trapping of intrusive granites
and crustal melting described above, created zones of magma genera-
tion, storage and mixing within the anatectic continental crust. This
comprises all the ingredients included in the original MASH zone hy-
pothesis of Hildreth and Moorbath (1988). We conclude that Kangaroo
Island migmatites record a felsic MASH zone that differs from the orig-
inal in that it was neither at the base of an arc nor formed by a direct
contribution of mantle magmas (Fig. 12).

There are four aspects of the rock record on Kangaroo Island that add
to the originalMASHmodel: (a) a positive feedback between granite in-
trusion and formation of aMASH zone through in situmelting, (b) a sig-
nificant role for the transfer of aqueous fluids, analogous to the “deep
crustal hot zone”model of Annen et al. (2006), (c) the role of deforma-
tion in assisting hybridization, and finally, (d) felsicMASH zones can de-
velop in a variety of tectonic settings, not only magmatic arcs, without
the requirement of direct mantle contribution. In our modified felsic
MASH zone the difficulties in mixing felsic and mafic magmas (Sparks
and Marshall, 1986) are alleviated in a number of ways: (a) intrusive
granite magmas are trapped at conditions above their solidus and
therefore can hybridizemore efficiently with their partially molten sur-
roundings, (b) deformation assists magma hybridization by forcing
flow, and (c) magmas have similar physical properties (e.g. densities
and viscosities).
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The outcrops described here demonstrate the significance of water-
fluxedmelting andmagmamixing in the evolution of the crust through
creating propitious feedback processes that generate felsic MASH zones
and controlling the origin of granites. The melt production exposed at
Kangaroo Island is likely to bemagnitudes smaller than their deep crust-
al counterparts driven by input of mafic magmas. It is not clear how
much and how far the hybridized magmas generated in the exposed
felsic MASH zone migrated to higher structural positions, but
Weinberg et al. (2013) pointed to several deformation-driven melt ex-
traction mechanisms, suggesting that some of the magma may have
been extracted. In addition, there are a number of crustal-derived plu-
tons that have intruded shallower levels of the Adelaide Fold Belt
(Alias et al., 2002).

Moreover, the recognition that granite magma ascent in the crust
evolves through multiple stages, with periods of intra-crustal magma
interaction in felsic MASH zones, contributes to a better understanding
of granite evolution. Identification of a hybrid origin of single intrusions
in the assemblage of plutons is not straightforward and evidence might
be masked by homogenization, but the possibility of hybridization in-
tervals before final emplacement should be considered, in particular
when interpreting irregular geochemical, geochronological or isotope
data. Following the traditional scale-independence of geological pro-
cesses, we argue that the small-scale features described on Kangaroo Is-
land reflect large-scalemechanisms controlling the global complexity of
granite belts.

5. Conclusion

The south coast of Kangaroo Island has migmatites formed through
muscovite dehydration melting assisted by water-fluxed melting
of the Kanmantoo Formation turbidites at pressures between 3.5 and
4.5 kbar. We suggest that multiple intrusions of external granitic
magmas brought in H2O and heat leading to a gradual increase in melt
fraction. Syn-magmatic deformation in this anatectic zone enhanced
mingling and mixing between intrusive and local crustal magmas and
led to the variety of exposed granitoids. Moreover, with a gradually in-
creasingmelt fraction, new intrusions became trapped and gave rise to a
positive feedback between intrusion and in situ melting with increased
mixing opportunities. This feedback gave rise to a long-lasting felsic zone
ofmelting, assimilation, storage andhomogenization: a felsicMASH zone.
Anymagma escaping a felsic MASH zone as describedmay have a homo-
geneity that hides a complexmulti-stephistory. The outcrops at Kangaroo
Island show how such aMASH zone can develop away from arcs, in pure
crustal environments, where fluid transfer from felsic magma intrusions
play a crucial role in the evolution of the system.
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