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We propose a new multi-physics, multi-scale Integrated Computational Mate-
rials Engineering framework for ‘predictive’ geodynamic simulations. A first
multiscale application is presented that allows linking our existing advanced
material characterization methods from nanoscale through laboratory-, field and
geodynamic scales into a new rock simulation framework. The outcome of our
example simulation is that the diachronous Australian intraplate orogenic events
are found to be caused by one and the same process. This is the non-linear
progression of a fundamental buckling instability of the Australian intraplate
lithosphere subject to long-term compressive forces. We identify four major
stages of the instability: (1) a long wavelength elasto-visco-plastic flexure of the
lithosphere without localized failure (first 50 Myrs of loading); (2) an incipient
thrust on the central hinge of the model (50–90 Myrs); (3) followed by a secondary
and tertiary thrust (90–100 Myrs) 200 km away to either side of the central
thrust; (4) a progression of subsidiary thrusts advancing towards the central
thrust (>100 Myrs). The model is corroborated by multiscale observations which
are: nano–micro CT analysis of deformed samples in the central thrust giving
evidence of cavitation and creep fractures in the thrust; mm–cm size veins of
melts (pseudotachylite) that are evidence of intermittent shear heating events in
the thrust; and 1–10 km width of the thrust – known as the mylonitic Redbank
shear zone – corresponding to the width of the steady state solution, where shear
heating on the thrust exactly balances heat diffusion.

Keywords: multiscaling; multiphysics; microstructure; homogenization;
complex systems; fluid dynamics; solid mechanics; geomechanics

1. Introduction

Current generations of geodynamic models of lithosphere deformation are capable of quan-
titatively describing individual geological observations. However, they are not designed

∗Corresponding author. Email: klaus@unsw.edu.au
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2 K. Regenauer-Lieb et al.

to explain – with one and the same theory – fundamental observations in nature. There is
therefore uncertainty in understanding the basic physics that drive principal geodynamic
processes. The geodynamic community is still debating the source mechanisms for well-
documented dynamic processes such as: subduction initiation, large scale continental def-
ormation, oroclinal bending, the phenomenon of slow earthquakes, seismic instabilities,
episodic tremor and slip, intraplate volcanism and lastly intraplate deformation. Classical
models require special pleading such as pre-existing zones of weakness, or imposed strain
weakening laws, or laboratory-derived rate and state friction laws to describe individual
lithosphere deformation processes. We propose here an alternative approach that we call
‘unconventional’ (=multiphysics, multiscale) geomechanics. It offers (potentially) a uni-
fied ‘predictive’ approach. Although we only provide the first application to the paradox
of intraplate deformation, the framework should ultimately be capable of (i) accurately
describing the processes that lead or have led to the formation of the above-described
phenomena, hence defining their geometric and quantitative relationship to their source
rocks and dynamic microphysical engines (ii) allowing physics-based exploration with
geophysical/geological inversion methods coupled to the forward models; (iii) understand
the stability/activation of fault zones in the present day stress field; (iv) develop new ways
of predicting instabilities for hazard assessment and (v) provide a quantitative method for
uncovering Earth’s resources with less energy and water requirement for their production.

To this end, we propose to use a new multiphysics, multiscale Integrated Computational
Materials Engineering (ICME) framework for ‘predictive’geodynamic simulations. We also
propose to extend this approach in the future for the resource industry to improve explo-
ration, characterization and even stimulation of conventional and unconventional reservoir
materials. ICME is an emerging discipline that has been successfully used in the automotive,
aerospace and nuclear industry to integrate computational materials science tools into a
multiscale system. It has been heralded as a transformational discipline by the National
Academy of Sciences [1] and is based on integration of materials information, captured in
computational tools, with engineering product performance analysis and production-process
simulation.

2. Multiscale modelling of Earth materials

We describe a series of instability mechanisms relying on the multiphysics feedback in con-
tinuity and momentum equilibrium caused by the thermodynamic fluxes of a creeping solid.
The mechanism incorporates the volume change associated with a phase transformation,
where the rate of reaction is dictated by the rate of creeping and the associated heating rate
on the background of slow deformation of the solid. We consider the equilibrium equations
of continuity (mass), linear and angular momentum, energy and entropy. For the first four
equilibrium equations, we use the standard formulations and emphasize the important role of
the deformational power and its role on controlling the time-dependent material behaviour.
In this multiscale formulation, it forms the master equation from which the constitutive
relationships can be derived. We recapitulate first the basic elements of the approach. For a
complete formulation we refer to [2,3].

2.1. Thermomechanics

We first look at a thermomechanical recast of classical continuum mechanics [4] which
does not incorporate temperature or time evolution. This theory is also known as the
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Philosophical Magazine 3

continuum thermomechanics [5]. In this theory, the isothermal deformational power is
identified as:

σi j ε̇i j ≡ W̃ = �̇ + �̃, (1)

where� is the Helmholtz free energy density, W̃ is the rate of working of the applied stress
and �̃ is the rate of dissipation, which must be positive (Clausius–Duhhem inequality). The
overdot refers to a complete (i.e. integrable) time differential. The over-tilde refers to an
incomplete time differential, which introduces path dependence and needs to be integrated
with a Feynman integral over all possible paths. This issue lies at the heart of the uncertainty
principles in thermodynamics for which the postulates of minimum and maximum entropy
production provide useful bounds as a generalized form of the limit analysis and design,
i.e. upper and lower bound principles of classical plasticity theory [6,7].

The thermodynamic approach also allows a convenient extension of the classical defini-
tion of stress and strain that incorporates multiphysics internal processes. These generalized
stresses and strains are also known as the thermodynamic forces and fluxes [8] and turn
out to be the partial Legendre duals of the thermodynamic potential functions. They are
obtained as the partial derivative of the Helmholtz free energy �(εi j ,α

k ) and its Legendre
transform the Gibbs free energy G(εi j ,α

k ). These generalized stresses and strains consider
in addition to the classical strain εi j other internal microstrains αk , the superscript k refers
to the kth process describing the multiphysics across scales.

In this formulation, we recover the Cauchy stress as a special case:

σi j ≡ ∂�(εi j ,α
k )

∂εi j
(2)

and the classical Lagrangian strain becomes

εi j ≡ ∂G(εi j ,α
k )

∂σi j
. (3)

Note that the above Legendre duals of the thermodynamic potential functions are
conjugate variables. These relations provide reversibility of the elastic deformation with
frozen dissipative processes. Using Equation (1) we obtain

σi j ε̇i j = ∂�

∂εi j
ε̇i j + ∂�

∂αk
α̇k + ∂�̃

∂α̇k
α̇k, (4)

where we recognize additional terms through the generalized stresses and strains. These
additional terms form the basis of Ziegler’s orthogonality rule [5] where for maximum
entropy production, following equality must hold:

∂�

∂αk
α̇k = ∂�̃

∂α̇k
α̇k . (5)

By differentiating Equation (3) with respect to time, we also recover the additive
decomposition of elastic (first term), plastic or creep microstrains αk (second term):

ε̇i j = ∂2G

∂σ 2
i j

σ̇i j + ∂2G

∂σi j∂αk
α̇k = ε̇el

i j + ε̇
pl
i j + ε̇

creep
i j . (6)
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4 K. Regenauer-Lieb et al.

The second term is a plastic strain rate if the micro process causing the strain can be
simplified to be time independent (classically dealt within the theory of Solid Mechanics)
and it is a creep strain if the process has important time dependence (classically dealt within
the theory of fluid dynamics). The classical theory of thermomechanics is not written to
deal with the time-dependent problem in a self-consistent way and we need to expand the
approach and relax the classical assumption of isothermal deformation of thermomechanics
[9] to derive an evolution law from the thermodynamic potential function.

2.2. Fluid dynamic evolution law

For the derivation of the time-dependent evolution law, we must add temperature depen-
dence and consider the complete differentiation of the first law with respect to time. As
the derivation is easily accessible in the literature (a recent summary can be found in Ref.
[10]), we only summarize the key elements. Firstly, the dissipation function in Equation (1)
can no longer be treated as rate independent and we need to consider rate effects through
temperature-dependent dissipation �̃ = T S̃irr , where S̃irr is the internal entropy production
(dissipation) of the irreversible microprocesses. Second, an additional term also appears that
tracks the bulk entropy of the system as a function of the temperature evolution SṪ where
∂S ≡ ∂Q/T . Equation (1) now writes

W̃ = �̇ + SṪ + T S̃irr . (7)

The temperature evolution equation can be derived from this by considering 2nd law.
We arrive at the master energy evolution equation:

D(m)T

Dt
= κT

∂2T

∂x2
k

+ δloc

ρC
± rk

ρC
± ρT

∂2ψ

∂T ∂αk
α̇k, (8)

where κT is thermal diffusivity, ρ the density and C ≡ −T ∂2ψ

∂T 2 the specific heat. The
source/sink term rk represents volumetric heat production due to chemical reactions or
other sources such as electric currents (Joule heating) or radioactive decay. The fraction of
the local dissipation that appears as heat is the shear heating term δloc. It receives feedback
from the last term ρm T ∂2ψ

∂T ∂αk α̇
k which represents a generalized latent heat release that can

be endothermic (negative = heat sink) or exothermic (positive = heat source). The shear
heating term is:

δloc = σi j ε̇
in
i j − ∂ψ

∂αk
α̇k ≥ 0, (9)

where the second term describes the power that is stored in the microstructure, which is not
available for shear heating.

3. Solid vs. fluid dynamic multiscale formulation

A complete thermodynamic description of the multiscale and multiphysics problem based
on integrating the above-described evolution laws over all possible paths and multiphysics
feedbacks is difficult to achieve. We must therefore look for possible simplifications. Can
we come up with a hybrid scheme where the complex material evolution laws from the
smaller scale can be used as average outputs for modelling at the larger scale? We extend
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Philosophical Magazine 5

here an approach proposed for modelling the fluid dynamics of solid mechanical shear zones
[11]. This scheme relies on a staggered integration of time-dependent material properties
to arrive at a simplified solid mechanical problem for the next scale up.

4. Solid and fluid dynamics combined

Perzyna’s [13] overstress formulation allows a combination of classical time-symmetric
(quasistatic) plasticity theory with a time-dependent fluid dynamic solution. For this we
assume the following definition of strain as a continuous function of the effective stress σ ′

i j
and the material temperature T and its internal variables αk :

ε̇in
i j = f (σ ′

i j , T, αk). (10)

The time dependence is implicit in the evolution laws of αk and T as expressed in Equation
(8). By expanding Equation (10) around the effective yield stress σ ′

Y we obtain

ε̇in
i j = f ′

(
σ̄i j

σ ′
n

)
+
∑
m≥2

f (m)
(
σ̄i j

σ ′
n

)m

, (11)

where σ̄i j = σ ′
i j − σY , σ ′

n a reference stress and f (m) = 1
m!

∣∣∣∣ dm f (σ ′
i j ,T,α

k )

dσ
′m
i j

∣∣∣∣
σ ′

i j =σ ′
Y

.

We recover the classical time-independent plastic constitutive behaviour from the first
order of the Taylor expansion. For this formulation, we may define the value of the effective
stress at yield σ ′

Y . The higher order terms describe the solid-fluid transition with a non-
linear fluid dynamic visco-plastic behaviour. We recover the classical overstress formulation
σ̄i j = σ ′

i j − σ ′
Y of Ref. [13], which describes the stress evolution following the phase

transition inside the zone that has encountered plastic deformation.
We therefore identify the second term of Equation (11) as the fluid dynamic visco-plastic

strain ε̇vp
i j which is activated at overstress:

ε̇
vp
i j =

∑
m

f (m)
(
σ̄ ′

i j

σ ′
n

)m

when σ̄i j > 0, (12)

where f (m) is a reference strain rate.

5. Multiscale instabilities

Instabilities in Earth and Planetary sciences are known to take place over a wide range of
scales from nuclear instabilities to supernova explosions. They are based on coupling of
multiscale and multiphysics processes which from an energetic perspective can generically
be described by the solid-fuel model of combustion theory [14]. They can cascade from
time scales that range from femtoseconds to billions of years associated with spatial scales
that range from subnanometer to billions of light years. Earth Sciences and Astronomy are
studying the dynamics of these multiscale phenomena via the use of high-performance sim-
ulations.As these multiscale phenomena are far outside the realm of laboratory experiments,
there is a strong need to embed such simulations in a robust physics-based framework of
these coupled dynamical systems.
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6 K. Regenauer-Lieb et al.

Figure 1. Time dependency becomes important when modelling the material behaviour in between
scales. At the smallest scale quantum waveforms are time-independent; however, at larger scale
their interactions lead to coupled oscillators with large Poincaré system behaviour as in the three
body planetary system problem. These systems have complex trajectories and dynamic attractors
[12]. Scaling up further the large Poincaré systems become continuous spectra and ultimately we
recover the laws of classical continuum mechanics with time symmetry. We argue that similar space-
time transitions occur multiple times in an Earth system, owing to the multiphysics processes of rock
deformation. Phenomenological diffusion laws such as Fick, Fourier, Stokes, Navier allow assessment
of the time-dependent behaviour in the region labelled dynamic chaos. These can be homogenized at
even larger scale to form individual steady state time-symmetric structures that can be incorporated in
continuum mechanics. The steady state dissipative pattern of the large scale homogenization from the
smaller length scale diffusion process becomes the steady state micro-continuum of the next system
defined by the next diffusional length scale in Equation (20) (see section on multiscale instabilities).
More details on this topic can be found in Ref. [6].

5.1. Solid mechanical instabilities

Solid Mechanical instabilities can be seen as an elastoplastic bifurcation phenomenon in
a time-independent framework. They are usually modelled using traditional concepts of
mechanics, such as the bifurcation criterion involving the eigenvalues of the acoustic tensor,
presented by Rudnicki and Rice [15]. This material bifurcation takes place when loaded at
stress states near the yield stress, hence the elastoplastic plastic strain rate is given through
the first term of the Taylor expansion of Equation (11) as:

ε̇i j = ε̇e
i j + ε̇in

i j = Ce
i jkl σ̇

′
kl + λL

〈
dy

dσi j
σ̇ ′

i j

〉
= Cep

i jkl σ̇
′
kl , (13)

where 〈·〉 are the Macaulay brackets and λL a Lagrange multiplier.

D
ow

nl
oa

de
d 

by
 [

22
0.

23
7.

10
1.

75
] 

at
 0

4:
50

 1
7 

A
ug

us
t 2

01
5 



Philosophical Magazine 7

Ahomogeneous material subjected to loading develops a localization band for condition
in the eigenvalue problem

ξ jkuk = 0, (14)

where ξ jk = ni C
ep
i jklnl is the acoustic tensor, ni is the unit vector normal to the surface of

discontinuity, and uk is the eigenvectors.

5.1.1. Steady state (Time-symmetric) shear band width

The original, above-described, bifurcation analysis defines localization bands which in the
classical slip line field approach have vanishing thickness [16]. This drastic idealization has
been removed by considering internal material length scales such as they arise for example
at the small scale from the energetics of grain rotations [17]. In this case, a shear zone of
finite width L can be derived from Cosserat continuum theory. We argue that similar energy-
based internal length scales can be derived from the steady state limit of phenomenological
diffusion equations (Fick, Darcy, and Fourier) of the individual microprocesses considered.
Since the diffusivities are orders of magnitude apart, we obtain a hierarchal system of shear
zones within shear zones (Figure 2), where each system can for the sake of simplicity be
described by a dual material behaviour, i.e. solid (elastic) outside of the shear zone and fluid
(viscoplastic) inside the shear zone. This drastic simplification is justified considering the
vast separation of material length and time scales.

In order to derive the energetics of the steady state width of shear bands we have to
however, abandon the classical time-symmetric approach to localization phenomena and
understand what governs the evolution of the micro processes inside the shear band as a
function of the full time dependent fluid dynamic elasto-viscoplastic processes.

Figure 2. Simple nested solid mechanical-fluid dynamical (Babushka-style) identification of
multiphysics, multiscale instabilities for the example of instabilities in shear (the same scheme can be
transferred to volumetric dilatant or compactive instabilities [18]). The macro-scale solid mechanical
view of the shear zone treats the outside view and is time-independent assuming isothermal conditions
on the boundaries of the shear zone. It also assigns continuity of stress across the shear zone (i.e.
τ = const). The macroscale (solid mechanical) solution is incognisant of the internal processes in
the shear zone and the internal length L has to be assigned. This length can only be evaluated from
the internal time-dependent fluid dynamic view of the processes. Owing to the vast separation of
length scales and time scales of the multiphysics time-dependent feedback processes, we suggest to
identify only the dominant physics controlling the diffusional length scale L of the investigated scale.
From the inside (fluid dynamic) time-dependent perspective, any outside deformation process occurs
at time scales that are too slow to be considered and the outside domain can be regarded as elastic.
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8 K. Regenauer-Lieb et al.

5.1.2. Fluid dynamic (Broken time symmetry) instabilities

We consider the fluid dynamic evolution of the shear zone by considering explicitly the
temperature sensitivity of creep in Equation (12) and paramaterize the problem by the
thermally activated constitutive equation:

ε̇
vp
i j = ε̇0 f (σi j )e

−T0/T , (15)

where T0 is the activation temperature. Assuming further for simplicity that all of the
mechanical power is converted into and no additional heat source or heat sink is available.
It follows that the shear heating term is:

δloc = σi j ε̇0 f (σi j )e
−T0/T . (16)

Using a coordinate system moving with the material we obtain from Equation (8):

∂T

∂t
= ∂2κT

∂z2
+ δloc

ρC
. (17)

This equation is well known in combustion theory [14] as the solid-fuel model and features
blow up instabilities at a critical value of δloc. Gruntfest [19] first recognized the importance
of this instability for the temperature-sensitive viscous flow problem. Because of the catas-
trophic runaway instability this equation becomes unstable at a critical dissipation. It can
be stabilized by reconsidering in addition the energy term from Equation (8) that buffers
the runaway instability and acts as an endothermic energy sink,

∂T

∂t
= ∂2κT

∂z2
+ δloc

ρC
− ρT

∂2ψ

∂T ∂αk
α̇k . (18)

In the simplest case, this energy sink could be melting thus limiting the runaway and the
energy sink would then be the latent heat of melting or an endothermic chemical reaction
[20]. When introducing this term, the solid-fuel cell becomes an energy oscillator equation
for critical dissipation. It features long periods of stable creep and short bursts of accelerated
creep (Figure 3). This oscillatory behaviour is found to apply to all types of multiphysics
instabilities, whether it is a small-scale chemical reaction [21] or a large-scale shear heating
cycle [22].

In order to transform this oscillatory time-dependent fluid dynamic problem into a
time-independent solid mechanical problem, we are interested in the steady-state (time
symmetric) response where the temperature does not change. Hence, we set ∂T

∂t = 0 and
also set κ = const and obtain:

−κ ∂
2T

∂z2
= δloc

ρC
. (19)

We are left with the steady-state solution where the heat produced by the oscillator is in
equilibrium with the heat diffusion away from the shear plane. This partial differential
equation recovers the familiar error function solution for the diffusing heat front and the
shear zone has the characteristic diffusive scaling length [23,24]:

L = 2
√
κtcr , (20)

where the time tcr derives from the critical shear heating value for switching on the energy
oscillator. We have now derived the internal scaling length of the shear zone and can formu-
late a time-independent plasticity law where we replace the energetic instability criterion
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Figure 3. Generic illustration of the energy oscillator equation for critical dissipation. The strain rate
shows cycles of fast acceleration (note log scale) and locks into periodic creep bursts interrupted
by long periods of low background creep. This oscillator forms an energy attractor and is reached
irrespective of the initial conditions. Figure reproduced with permission from AGU [21].

by a critical hardening parameter [15,25] for the onset of localization. The equivalence
between fluid and solid mechanical solution is obtained if at steady state limit, the actual
value of stress is recovered from the fluid dynamic solution and the hardening parameter is
set smaller than the onset of instability for shear heating values that are insufficient to create
an instability. The hardening parameter is set to critical for shear heating values sufficient
for onset of instability.

It can be shown [2,3] that the same style of diffusion length scaling in Equation (20)
occurs for all styles of instabilities described by the solid-fuel model (Equation (17)) or
similarly for the more complete energy oscillator equation (Equation (18)). This covers the
general class of thermo-hydro-mechanical-chemical THMC instabilities. Because there is
a vast separation of diffusivities, a strong separation of space-time instabilities is derived
which makes the simplification shown in Figures 1 and 2 very powerful. TMC feedback
processes show instabilities below millimetre length scale while THM occupy the length
scale of cm–m. The pure TM process described above has a typical length scale between
hundreds of meters and several kilometres [2,3].

The time scales for instabilities are also vastly different. Peculiarly, the longest time
scale is covered by the TMC (not the short-time scale THMC) feedback which can be on
the order of million years because the rates of chemical reactions are extremely slow at
the low temperatures of geological problems. This pairing of the smallest length scale with
the shortest time leads to a tight (parallel) coupling of geodynamic scale processes with
micro-structural processes. Therefore, any geodynamic solution must indeed incorporate
consideration of the local chemical state such as shown for the problem of subduction
initiation [26]. The intricate coupling of chemistry with long wavelength processes is already
known through elastic coupling. Elastic properties of polymineralic rocks can simply be
calculated for a given chemistry under a given pressure and temperature using the averaging
of the stoichiometry coefficients and minimizing Gibbs free energy [27]. We extend this
equilibrium thermodynamic framework to far from equilibrium processes and use the non-
linear nature of the energy oscillator to advantage to avoid complete tightly coupled nano-km
scale simulations. In simple terms, chemical reactions can be chosen to act like a switch for
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10 K. Regenauer-Lieb et al.

a given level of dissipation. Either the chemical/microstructural ingredient is not present
and the TM instability is occurring for extreme conditions outside the realm of geodynamic
forcing or the critical chemical ingredient is present and its activation temperature has been
reached so that instability occurs.

The other processes are less complicated. TM covers typically hundred thousand
years – several years, whereas THM has relatively short timescales of seconds to weeks
[2,3]. A direct outcome of this time separation and the formalism suggested in Figure 1 is
that a solid that on the long TMC timescale must be regarded as a creeping solid becomes
an elastic solid for the time scale of the TM and the THM process. This concept is best
illustrated in a working example.

6. Worked case study

For the worked case study, we consider an unsolved problem in geodynamics, i.e. that of
intraplate tectonics. Plates are defined to be rigid so that they can rotate on Euler poles and
accommodate the convection currents in the Earth’s mantle. To first order, there are only
three elements that disrupt the postulate of rigidity, namely great circle sources of material
which form the Mid Ocean Ridges, great circle sinks which form the oceanic subduction
zones and oceanic transform faults which accommodate the shear on small circles around the
Euler poles. Together, this information allows the identification of the Euler vectors of plate
motion. Continents are thought to be to first-order passive fragments that are pushed around
by the large-scale oceanic motions and incompatibilities are accommodated in continental
collision zones leading to mountain building processes, the so-called great orogenies. Why
then is it possible to have intraplate orogenies in the middle of a strong and old (= craton)
continental plate?

One of the world’s largest sedimentary basins, the Centralian Superbasin in Australia,
was developed in the continental interior by long-lived slow subsidence and without a parent
response to lithospheric stretching. Subsequently, the basin became the locus of crustal-
scale shortening, giving rise to two intraplate orogenic belts, 570–530 Myrs Petermann
orogeny and the 370–300 Myrs Alice Springs orogenies. In the sections to come, we present
numerical modelling results that demonstrate that far-field compression can give rise to
the formation of large-scale sedimentary basins associated with downwarping of the weak,
ductile and dense part of the lithosphere, underneath a strong elasto-viscoplastic, mid-crustal
core.

Our model is based on thermomechanical coupling, large transformations of continua,
viscoplastic rock behaviour and continuum damage mechanics. The damage mechanics
approach is the important component that receives and averages information gained through
a high-resolution synchrotron X-ray tomographic analysis of deformed granites exposed
through the orogeny. The sample from the Redbank shear zone clearly illustrates the
important role of mid-crustal fluids that are released through a dissolution-precipitation
reaction causing creep fractures through cavitation on the grain boundaries [28,29].

These mechanisms are combined in a self-consistent thermodynamic framework which
allows for out of equilibrium description of the material behaviour. In the following analysis,
we investigate whether the Centralian Superbasin profile can be understood as a non-
linear response to a monotonic compression resulting in length and time scales which
are directly related to the geometry, rate dependency, rigidity and strength and temperature
distribution.
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Philosophical Magazine 11

6.1. Geological observations

Intracratonic sedimentary basins and intraplate orogenies are two global-scale tectonic fea-
tures that are still relatively little understood. Intracratonic basins are large (>150,000 km2

in area) sedimentary basins that developed within the continental interior over an extended
period (>200 Myrs) of subsidence. Such basins formed on an old continental lithosphere
away from any known active tectonic margin [30,31] and are commonly floored by thick
continental crust and lithosphere [32,33]. The absence of crustal thinning beneath intracra-
tonic basins means that models attributing their development to lithospheric extension are
somewhat tenuous [34].

The existence of intraplate orogenies is equally puzzling. These represent crustal-scale
zones of localized strain within continental interiors, thus contradicting the ‘rigid’behaviour
of tectonic plates as implied from the plate tectonic theory. Why does localization occur in
the continental interior rather than in the ‘weak’boundaries and how the stresses transmitted
through the lithosphere still remain open questions [35,36].

Central Australia provides an excellent example of an intracontinental basin that sub-
sequently became the locus of intraplate strain localization. N-S shortening deformation
occurred during two extended periods, related to low background compressive strain rates
[35] and resulted in crustal-scale reverse faulting that has offset the Moho and produced one
of the world’s largest gravity anomaly [37]. Some authors have attributed this localization
to reactivation of pre-existing weak structures [38], whereas others suggested that thermal
weakening associated with the sedimentary blanketing played a major role [39]. Both
scenarios are possible, but in practice the latter form of perturbation is more attractive
as it is more naturally achievable in a system which is a priori stable in terms of initial
conditions.

Therefore, we explore the geodynamics of intraplate deformation under a simple com-
pression scenario together with a small thermal perturbation. The thermomechanical cou-
pling, the dissipative processes (thermal feedback, damage, plasticity and visco-plasticity),
the plain-strain spherical geometry, as well as the simple loading scenario that we selected
produce similar patterns of deformation as those observable in the field. Previous attempts
to explain the Centralian Superbasin have well been aware of their shortcomings. Lambeck
[40] found that the basin resembles that of an elastic buckling instability of the interior
of the Australian plate (see Figure 4), but he concluded that the stresses to achieve such
buckling would be far too high.An alternative model where significant intraplate weaknesses
are assumed to enable reactivation [36] clearly stated that while the mechanism works,
it is assumed a priori and it is unclear what essentially causes these zones of decreased
lithospheric strength.

Here we attempt to solve the problem by consideration of thermomechanical cou-
pling within the above-discussed self-consistent thermodynamic framework to investigate
whether chemical weakening through dissolution-precipitation creep can affect global tec-
tonics. We consider a spherical Earth with realistic plate-scale dimension and apply low
tectonic driving force on the plate margins, thus achieving low deformation rates [35].
We show that long-lived compressional stresses, transmitted from the plate boundaries, can
explain the origin of intracratonic sedimentary basins as compressional basins. Furthermore,
we show that strain can be localized in the form of buckling instabilities thus explaining
intermittent formation of intraplate orogens.
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12 K. Regenauer-Lieb et al.

Figure 4. (colour online) Gravity map showing the strong anomaly reminiscent of a lithosphere
buckling signature [40], the Alice spring region and the cross section to be modelled.

6.1.1. Geological setting

The Centralian Superbasin in central Australia is a large sedimentary basin that devel-
oped during a long-lived (approx. 500 Myr) history (from 800 Myrs) of subsidence and
widespread sedimentation [39,41]. It comprises a number of basins (Officer, Amadeus,
Ngalia, Georgina and Wiso basins), which are separated from each other by inliers of meta-
morphic complexes uplifted during intraplate orogenies. The formation of the Centralian
Superbasin was interrupted by two major intracratonic orogenic episodes. These include the
570–530 Myrs Petermann orogeny and the 370–300 Myrs Alice Springs orogeny [41–43].
Both orogens expose deep crustal rocks in their cores [37,44] and involved large offsets in
the crust-mantle boundary caused by N-S shortening [37,40].

Geophysical observations, particularly gravity, indicate that the crust is considerably
thicker under the basins than it is under the regions where basement rock is exposed [45] and
thinner underneath the two orogenies. This is supported by Ar-Ar thermochronology, which
suggests that the thickest parts of the superbasin occurred over the now exhumed basement
rocks [39]. This suggests that the orogenic structures were not necessarily controlled by
local, pre-existing weak faults [36,38] but rather involved a larger scale phenomenon. Ther-
mal weakening due to the presence of heat-producing elements under the thick sedimentary
cover has been suggested as a contributing factor [35].
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Philosophical Magazine 13

6.1.2. Identifying basic physics, nanoscale, nm–mm

Rather than postulating ad hoc weakening laws, we follow here the multiscale, multiphysics
strategy laid out above and try to identify the physics/chemistry of the processes driving
the instabilities. We refer to an earlier study where deformed samples exposed through the
Alice Springs orogeny in the Redbank shear zones were analysed with high resolution
Synchrotron X-ray micro-tomography, NanoSims and SEM measurements [29]. These
micro-tomograms of host rock and shear zone reveal the formation of a dynamic mode of
interconnected porosity network in the most highly strained section of the deformed sample.
The chemical analysis showed that the key mechanism of deformation is based on a dynamic
porosity generation through THMC feedback with following basic dissolution-precipitation
reaction where K-feldspar plus H + dissolves into Muscovite plus K+ and Quartz in aqueous
solution,

3K AlSi3 O8 + 2H+ � K Al3Si3 O10(O H)2 + 2K + + 6Si O2(aq). (21)

It is beyond the scope of this paper to describe how this fully coupled THMC feedback
mechanism is upscaled into the simpler T(C)M damage mechanics approach for geodynamic
modelling. For a more complete account, we refer to Ref. [46] and focus here on the
description of the large-scale simulation where we have to consider finite strain owing to
the large deformation.

6.1.3. Constitutive approach, large scale, >10 km

We make use of the classical (1-D) theory of damage mechanics, which has been extensively
used over the past decades for applications in metal and ceramics deformation. In these
materials, the phenomena described in nanoscale characterization of granites are well-
known and void nucleation, growth and coalescence has been modelled via a damage
mechanics approach. The first work (see [47] for a review) proposed a plastic potential
taking into account both the void nucleation and growth. We make use of the subsequent
development based on the concepts of Lemaitre [48] and Chaboche [49] who formulated
a thermodynamic framework and suggested numerical schemes capable of predicting the
degradation of the materials.

In analogy to Equation (2) and following we postulate for a finite strain formulation a
Helmholtz free energy of the form ψ(he

i j , T, D), where he
i j = Ln( 1

2 Fe
ki Fe

k j ) is the Hencky
strain measure of elastic strain, Fe

i j is the elastic gradient of deformation, T is temperature
and D is a scalar which accounts for material degradation (damage). We also make use of the
Clausius–Duhem inequality along with the technique of independent processes introduced
by Ref. [50] to obtain the following relationships:

τi j = ρ0
∂ψ

∂he
i j

(a), Y = ρ0
∂ψ

∂D
(b) and s = −∂ψ

∂T
(c), (22)

where τi j is Kirchhoff stress and Y is the thermodynamic force of damage. Equation (22)
shows that the form of Helmholtz free energy is crucial in a thermodynamic analysis, it
relates the state variables to the stored energy. Combined with the theorem of Schwartz
about mixed partial derivatives, this free energy allows writing the following expressions:
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14 K. Regenauer-Lieb et al.

∂2ψ

∂D∂he
i j

= ∂2ψ

∂he
i j ∂D , (a)

∂2ψ

∂T ∂he
i j

= ∂2ψ

∂he
i j ∂T , (b)

∂2ψ
∂D∂T = ∂2ψ

∂T ∂D , (c)

(23)

provided that ψ(he
i j , T, D) is continuous and the second derivatives exist. Equation (23)

summarizes the complexity of thermo-coupling in damageable materials. None of the off
diagonal terms can be considered while ignoring its dual. For instance, if thermal expansion
is recognized as an important contribution to Helmholtz’s free energy and the damage
parameter varies with external loading, then it is necessary to consider the coupling between
damage and temperature as well. As we are interested in the materials behaviour at finite
strain, we express Helmholtz free energy in terms of the non-linear Hencky tensor. We first
make use of the material isotropy at given temperature and damage and express the free
energy with respect to the three invariants I

′
1, I

′
2, and I

′
3 of the Hencky tensor as follows:

ρ0ψ(h
e
i j , T, D)

∣∣∣
T,D

= ωh(I
′
1 = (he

ii ), I
′
2 = (he

ii
2
)/2, I

′
3 = he

ii
3
/3). (24)

Hence, at given temperature and damage, we follow the derivations of Simo [51], who
conducted a similar procedure to express hyperelastic material behaviour in terms of right
Cauchy-Green tensor, to identify:

ρ0
∂ψ

∂he
i j

∣∣∣∣∣
T,D

= ∂ωh

∂ I
′
1

+ ∂ωh

∂ I
′
2

he
i j + ∂ωh

∂ I
′
3

he
i j

2
. (25)

We develop the energy potential to the second order: ωh = τ0 I
′
1 + λ(I

′
1)

2/2 + 2μI
′
2 +

O(‖h‖ 2), to derive the following relationship:

ρ0
∂ψ

∂he
i j

∣∣∣∣∣
T,D

= p0 + λ̃ he
ii + 2μ̃he

i j . (26)

This relationship is similar to Saint Venant-Kirchhoff model except that it is expressed in
terms of Hencky tensor instead of Lagrange-Green tensor. The coefficients p0, λ̃ are the
initial stress and the Lamé constants. Combining Equations (22) and (26) results in the
hyperelastic constitutive equation:

τi j = λ̃ he
ii + 2μ̃he

i j . (27)

Using the concept of effective stress to describe the material degradation due to external
loading, (see for instance Ref. [52]), Equation (27) can be redefined in terms of the damage
variable D and the Lamé parameters of the non-damaged material as follows:

τi j = (1 − D)λ he
ii + 2(1 − D)μhe

i j . (28)

Combining Equations (22(b)), (23(a)) and (28) results in the relationship

Y = − τ 2
eq

2E(1 − D)2

[
2

3
(1 + ν)+ 3(1 − 2ν)

(
τH

τeq

)2
]
. (29)
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Philosophical Magazine 15

Further details on the damage approach and its application to geology can be found in
[53,54]. Note that in our calculations, we arbitrarily limited damage to the conditions D �
0.85. This avoids the singularity for D going to unity and honours the fact that in geological
materials (through processes that have not been considered in our simple model), shear
zones retain mechanical strength even when highly damaged.

Thermodynamics therefore allows us to compile a frame indifferent formulation for
finite strain where the energy material properties retain their meaning even for large defor-
mation. For the co-rotational formulation of the stresses, we refer to the standard objective
co-rotational stress rate,

τ̇ o
i j = τ̇i j + τik�k j −�kiτ jk, (30)

the difference being the definition of the logarithmic spin�i j which has to be adjusted for a
finite strain measure. Please refer to Ref. [53] for a full expression of the finite logarithmic
spin.

Using the additive decomposition introduced in Equation (4), we can now define an
intrinsic dissipation pseudo-potentialφ(σ, Y )which contains a first term, g(σ )σ , correspond-
ing to inelastic deformation and a second term, g(Y )σ , corresponding to damage. Following
the rationale laid out in Equation (11), we incorporate the rate-dependency through a zero-
valued condition of the form:

g(σ )σ + g(Y )Y − φ̃ε̇in = 0, (31)

where φ̃ is an invertible function relating the rate of equivalent inelastic deformation to the
equivalent stress and φ̃−1 is its inverse. These considerations lead to flow rules of the form:

ε̇in = λL
∂g(σ )
∂ε̇in

and Ḋ = λL
∂g(Y )
∂Y

, (32)

where λL is a Lagrange multiplier. In addition, from the Taylor expansion in Equation (11),
the yield function can be decomposed into athermal and thermal terms as follows:

f (σ ) = σeq

1 − D
− Ya − φ̃−1ε̇in

eq , (33)

where Ya is the thermal yield stress.
In this study, the rate-dependent mechanisms of the undamaged matrix are derived from

experiments [55,56] that are often used for geodynamic simulations e.g. Ref. [26,57]. These
simulations assume that diffusion and dislocation creep can adequately describe the rate-
dependent deformation of materials under different levels of loading and environmental
conditions. The Arrhenius equation is used to describe the resultant rate of strain of each
mechanism with the generic equation:

ε̇m = Amσ
n
eqe− Q

RT , (34)

where the subscript m denotes the creep mechanism, Am is a multiplicative constant, Qm

the activation energies and R the gas constant. The material constants and the power law
exponent n are experimentally derived in the laboratory and their references and values are
listed in Table 1.

The individual creep mechanisms can act simultaneously in the deforming matrix
and their combination can be performed by expressing the viscoplastic overstress φ̃ in
terms of the over-stresses of the individual mechanisms. Thermomechanical loading of the
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16 K. Regenauer-Lieb et al.

matrix causes rearrangements of point and line defects and crystals produce measurable
macroscopic strains.

Although fundamentally different from defects, voids can contribute to the overall
macroscopic strain in a similar manner and transfer fluids by the above-described dissolution-
precipitation reaction. Expressing the equivalent inelastic deformation ε̇in in terms of
Lagrange multiplier λL and adding a damage nucleation function η(Y ) , which depends
on the thermodynamic force of damage to Equation (29), it follows that

Ḋ =
(
(1 − D)−(n+1) + η(Y )− 1

)
λL . (35)

Therefore, using the expression Ḋ (see first section), the damage potential we are searching
for is: gY = (

(1 − D)−n+1 − 1
)

Y + ℵ(Y ) + c, where ℵ is the integral of η and c is a
constant of integration.

The above-described large-scale formulation allows us to tackle previously unsolved
plate tectonic problems with a fresh approach. We now come back to the problem of
Superbasins and intraplate orogenies in the interior of the Australian plate. We show that the
geological observations can be explained by the consideration of application of a long-term
compressive load over hundreds of million years on the Australian continent.

6.1.4. Model setup, >10 km scale

The initial configuration of the Australian continent is modelled with a plain strain cross
section of a spherical earth with equally partitioned upper and lower crust of depths 20 km
and a mantle of depth 260 km (see Figure 5). The whole cross section, which has an external
radius of 6400 km, covers differential latitude of 40◦. An initial geostatic stress state was
established in the model using a gravity force g = −9.8er . The body force is expressed
in a polar system of coordinates (er , eθ ) with a pole which coincides with the centres of
the coaxial arcs and a polar axis which coincides with the geometrical axis of symmetry.
An initial temperature profile is chosen that follows a geotherm that is thermodynamically
consistent with P and S-wave velocities [58]. This profile consists of a gradient of 15◦/km
in the crust and 3◦/km in the rest of the lithosphere.

As a constant load, the cross section is subject to circumferential body forces applied on
the left and right sides of the model. Their integral with respect to volume coincides with
the ridge-push obtained from classic plate tectonics theory [59] :

∥∥Fr p
∥∥ =

∫
S

ρ ‖Fθ‖ d S = θa

3R

N∑
n=1

ρn

(
R3

n − R3
n−1

)
, (36)

where ρn is the density and Rn is the external radius of a given layer indexed by n. The
above force has a magnitude Fr p ≈ 1012Nm−1 provided that the control parameter is
a ≈ 10−3ms−2 . While constrained by the above-mentioned constant external forces from
both sides, the cross section is allowed to slide from the bottom as shown by the rollers
in Figure 5. The material properties used for the simulation are detailed in Tables 1 and 2
for each of the three layers: the thermo-elastic properties of the upper crust are averaged
using a mixture of quartz and feldspar, those of the lower crust are modelled with the elastic
characteristics of feldspar, and the mantle is modelled using the thermo-elastic properties
of olivine. Elastic properties are taken from Ref. [60]).
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Philosophical Magazine 17

Table 1. Thermo-elastic properties used for simulation.

Layers Upper crust Lower crust Mantle

Density (kg/m3 ) 2800 2800 3200
Bulk modulus K (GPa) 34 84 128
Shear modulus G (GPa) 20.4 40 82
Thermal expansion (K −1) 1.3 × 10−5 1.11 × 10−5 2.21 × 10−5

Heat capacity (Jmol−1 K −1 ) 40.0 241.48 124.54

Figure 5. (colour online) Geometry of the model (dimension of the cross section). Only the central
portion (box) is shown in the following results.

Table 2. Visco-plastic properties of the three layers. The creep parameters of the three layers are
described by Ref. [61] for the upper and lower crust and by Refs. [55,56] for the mantle.

Layers Upper crust Lower crust Mantle

Pre-coefficient A(MPa − ns−1µm3∗) Diffusion 3.1 × 10−4 3.5 × 10−3 4.8 × 104

Dislocation – – 1.5 × 103

Exponent n Diffusion 2.2 3.2 1.1
Dislocation – – 3.0

Activation energy Q(kJ mol−1) Diffusion 190 238 295.0
Dislocation – – 470.0

Activation volume (m3 mol−1 ) – – 20 × 10−6

Grain size (µm) – – 15
Yielding limit Y 0

a (MPa) 51 100 202

Since the materials considered in the three layers can undergo high differential stresses at
high temperatures, we also considered the visco-plastic behaviour of the materials with rate
dependency governed by dislocation creep in the upper and lower crust and by combined
dislocation and diffusion creep mechanisms in the mantle. Table 2 summarizes the limits
of elasticity that we considered as well as the creep mechanisms.

In accordance with the experimental results conducted by Ref. [62] on quartz at high
temperature, the limit of elasticity is taken to be temperature dependent.Abest fit of the form:
Ya = Y 0

a exp(−(T − Tref )/A) , where A = 305 K, was used to describe this dependency.
In order to mimic the natural aspect of geological materials, random weaknesses were

distributed in the three layers. Random elements are selected in space, in such a way that 10%
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18 K. Regenauer-Lieb et al.

Figure 6. Evolution of the lithosphere strength profile from around the onset of the first buckling
instability.

of the domain contains perturbations. A given perturbation consists in reducing the elastic
and yielding properties by 0 to 10% of their original value. Note that both the position of
the weaknesses and the reduction of the properties follow uniform probability distributions.

We first examine the response of the materials in terms of equivalent stress in the initial
elastic deformation dominated regime at the onset of loading. Figure 6 shows the variation
of the equivalent stress profile with respect to depth and time. Before the onset of the first
long wavelength buckling instability in the first 12.5 million years, there are negligible
variations of the equivalent stress profile with respect to time. The onset of bifurcation is
identified in the strength profile when the equivalent stress increases in the upper mantle
from 18 to 22 MPa. This increase is not a sudden event, but a continuum process which
continues gradually, and relaxes with respect to time as the deviatoric stress seems to
equilibrate at a depth of 50 km; the different curves approach each other progressively
when time reaches 12.5, 22.5 and 27 million years. The figure also shows that the overstress
propagates towards the surface of the cross section as can be seen from the peak that is
reached in the upper crust at about 27 million years. This analysis shows that although
we are still in the dominantly elastic loading regime (no significant inelastic strain), the
bifurcation is initiated by a time-dependent process which involves not only large thermo-
hyperelasticity, but also visco-plasticity which affects the relaxation time and the stress
propagation through the different layers of the lithosphere. Once the bifurcation is initiated,
the increase of stresses produces high permanent deformations within the three layers and
damages their structure.

Figure 7 shows the onset of significant inelastic deformation when initial hinge collapse
starts at 45.1 million years in the centre of the model. This doubly verging thrust is fully
established at 48 Myrs. Due to the random perturbations which were distributed in the model,
the damaged zone propagates asymmetrically through the three layers towards the surface.
The direction of propagation is ascendant because the healing effect limits the material
degradation at high temperatures. At 50 and 93.6 million years, two new damage zones
are sequentially initiated in the crust reducing the wavelength of the buckling instability.
It initially takes place 250 km away from the central part of the model and propagates
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Philosophical Magazine 19

Figure 7. (colour online) Evolution of the buckling instability as a function of time showing inelastic
strain (grey >100%).

towards the central detachment within the mantle. The progress of the left hand damage
zone continues until a mantle detachment connects the left damage zone with the central one
at 107.6 million years. As the steady state loading continues, a similar process takes place at
107.6 million years on the right hand side with the initiation of a new superficial weakness
236 km far from the axis of symmetry. The new damaged zone in its turn propagates through
the three layers until it reaches the detachment within the mantle.

These results clearly illustrate the effect that damage accelerates weakening and
increases inelastic deformation. It comes as no surprise that a damageable lithosphered
allows intraplate buckling instabilities to occur as a natural outcome of intraplated
stresses.

6.1.5. Mesoscale, cm–km

We are now shifting interest from the large-scale plate tectonic problem to the mesoscale
regional field observations. At first, we will test the hypothesis from a macroscopic solid
mechanical perspective. This implies that we are interested in comparing the natural width
of the shear zones predicted by the large-scale model with nature. Our simple creep damage
mechanics approach does not introduce an internal length scale. The only length scale
present in the approach is the length scale for the diffusion of heat. We therefore expect
from Equation (20) for a thermal diffusivity of D = 10−6m2s−1 and a typical time scale
defined by the inverse of the background strain rate t = 1016s a shear zone of the order of
10 km total width, which is also what comes out of the model calculation. This inference is
slightly larger, but roughly matches with observations from field data and seismic inferences
at depth [37] where the Redbank shear zone is described as a thrust zone of considerable
lateral extent (7–10 km wide) with anastomosing mylonites [44] which dip at about 45◦
angle at outcrop level. Note that outcrops erode material that have formerly been deformed
in upper greenschist facies conditions [29] that are around 400–500◦ C thus from around
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20 K. Regenauer-Lieb et al.

20 km depth or deeper. The 45◦ angle of the thrust indicates the ideal direction of failure for
a perfect von Mises body which is also expected from the model formulation at the given
depth.

Another test for the shear heating hypothesis as a control of the width of the Redbank
shear zone is to look into the internal structure of the shear zone. This implies looking at the
problem from a fluid dynamic perspective and seeking to identify transient time-dependent
structures inside the shear zone. The outside of the shear zone is simply viewed as an
elastic spring (see Figure 2) and as we know that the system is post yield, we only need to
solve the fluid dynamic shear heating problem. This leads directly to the energy oscillator
equation. We expect from the energy oscillator Equation (18) intermittent, sharp heating
events followed by long creeping periods as shown in Figure 3. The heating events are either
buffered by chemical reactions such as the dissolution-precipitation reaction (Equation (21))
which limits the temperature rise due to the endothermic nature of the forward reaction, or by
other energy sinks. An extreme case would be if there is no water available and the reaction
cannot take place. In this case, one would expect for sufficiently high applied shear stress
oscillatory sharp events where the temperature reaches local conditions for melting and the
accelerated ‘earthquake in the ductile domain’ would cause cm-wide or smaller bands of
molten rock. Such veins of pseudotachylyte have indeed been described in the paper of
Hobbs et al. [44] who also originally proposed the model shown Figure 2 to explain these
instabilities.

6.2. Discussion

We have presented two alternative simplifications of the multiscale, multiphysics approach
that allow a staggered reduction of the problem to closed form analytic solutions for a given
scale and a given time scale and system perspective. From a macroscopic perspective, the
problem can be solved using a classical solid mechanical quasistatic approach where the
simplified analytical solution technique is slip line field theory [16]. In the extreme rigid-
plastic idealization, instabilities are velocity discontinuities with vanishing thickness but
they are continuous in stress. The problem can be extended through an enriched continuum
approach where a material length scale is added. The time-dependent processes inside the
shear zone are not modelled.

From a microscopic perspective inside the shear zone, the problem can be viewed as a
fluid dynamic problem and the overstress plasticity [13] problem is solved using the constant
force applied by the load from the elastic spring on the outside as a boundary condition. The
analytical solution of this problem [19] has identified a fundamental runaway instability
(Equation (17)) known as the solid-fuel model of combustion physics [14]. A more realistic
equation has been introduced that acknowledges thermally activated energy sinks and is here
called the energy oscillator equation (Equation (18)). Asymptotic analytical solution for the
multiple steady states are available [63]. Investigation of the transient behaviour shows that
for a critical energy level (activated state), the system transients are found to be trapped
into a thermo/hydro/chemo-mechanical oscillatory response [21] irrespective of their initial
conditions. Perturbations or interferences of these oscillators lead to chaotic large Poincaré
system behaviour [64]. At abstract level, the energy oscillators form microphysics engines
and because of their cyclic behaviour can be integrated to overcome the path dependence
of the problem [6].
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We have also shown how the approach can be incorporated into a numerical solution
using an additive thermodynamic approach. Note that the additive (serial) approach breaks
down for strong-scale interaction and a parallel formulation should be preferred. We have
presented a worked example where the numerical approach is tested in application to a
geological problem. In this example, we may have solved a long-standing riddle of intraplate
deformation. We have recognized that compressional basins and intraplate orogenies are
intimately linked with the former being the precursor of the latter. Intraplate orogenies
are found to result from buckling instabilities that occur diachronously and give rise to
sequential formation of orogenies. The orogenies themselves initially develop at depth
within the hinges of the buckles, and appear at the surface only later due to uplift and
erosion.

We have used the creep fracture hypothesis identified through micro and nano-
tomographic imaging of ultramylonites inside the shear zone [29] and cast it into a finite
strain damage mechanics formulation. This efficiently solves the criticism of earlier models
that either require excessive stresses [40] or need pre-existing weak structures [36] to cause
similar intraplate structures.

An interesting outcome is that the mechanism only works for very slow strain rates
relevant for an intraplate setting in a cratonic environment subject to long-term loading.
Creep fractures become inefficient for fast loading conditions (see Figure 7 in Ref. [54]).
This is clearly illustrated by the slow speed of the process (Figure 7) where a long wavelength
buckling instability slowly develops over a time span of the order of tens to hundred million
years into progressively shorter wavelength instabilities and altering the natural elastoplastic
eigenmodes for the initial deformation problem.

The results may give a new perspective for explaining ubiquitous large-scale sedimen-
tary basins that are widespread in the old cratonic lithosphere such as the Parana Basin in
Brazil, the Siberian Basin (both located inside but at the edge of a craton) and the North
American intracratonic Basin. These basins could be a natural expression of various stages
of buckling of the Earth. Their difference in appearance could be simply a function of the
geometry of the craton and the direction and duration of compressional loading. Future
work is necessary to resolve this important finding.
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