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The Ceará Central Domain of the Borborema Province is a key tectonic domain within the 5000 km-long West
Gondwana Orogen, which extends from Algeria in Africa to Central Brazil. Igneous rocks of the Tamboril-Santa
Quitéria Complex, investigated in this study, record a long-lived history of convergent magmatism and crustal
anatexis. SHRIMP U-Pb dating and Hf-O isotope analyses of zircons from granitoids and migmatites, coupled
with whole-rock Sr-Nd isotopes were used to constrain the evolution of this long-lived continental margin.
Magmatism can be divided into three main periods: i) an early period comprising essentially juvenile arc
magmatism at ca. 880–800 Ma and continuing to 650 Ma as evidenced indirectly by detrital zircons from
syn-orogenic deposits, ii) a more mature arc period at ca. 660–630 Ma characterized by hybrid mantle–crustal
magmatic rocks, and iii) crustal anatexis at 625–618Ma continuing until ca. 600Ma. Detrital zirconswithmantle
values of δO18 (b5.7‰) in the range of 950 to 650Ma retrieved from fore-arc deposits indicate that juvenile input
persisted throughout the evolution of the convergent magmatism. Juvenile and mature arc igneous rocks
underwent anatexis that gave rise to extensive areas of diatexites within the complex. Anatexis overlap in
time with the ages of (ultra)-high pressure (U)HP eclogitic metamorphism dated at 625–615 Ma. In accordance
with other continental collision zones, age of UHP/HP metamorphism is interpreted to mark the timing of
continental collision and therefore indicate that the anatexis of arc rocks took place during continental subduc-
tion in a continent–continent collisional setting. Extensive migmatization continued until ca. 600 Ma and are
in part synchronous to the exhumation of the rocks to shallower crustal levels. Thus, the 350 m.y. of magmatic
activity in the Ceará Central Domain records the evolution of the West Gondwana margin of the Borborema
Province from a juvenile arc setting through a mature arc and continental collision at around 625–600 Ma.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Subduction zones are sites of intensivemagmatism and are currently
creatingN20% of the terrestrialmagmatic products (Tatsumi andEggins,
1995; Tatsumi, 2005). In these sites, complex compositional variations
in magmas arise from interaction between fluids released from
the subducting oceanic lithosphere and the overlying mantle wedge,
and intrinsic heterogeneities the mantle and magma fractionation
(Tatsumi and Kogiso, 2003). Assimilation of crustal material, particular-
ly in Andean-type settings, adds an important component and further
zil, Avenida Pasteur 404, CEP

.gov.br (C.E. Ganade de Araujo).
variations to the magmas generated in subduction zones (Hildreth
and Moorbath, 1988; McMillan et al., 1989).

Subduction of oceanic lithosphere and generation of arcs inevitably
precede Himalayan-type collisional orogens. However, in old collisional,
deeply eroded terranes, earlier stages of arc magmatism are relatively
poorly preserved and have commonly been obliterated by pervasive col-
lisional tectonics. In some extreme cases, earlier arcs can even be
subducted along continuous or renewed subduction zones and not be
preserved (Yamamoto et al., 2009). Determining at what stage in the tec-
tonic history of a subduction system a magmatic arc begins to evolve
from a juvenile state, dominated by mafic-intermediate magmatism,
toward a mature state dominated by felsic granitoid plutonism is critical
to understand evolution of arcs and the stages preceding continental col-
lision (Treloar et al., 1996). One important fact to consider is whether
these earlier arcs are punctual in time, disconnected from the more
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mature stage, or are continuously linked to continental arc subduction
that precede terminal collision. For example, the Kohistan and Ladakh
arcs of northern Pakistan and northwest India represent a Cretaceous
early intra-oceanic arc formed during the northward subduction of the
Neotethys oceanic lithosphere beneath the Karakoram (e.g. Bard, 1983;
Burg et al., 1998; Schaltegger et al., 2002; Weinberg and Dunlap, 2000).
This arc was subsequently sutured to the Karakoram Terrane (southern
margin of Asia) between102Maand85–75Ma (Petterson, 2010). The in-
corporated arc then became the Andean-type margin (mature stage) of
Eurasia until collision with India at around 50 Ma (Hodges, 2000).

Another example is theMesozoic SierraNevadabatholith in California,
one of the best studied sites for convergentmagmatism, where the sub-
duction of the Farallon plate beneath North America during the Triassic
to early Cretaceous was characterized by early fringing island arcs just
off the Paleozoic continental margin. With continued subduction, a
mature stage continental arc was established and a progressively
more compressional environment developed as the age of subducting
slab continued to young (Busby, 2004; Lee et al., 2007). In this mature
arc stage, O-Sr isotopic relations and the variation of 147Sm/144Nd
with εNd suggest that the assimilation of crustal rocks bymagmas rising
from the mantle and undergoing fractional crystallization could have
been the major process responsible for the mixing of crustal- and
mantle-derived components (DePaolo, 1981).

In ancient orogenic systems where great part of the petrological
history has been obliterated by deformation and/or erosion, zircon can
serve as an exceptional crustal growth monitor (Scherer et al., 2007).
Coupling of radiogenic and stable isotopes allows measurements of
time-stamped hafnium and oxygen isotopes that can uniquely reveal
whether zircon crystallized from a mantle-derived source (juvenile)
during crustal generation, or from magma derived by reworking of
pre-existing igneous or sedimentary rocks (Hawkesworth and Kemp,
2006; Scherer et al., 2007).

In this sense, the Lu-Hf system is analogous to the Sm-Nd, and Hf-Nd
isotopes form coherent arrays for most mantle-derived rocks (Vervoort
et al., 1999). A larger drawback of relying on Hf isotopes from zircons
alone to infer episodes of crustal growth concerns the possibility that
the zircons crystallized from magmas with mixed source rocks that
separated from the mantle at different times (Hawkesworth and Kemp,
2006). The use of oxygen isotopes greatly reduces this ambiguity,
because its fractionation is time-independent. The 18O/16O ratio,
expressed as δ18O relative to SMOW, is only changed by low tempera-
ture and surficial processes, and so the δ18O of mantle-derived magmas
(5.7 ± 0.3‰) contrasts with those from rocks that have experienced a
sedimentary cycle or hydrothermal alteration on the sea-floor, which
have elevated δ18O (Hawkesworth and Kemp, 2006). This is reflected
in the high δ18O of crystallizing zircons and is a fingerprint for a recycled
component in granite genesis (Hawkesworth and Kemp, 2006; Hoefs,
2009). Likewise, the Nd-Sr isotopes retrieved from whole-rock analysis
also provide a way to make such distinction (DePaolo, 1981; DePaolo
et al., 1991; Jacobsen and Pimentel‐Klose, 1988) and are useful to
monitor and evaluate isotopic differences between data acquired from
minerals (e.g. zircon) and rocks from the same representative sample.

The Ceará Central Domain of the Northern Borborema Province,
NE-Brazil, was part of a long-lived active continental margin of the
West Gondwana Orogen that consumed the Goiás-Pharusian Ocean
during the Early Neoproterozoic until final collision at Ediacaran times
(Arthaud et al., 2008; Cordani et al., 2013a, 2013b; Fetter et al., 2003;
Ganade de Araujo et al., 2012a, 2014). The deep level of exposition,
with extensive outcrops of migmatites and exhumed eclogites (Santos
et al., 2009), requires the use of isotopic geology to disentangle the
evolution of this complex, multi-domain orogenic system. Although
timing for arc-building (Andean-type margin) in the Ceará Central
Domain is usually attributed to the 650–620 Ma interval (Fetter et al.,
2003; Van Schmus et al., 2008), geochronological evidence from detrital
zircons in arc-related basins of the Ceará Complex suggests that arc
magmatism could have started as early as 900–800 Ma (Ganade de
Araujo et al., 2012a). In addition, several occurrences of Early
Neoproterozoic juvenile arc assemblages are described along the length
of the orogen in Africa and Central Brazil (e.g. Berger et al., 2011;
Pimentel and Fuck, 1992). In some cases, these earlier juvenile arcs sub-
sequently evolved into amoremature arc stage preceding final collision
that eventually reworked these arcs and precursor basement (conti-
nents) during the Late Neoproterozoic (Caby, 2003; Liégeois et al.,
1987; Pimentel et al., 2000).

In this study, we focus on the plutonic rocks of the Tamboril-Santa
Quitéria Complex in the Ceará Central Domain, that record a long-lived
magmatic system attributed to the subduction of the Goiás-Pharusian
Ocean during the Neoproterozoic. Here, we combine U-Pb dating and
Hf-O isotope composition of zircons, in addition towhole-rock Sr-Nd iso-
tope compositions from granitoids and migmatite protoliths to unravel
the tectonic evolution of this complex and their sources (crust vs. man-
tle) of subduction-related magmas from the Early Neoproterozoic to
the final continental collision in the Ediacaran period.

2. Geological setting: the Ceará Central Domain

Excluding the extensional Mesozoic event that separated South
America from Africa, the Borborema Province in northeast Brazil is
characterized by magmatic, tectonic, and thermal events spanning the
Archean to the Cambrian–Ordovician (Brito Neves et al., 2000). The
major cratonic blocks involved in the tectonic events that built the
Province include (Fig. 1): 1) the Amazonian-São Luiz-West Africa
Craton, including the Parnaíba Block; 2) the São Francisco-Congo
Craton, and 3) the Paleoproterozoic-Archean collage forming the base-
ment of the Borborema Province (Arthaud et al., 2008; Brito Neves and
Cordani, 1991; Brito Neves et al., 2000; Ganade de Araujo et al., 2014;
Klein and Moura, 2008). Its final tectonic arrangement was a result of
two Neoproterozoic continental collisions: the first and older along
the Ceará Central Domain at ca. 620–615 Ma, as part of the West
Gondwana Orogen, followed by the collision at ca. 590–570 Ma of
the consolidated Borborema Province against the São Francisco
Craton along the Sergipano Orogen in the south (Ganade de Araujo
et al., 2014; Oliveira et al., 2010).

TheNeoproterozoic evolution ofWest GondwanaOrogen in the Ceará
Central Domain results from the development of a convergent margin,
related to the consumption of the Goiás-Pharusian Ocean (Cordani
et al., 2013a), until the collision between the Parnaíba block (hidden be-
neath the Phanerozoic Parnaíba basin) and the Paleoproterozoic/Archean
basement that extends further east into the Northern Borborema
Province (Rio Grande doNorte Domain) (Ganade deAraujo et al., 2014).

The Ceará Central Domain is composed of several litho-tectonic
assemblages that include: (1) Archean (ca. 2.8–2.7 Ga) remnants of TTG
of the Cruzeta Complex; (2) vast tracts of juvenile Paleoproterozoic (ca.
2.2–2.0 Ga) high-grade amphibolites and felsic to intermediate
orthogneisses and migmatites (Fetter et al., 2000; Martins et al., 2009);
(3) high-gradeNeoproterozoic supracrustal rocks represented essentially
by the units of Ceará Complex (e.g. Arthaud, 2007; Arthaud et al., 2008;
Ganade de Araujo et al., 2012a); (4) large volumes of Neoproterozoic
granitoids represented by the Tamboril-Santa Quitéria granitic–
migmatitic Complex (Arthaud et al., 2008; Fetter et al., 2003); and
(5) widespread Neoproterozoic to Cambrian post-collisional and
Ordovician anorogenic granitoids (Castro et al., 2012). The first two
associations are considered as the basement for the Neoproterozoic
orogeny.

The Ceará Complex is composed of metamorphosed pelites,
semipelites and greywackes, normally showing a prominent schistosity
or gneissosity, and is regionally or locally migmatized. Quartzites,
marbles, calc-silicate rocks and amphibolites also form large tracts
within this complex (Arthaud et al., 2008; Caby and Arthaud, 1986;
Cavalcante et al., 2003; Ganade de Araujo et al., 2012a). Taking into
account the degree of partial melting, Cavalcante et al. (2003) divided
part of the Ceará Complex into the Independência and Canindé units.
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Fig. 1. Main cratonic blocks and mobile belts of the West Gondwana (modified from
DeWit et al., 2008) and the Borborema Province and its main sub-divisions.
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The supracrustal rocks with onlyminormigmatizationwere grouped in
the former, whereas those that exhibit significant melting were includ-
ed in the latter. Locally in the Ceará Complex, felsic sheets and amphib-
olites interleaved with metasedimentary rocks are interpreted as
former volcanic or sub-volcanic rocks and were dated at ca. 800–750
Ma (Arthaud, 2007; Castro, 2004; Fetter, 1999). U-Pb zircon provenance
studies from the Ceará Complex demonstrate a heterogeneous prove-
nance pattern characterized by deposits exclusively composed by
Paleoproterozoic-Archean detritus, probably representative of small ba-
sins floored by sialic crust within the Neoproterozoic orogenic realm,
and orogenic arc-related deposits with strong early to middle
Neoproterozoic (900–650 Ma) source component (Arthaud, 2007;
Ganade de Araujo et al., 2012a).

In the Ceará Complex, retrogressed eclogites have been described to
the east andwest of the Tamboril-Santa Quitéria Complex. In the east, in
the region of Forquilha, retrogressed eclogites occur interleaved with
high-grade migmatitic metasedimentary rocks (Ancelmi et al., 2013;
Santos et al., 2009) and protolith crystallization was dated at ca. 1.5 Ga
(Amaral, 2010). These rocks preserve relics of eclogite facies metamor-
phism (1.7 GPa, Santos et al., 2009), which may have reached ultra-high
pressure (UHP) conditions (Santos et al., 2013) at ca. 615 Ma (Ganade
de Araujo et al., in revision). To the west, in the region of Itataia
retrogressed eclogites were also described by Castro (2004), however
peak pressure conditions (1.4 GPa, Castro, 2004) are lower than those
estimated for the Forquilha region.

2.1. The Tamboril-Santa Quitéria Complex

The Neoproterozoic Tamboril-Santa Quitéria Complex (Fig. 2) is
a wedge-shaped composite anatectic/igneous association surrounded
by metasedimentary rocks of the Ceará Complex. The plutonic rocks
display syn- to late-magmatic deformation that was in part coeval
with the injection of younger and less deformed magma (Arthaud
et al., 2008). In general they range from diorite to granite, with predom-
inance of monzogranitic/granitic rocks (Ganade de Araujo et al., 2012)
of the Santa Quitéria unit in its central part.

Previous age determinations indicate that granitoids of this complex
range from 640 to 610 Ma (Castro, 2004; Costa et al., 2013; Fetter et al.,
2003; Ganade de Araujo et al., 2012; Santos et al., 2007). For this time
interval, Nd isotopic signatures are consistent with variable mixtures
between juvenile Neoproterozoicmagmas and older basement, indicat-
ing that the granitoids are hybrid (Fetter et al., 2003). The tectonic
setting of this complex has been interpreted as a Neoproterozoic
Andean-type magmatic arc (Fetter et al., 2003), however recent works
have proposed an evolution from an arc at ca. 850 to 640 Ma into a
collisional Himalayan setting (Costa et al., 2013; Ganade de Araujo
et al., 2012b).

In the present study the complex is divided into four different units
named Lagoa Caíçara, Boi, Santa Quitéria and Tamboril units. Investigated
samples from these units and their main features are listed in Table 1.

2.1.1. Lagoa Caíçara unit
This unit comprises a heterogeneous meta-igneous association

composed predominantly of stromatic metatexites of granodioritic to
tonalitic protoliths (Fig. 3). Thesemeta-igneous rocks are also commonly
found preserved as blocks, known as schollen or rafts, within the
diatexites of the Tamboril unit. Also in the Lagoa Caíçara unit, sheets
of biotite-orthogneisses (c.f. samples DKE-269 and DKE-231) (Fig. 3C
and D) with moderate to small volume of leucosomes cut the
more complex deformed migmatitic granodiorite–tonalite. Remnants
of sedimentary-derived metatexites, of the Ceará Complex are also
present within this unit.

Distinction between the different orthogneisses of Lagoa Caíçara
unit is difficult in the field. It seems that this unit comprises multiple
intrusions of granitoid rocks. Deformation adds complications and it is
challenging in many outcrops to ascribe unambiguously a sample to
the broader lithological group. In the present study, geochronological
and isotopic data permitted the distinction of three different granitoid
protoliths in the Lagoa Caíçara unit: i) ca. 880–830 Ma juvenile
tonalitic/granodioritic metatexites with high volume of leucosomes, ii)
ca. 650 Ma mafic tonalitic metatexites, and iii) ca. 630 Ma crust-
derived orthogneisses with low volume of leucosome.

The regional foliation in this unit is simple and has low to moderate
dips (b40°) to northwest and north–northwest (Itapajé structural
domain in Fig. 2). Along the contact with the diatexites of the Tamboril
unit, the stretching lineation has a low rake indicating a strong strike-
slip component. They generally plunge gently to ENE and a number of
shear sense indicators such as S/C structures suggest a dextral strike-
slip movement with a dominant small reverse component. Further
south, in the contact between the Lagoa Caiçára unit and the Ceará Com-
plex, the lineation changes to dominantly down-dip, plunging north-
ward and shear sense indicators demonstrate a change to top-to-
north-northeast defining normal movement.

The older (830Ma and 650Ma) tonalitic to granodioritic protolith of
the metatexites contains biotite (10–20%) and hornblende (5–25%) as
the main ferro-magnesian phases. The schollen of this unit found
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in the Tamboril diatexites have low contents or lack hornblende and are
predominantly composed of biotite, plagioclase, K-feldspar and quartz.
The neosome of the tonalitic migmatites is composed majorly of
plagioclase, quartz and hornblende with no anhydrous peritectic
phases, suggesting that melting was due to the influx of water rather
than hydrate breakdown reactions (Weinberg and Hasalova, submit-
ted). The younger orthogneisses (ca. 630 Ma) have biotite as the main
mafic phase accompanied or not by minor muscovite with K-feldspar
invariably more abundant than plagioclase.

2.1.2. Boi unit
The Boi unit differs from the Lagoa Caíçara unit by the presence

of more homogenous mafic rocks of predominant quartz-diorite to
tonalitic/granodioritic composition (Fig. 5A). They are easily recognizable
andmappable in the satellite and gamma-ray image due to characteristic
low total counts. In the field these rocks may be strongly foliated to
rather isotropic. Migmatitic sectors may occur, however the intrusion
of felsic melts may generate pseudo-migmatitic patterns. Rocks from
this unit are comprised of plagioclase (45–35%), hornblende (25%-
10%), biotite (15–25%), quartz (15–5%) and K-feldspar (8–3%). They
are in part intruded by the Santa Quitéria and Tamboril units. Further
south of the study area a U-Pb ID-TIMS zircon age of 637 ± 6.5 Ma
was obtained for a juvenile (εNd(600 Ma) =+3.4) dioritic migmatitic
gneiss (Fetter et al., 2003), possibly associated with the Boi unit.

2.1.3. Santa Quitéria unit
The Santa Quitéria unit forms a large batholith in the central portion

of the complex. It is by far themost voluminousmagmatic component of
the complex and comprisesmainly porphyritic K-feldsparmonzogranites
(Fig. 4B). Composition and strain intensity vary, however toward its
central portion, low strain and larger phenocrysts dominate (Fig. 2).
Locally, close to the townof Iraúçuba, disrupted rafts of themonzogranite
can be found within the diatexite indicating that crustal anatexis
occurred after the intrusion of this batholith.

One special feature of this unit is the existence of local disrupted
coeval mafic syn-plutonic dykes (Fig. 4D). Geochemical data of these
mafic dykes indicate an enriched shoshonitic component derived from
mantle sources (Costa et al., 2013; Zincone, 2011). Less common xeno-
liths of gray orthogneisses, probably derived from the Lagoa Caíçara
unit, can also be presentwithin the Santa Quitériamonzogranite. Biotite
(20–10%) and hornblende (10–1%) are the main ferro-magnesian
phases of Santa Quitéria monzogranites along with plagioclase (40–
15%), K-feldspar (35–10%) and quartz (25–15%). Accessories include
zircon, titanite, apatite, epidote and opaques. In general, the mafic
syn-plutonic dykes are constituted of plagioclase (35–30%), biotite
(25–20%), hornblende (20–15%), K-feldspar (15–10%) and quartz
(5–2%).

Structurally this unit has a wedge-shaped geometry with foliations
in both the NE–SW and E–W trending flanks dipping inwards toward
the complex (Fig. 2). In general the regional foliation dips at moderate
angles (35–50°) to south–southeast in the northern portion of the
domain and to north–northwest in its southern portion (Santa Quitéria
structural domain in Fig. 2). The stretching lineationwithin this domain
has low angles and plunges predominantly northeast. Shear sense
indicators in the monzogranite indicate top-to-east or northeast sense
defining a dominantly strike-slip motion with both normal and reverse
components, broadly the same movement direction as defined in the
Itapagé domain. This pattern defines the wedge-shaped geometry that
some authors attributed as a product of the necking-down of the
Tamboril-Santa Quitéria Complex responsible for its extrusion under a
transpressive regime as a positive-flower structure (Castro, 2004).

2.1.4. Tamboril unit
The Tamboril unit represents a gradational unit at the contact

between the monzogranite of the Santa Quitéria unit and the gneisses
andmigmatites of the Lagoa Caíçara unit, but generally this unit encircles
the Santa Quitéria unit. It is dominated by diatexites containing blocks
(rafts or schollen) of both Santa Quitéria porphyritic monzogranite and
Lagoa Caíçara orthogneisses. Rafts of Santa Quitériamonzogranites dom-
inate close to the contact with the Santa Quitéria unit whereas high-
grade metasedimentary and orthogneisses rafts are found close to the
contact of the Lagoa Caíçara unit in the vicinity of Itapajé town.

In general the foliation in these diatexites is defined by a well-
developed syn-magmatic flow banding usually defined by biotite
schlieren (Fig. 5D). Isotropic domains can be found locally. In the
south, along the contact with the Lagoa Caíçara unit, foliation in
diatexite dips atmoderate angles to NNWwith an associated stretching
lineation characterized by a strong strike-slip component and shear
sense indicators, such as S/C pairs, suggesting a right-lateral movement
(top-to-NE). In the north, foliation in the diatexites dips to SSE and E,
with a stretching lineation plunging predominantly to SE. Kinematic
indicators indicate a top-to-southeast normal displacement; however
movement in the opposite direction could also be observed (Fig. 2).

In general, these diatexites lack residual anhydrous peritectic
phases, with the exception of rare garnet clusters. Biotite (20–5%) is
the main ferro-magnesian phase, but hornblende is present in some
samples. In general the rocks tend to have greater concentrations of
K-feldspar (45–15%) than plagioclase (25–10%), but in some cases pla-
gioclase can dominate. Previous U-Pb ID-TIMS geochronological data
yielded zircon ages for the diatexites of the Tamboril unit in the 620–
610 Ma interval (Castro, 2004).

3. Results

Isotopic results and methods for the investigated granitoids and
migmatites of the Tamboril-Santa Quitéria Complex are available in
the appendix and supplementary data related to this article. Zircon U-
Pb, Lu-Hf and oxygen isotopic measurements were all carried out on
the same textural domain in each zircon, which permitted us to link
age and isotopic parameters directly. A summary of the isotopic data ac-
quired herein is provided in Table 2.

3.1. Zircon SHRIMP U-Pb ages, zircon Hf-O and whole-rock Nd-Sr isotopes

3.1.1. Lagoa Caíçara unit
As described earlier, it is difficult to distinguish the igneous rocks of

this unit based solely on their field characteristics. The isotopic results
summarized in Table 2 define three groups of igneous rocks based on
the age of the protoliths and their sources, which revealed how
subduction-related magmas developed through time.

3.1.1.1. Sample DKE-221. This sample is a hornblende-biotite stromatic
metatexite of tonalitic composition (Fig. 3A). Zircons were extracted
from the paleosome (or the protolith), avoiding contamination with
the neosome, and are euhedral, translucent and colorless. In general
they range in size from 80 to 200 μm and have length to width ratios
ranging from 2:1 to 4:1. Cathodoluminescence images reveal a well-
developed oscillatory zoning typical of magmatic zircons (Fig. 6). Some
zircons have low-U, thin metamorphic rims, too small for SHRIMP
analysis. Analyzed zircons have U contents between 52 and 256 ppm
and Th/U ratios ranging from 0.50 to 0.78. Fourteen analyses were
done in the zircons and a calculated concordia age using all analyzed
zircons yielded an age of 833 ± 6.1 Ma (1σ) (Table 2), interpreted as
the crystallization age of the tonalitic protolith (Fig. 7).

Zircons have a significant variation of 176Hf/177Hf as a function of
206Pb/238U ages with values ranging from 0.282261 to 0.282800 for
ages between 880 and 795 Ma. Despite such variations all analyzed
zircons yielded consistently positive εHf(t) varying from +0.5 to
+19.3 indicating that the tonalitic protolith was derived from mantle
or juvenile sources at ca. 830 Ma (Fig. 10A). Oxygen isotopes further
support the mantle origin indicated by the Hf isotopes in the zircons.
The δ18O values of 5.09 to 6.24‰ are in agreementwith values ofmantle



Fig. 2. Geological map and structure of the northern portion of the Tamboril-Santa Quitéria Complex and its neighboring units.
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Table 1
Localization and units of the investigated samples from the Tamboril-Santa Quitéria Complex.

Sample Lithology Investigated lithology Unit UTM

DKE-221 Net-veined granodioritic metatexite Granodioritic paleosome Lagoa Caíçara 441417/9577893
DKE-200A Mafic tonalitic metatexite Tonalitic paleosome Lagoa Caíçara 441513/9578525
DKE-269 Gray biotite orthogneisses injected by felsic veins Orthogneiss Lagoa Caíçara 406753/9528308
DKE-231 Gray biotite orthogneisses injected by felsic veins Orthogneiss Lagoa Caíçara 451924/9581494
DKE-277 Quartz-diorite injected by felsic veins Quartz-diorite Boi 381531/9560586
DKE-211 Porphyritic biotite monzogranite Monzogranite Santa Quitéria 429040/9601660
DKE-170 Granodioritic metatexite with diatexitic portions Granodioritic schollen Tamboril/Santa Quitéria 408537/9587164
DKE-125A Tonalitic metatexite intruded by felsic granite Tonalitic paleosome Tamboril 388123/9585000
DKE-125B Tonalitic metatexite intruded by felsic granite Felsic granite Tamboril 388123/9585000
DKE-273A Biotite diatexite with granodioritic schollen Granodioritic schollen Tamboril 388830/9524195
DKE-273B Biotite diatexite with granodioritic schollen Diatexite Tamboril 388830/9524195
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zircon (5.7 ± 0.3‰, Hawkesworth and Kemp, 2006) (Fig. 10B). Whole
rock Sr-Nd isotopes also support a juvenile origin for the tonalitic
protolith, with low initial 87Sr/86Sr of 0.7025 and positive εNd(t) value
of +4.98 at the time of crystallization at 833 Ma (Fig. 11).

3.1.1.2. Sample DKE-200A. This mafic tonalitic metatexite was collected
in a quarry close to the Itapajé town and differs from the previous sam-
ple, not only in age and source, but also by higher content of hornblende
(Fig. 3B). Zircons were extracted from the paleosome, avoiding contam-
ination with the neosome. In general they are subhedral to euhedral,
translucent and colorless, with dimensions ranging from 60 to
150 μm. They have complex zoned patterns (c.f. zircon #7.1 — Fig. 6)
to well-developed oscillatory zoning. Most of the grains have a
pronounced metamorphic overgrowth possibly due to the anatexis of
the protolith, not dated in this study. Th/U ratios of the dated zircon
spots range from0.55 to 0.85. A concordia age defined bynine concordant
DKE-221 metatexitic tonalite ca. 833±6Ma

A B

C

DKE-269 orthogneiss ca. 632±5 Ma

D

Fig. 3. Field aspects of the studied rocks from the Lagoa Caíçara unit. A. Stromaticmetatexite afte
interpreted to result fromwater-fluxedmelting. B. Stromaticmetatexite after a 650± 5Mama
parallel to the gneissic foliation (sample DKE-269). D. Metatexite after a 627 ± 5 biotite orthog
zircons yielded an age of 650.6 ± 5.1 Ma (1σ) (Table 2), much younger
than the previous sample and interpreted as the crystallization age of
the igneous protolith (Fig. 7). 176Hf/177Hf ratios from the analyzed zircons
vary from 0.282226 to 0.282428 with εHf(t) varying from−3.6 to + 1.5.
The δ18O values for the same zircons in the sameCL zones range from6.73
to 8.19‰ and combined with whole-rock initial 87Sr/86Sr ratio of 0.7105
and negative εNd(t) value of −5.45 suggest that this granitoid was pre-
dominantly sourced from crustal material, in contrast to the previous
sample.

3.1.1.3. Sample DKE-231. This orthogneiss differs from the surrounding
migmatitic gneiss found in the same unit by incipient anatexis (e.g.
small leucosome volume) absence of hornblende and a more granitic
composition (s.l.) than the previous samples (Fig. 3C).

Investigated zircons are colorless and mostly euhedral ranging in
size from 80 to 200 μm. They have prominent high-U rim related to
DKE-200A metatexitic mafic tonalite ca. 650±5Ma

DKE-231 metatexitic orthogneiss ca. 627±5 Ma

r a 833± 6Ma tonalitic protolith (sample DKE-221) with hornblende-bearing leucosomes,
fic tonalite (sample DKE-200A). C. 632± 5Ma biotite gneiss with injected leucocratic veins
neiss (sample DKE-231).



DKE-211 porphyritic monzogranite ca. 638±5 MaA B

DKE-277 mafic tonalite/diorite ca. 648±4 Ma 

C DSanta Quitéria
porphyritic granite Santa Quitéria

porphyritic granite

Coeval mafic diorite
Coeval mafic diorite

Fig. 4. Field aspects of the studied rocks from the Boi and Santa Quitéria units. A. 648 ± 5 Ma quartz-diorite of the Boi Unit injected by felsic quartz-feldspathic melt (Sample DKE-277).
B. 638 ± 5 porphyritic monzogranites of the Santa Quitéria unit with mafic enclaves exhibiting crystal-transfer structures (white arrow) (Sample DKE-211). C. Coeval Santa Quitéria
monzogranite with mafic dioritic enclaves showing evidence for transfer of crystals from the granite to the diorite (arrows). D. Syn-plutonic dykes of diorites cutting through the Santa
Quitéria porphyritic monzogranite.
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late thermal events (c.f. zircon #6.1 — Fig. 6). Analyzed magmatic
zircons have Th/U ratios varying from 0.27 to 0.60 and define a twelve-
point concordia age of 627 ± 4.9 Ma (1σ) that reflect the crystallization
of the protolith to the orthogneiss (Fig. 7). One zircon with a 206Pb/238U
age of 691 ± 18 Ma represents an outlier and is likely inherited. No
oxygen analysis was carried out for this sample. 176Hf/177Hf ratios for
the analyzed zircons in spots along the same CL zone range from
0.281848 to 0.282207 with correspondent εHf(t) varying from −18.7
to −6.1, and together with a high initial whole rock 87Sr/86Sr ratio of
0.7143 and negative εNd(t) value of −9.65, suggests that this magma
was essentially sourced from older crustal rocks.

3.1.1.4. Sample DKE-269. This migmatitic orthogneiss is compositionally
similar to the previous one and was found in the same geological
context. Zircons from the protolith are euhedral to subhedral with
sizes ranging from 50 to 150 μm. Most zircons have a well-developed
rim surrounding inherited cores (c.f. zircons #3.1 and #8.1 — Fig. 6).
In general Th/U ratios vary from 0.17 to 1.52 (0.17–0.58 for inherited
cores). A concordia age of 632 ± 5.1 Ma (1σ) was defined by eleven
concordant points and reflects the age of crystallization of the protolith.
Three inherited zirconswith 206Pb/238U ages of 823± 23, 796± 19 and
761 ± 19 Ma suggest that Early Neoproterozoic protoliths, such as the
ca. 830 Ma, juvenile tonalite of sample DKE-221, were involved in the
genesis of the protolith. 176Hf/177Hf ratios from zircons with 206Pb/
238U ages in the range of 600 to 658 Ma vary from 0.282323 to
0.282523 with εHf(t) of −1.4 to +5.4, pointing to a juvenile compo-
nent in the genesis of the precursor magmas. One inherited core
yielded a highly radiogenic 176Hf/177Hf ratio of 0.282685 with corre-
spondent εHf(t) of +14.5, further supporting the suggestion that
juvenile sources were involved in the genesis of the protolith of this
orthogneiss. However, δ18O values range from 8.69 to 10.82‰. This
contrasts with expectations from magmas generated by juvenile
sources and suggests either crustal material contributed to the forma-
tion of the precursor magmas or external, isotopically evolved water
was present during melting of the source (see discussion in
Section 5.4). High initial 87Sr/86Sr ratio of 0.7108 and strong negative
εNd(t) value of −10.75 also support the participation of older crustal
material in the genesis of the magma.

3.1.2. Boi Unit

3.1.2.1. Sample DKE-277. Zircons from this mafic tonalite are subhedral
with ovoid shapes ranging in size from 40 to 100 μm. In general, they
have a well-developed igneous oscillatory zoning surrounded by a
thin metamorphic overgrowth too thin to be analysed (c.f. zircons 6.1
and 4.1 — Fig. 6). The dated igneous zircons have Th/U ratios of 0.56–
0.97 and yielded a twelve-point concordia age of 648 ± 4.1 Ma (1σ)
that reflects the age of crystallization of tonalite (Fig. 7). 176Hf/177Hf ra-
tios from these zircons have a narrow variation between 0.282201 and
0.282348 which corresponds to εHf(t) values between −6.6 and −0.8.
Initial 87Sr/86Sr ratio of 0.7056 and negative εNd(t) value of−5.87 indi-
cate that both mantle and older crust were involved in the magma gen-
esis, however δ18O values for the dated zircons range from 5.48 to
6.25‰, which fall within the proposed range for mantle zircons (5.7
± 0.3‰, according Hawkesworth and Kemp, 2006).

3.1.3. Santa Quitéria unit

3.1.3.1. Sample DKE-211. This sample of porphyritic monzogranite from
the core of the batholith is representative of themost voluminous igne-
ous unit found within the complex. Zircons from this sample (Fig. 4B)
are euhedral (80–200 μm) and display nicely developed oscillatory



B

DKE-170 metatexitic granodiorite ca. 663±7Ma

schollen diatexite - Tamboril unitE

DKE-125A metatexitic diorite ca. 646±5 Ma D

schlieren diatexite- Tamboril unit

DKE-273A granodioritic schollen ca. 892±7 Ma

DKE-273B diatexite ca. 618±5 Ma

A

F

hbl-bearing leucosome

C

Fig. 5. Field aspects of Tamboril unit. A. Composite outcrop of patchy metatexite after a 882 ± 7 Ma granodioritic orthogneiss (schollen) embedded in a 618 ± 5 granitic diatexite of
Tamboril unitwithin Lagoa Caíçara unit (Sample DKE-273A and B). B. Raft of a 663±7Magranodioritic orthogneiss embedded in a granitic host close to the contact between Santa Quitéria
and Tamboril units (Sample DKE-170). C. Folded stromatic metatexite tonalite to diorite (Boi unit) injected by crustal granitic veins of Tamboril unit (Sample DKE-125). D. Characteristic
flow banding defined by schlieren diatexite of the Tamboril unit. E. Characteristic schollen diatexite of the Tamboril unit. F. Hornblende-bearing leucosomes in diatexite of Tamboril unit.
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zoning (Fig. 6) with Th/U ratios ranging from 0.45 to 1.06. Eleven spot
analyses yielded a concordia age of 637.8 ± 4.8 Ma (Fig. 7), which re-
flects the age of crystallization of the monzogranite. This age is slightly
younger than the mafic sample DKE-277 from the Boi unit. 176Hf/177Hf
ratios from the analyzed zircons range from 0.282028 to 0.282314 cor-
responding to εHf(t) between−12.2 and−2.9, indicating the participa-
tion of crustal material in the genesis of the monzogranitic magma, as
also suggested by the high δ18O values of 7.06 to 8.57. Despite the evi-
dent interaction with mafic magmas of the Boi unit, high initial 87Sr/
86Sr ratio of 0.7107 and negative εNd(t) value of −4.25 also point to
the involvement of crustal sources in the genesis of this monzogranite.

3.1.4. Tamboril unit
This unit is dominated by granitic diatexites that often contain rafts

(schollen) from older igneous rocks of the complex. It represents a
gradational unit at the contact between the monzogranite of the Santa
Quitéria unit and the gneisses of the Lagoa Caíçara unit and Ceará
Complex in the north. The isotopic results do confirm field observations
with samples with characteristics similar to those of the Santa Quitéria
(DKE-170, DKE-125A) and samples of older juvenile material similar
to the Lagoa Caíçara (DKE-273A).

3.1.4.1. Sample DKE-170. Zircons from this metatexitic granodiorite
raft (Fig. 5B) from the contact between the Santa Quitéria unit with
the diatexites of the Tamboril unit are mostly euhedral (80–150 μm)
and characterized by a prominent oscillatory zoning surrounded by a
thin high-U metamorphic overgrowth (c.f. zircons 7.1 and 9.1 — Fig. 6).
Th/U ratios for the dated zircons vary significantly from 0.11 to 1.
Seven concordant analyses fall in a group yielding a concordia age of
663 ± 6.6 Ma (1σ) (Fig. 7). 176Hf/177Hf ratios from the analyzed
zircons are slightly radiogenic with values ranging from 0.282471 to
0.282741, with correspondent εHf(t) of +3.7 to +13.2, indicating the
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involvement of juvenile sources in the genesis of the magmas. Low
initial 87Sr/86Sr ratio of 0.7028 and positive εNd(t) value of +1.80 also
lend support to partial melting of depleted mantle sources. However,
the δ18O values (5.94–9.06‰) for the dated igneous zircons fall outside
the field of mantle zircons and suggest that crustal contaminants or
isotopically evolved water interaction during crystallization could con-
tribute to the observed higher δ18O values.

3.1.4.2. Sample DKE-125.We collected two samples in this outcrop. Sam-
ple DKE-125A is a mafic stromatic metatexitic diorite raft embedded in
the granitic diatexite of the Tamboril unit. Sample DKE-125B represents
the host granite diatexite (Fig. 5C). Field evidence does not support the
derivation of the diatexite from the partial melting of the diorite
because the leucosomes in the diorite have different composition to
the host diatexite evidenced by abundant plagioclase. Zircons from the
metatexitic diorite are euhedral to subhedral (60–200 μm) and have
well-defined igneous oscillatory zoning with Th/U ratios ranging from
0.50 to 0.80. Twelve zircons form a group in the concordia line yielding
amean age of 646±4.5Ma (1σ) for the dioritic protolith crystallization
(Fig. 7). Zircons from the host granitic diatexite are also euhedral to
subhedral and have well-defined igneous oscillatory zoning with Th/U
ratios from 0.13 to 0.84. A concordia age of 625.9± 4.6Ma (1σ) defined
by eleven concordant analyses reflects the age of the crystallization of
this diatexite (Fig. 7). No zirconHf-O isotopes orwhole-rock Sr-Nd anal-
yses were performed for either of these samples. These results suggest
that mafic intrusive rocks of an age similar to that of the Boi unit were
involved in an anatectic event that occurred only 20 m.y. after their
crystallization.

3.1.4.3. Sample DKE-273. The composite sample DKE-273 is divided into
a schollen of granodioritic composition (sample DKE-273A) and the
host diatexite of the Tamboril unit (sample DKE-273B) (Fig. 5A). Differ-
ent from sample DKE125, field evidence such as continuity between the
host diatexite and leucosomes in the schollen, as well as textural simi-
larity supports partial melting of the granodioritic schollen as one of
the sources of the diatexite. Zircons from the granodioritic schollen
are euhedral, transparent, and colorless to light yellow. Most of them
are equant to short prismatic. Crystals range in length from 80 to
200 μm.Most zircons are oscillatory zoned and interpreted as the result
of magmatic growth (c.f. zircons 16.1 and 15.1 — Fig. 6), but newly
developed rims around magmatic cores also with a characteristic
oscillatory zoning are interpreted as melt-precipitated zircons from
the partial melting event (c.f. zircons 5.2 and 7.1 — Fig. 6). A third type
of zircon is characterized by homogenous domains that crosscut the
two types described above (c.f. zircon 12.2 — Fig. 6). Two clusters of
crystallization ages were obtained from zircons in the schollen. The
older, with a calculated concordia age of 892 ± 7.5 Ma is considered to
be the protolith age, and was obtained from both old cores (c.f. zircons
5.2 and 7.1— Fig. 6) and from zirconswith prominent oscillatory zoning
but lacking overgrowths (c.f. zircons 16.1 and 15.1— Fig. 6). The younger
cluster with a calculated concordia age of 620 ± 5.1 Ma (Fig. 7) is
interpreted as the age of anatexis and was obtained from magmatic
overgrowths (melt-precipitated) around older cores (c.f. zircons 5.2
and 7.1 — Fig. 6). We note that this age is similar within error to the
age of the anatecticmatrix of the previous sample DKE125B. Th/U ratios
in this sample vary systematically with younger zircons showing lower
ratios (0.07–0.22) while the older zircons demonstrate higher values
(0.22–0.67).

The analyzed zircons for sampleDKE-273A zirconshave Initial 176Hf/
177Hf ratio with values ranging from 0.282104 to 0.282249 for ages
between 904 and 846 Ma and correspondent εHf(t) varying from −3.6
to + 1.5. The highest (176Hf/177Hf)i ratio of 0.282348 occurs in an
inherited zircon with a 206Pb/238U age of 959 Ma, corresponding to the
maximum εHf(t) value of +6.2. Two grains with well-defined younger
melt-precipitated rims were analyzed with 206Pb/238U ages of 638 and
622 Ma and correspondent εHf(t) of −0.9 and +0.1, respectively.
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Fig. 6. Cathodoluminescence images from zircons selected for U-Pb geochronology and Hf-O isotopic investigation.
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Although the εHf(t) for the zircons of the granodioritic protolith yielded
mostly neutral values hampering the possibility of evaluation between
the distinction of juvenile and crustal material, time-resolved oxygen
isotopes on the same zircons were more conclusive. The δ18O values
for the older zircons (830–959 Ma) of 5.20 to 6.44‰ fall mostly within
the range of mantle zircon (5.7 ± 0.3‰), indicating the addition of
juvenile mantle-derived material in the referred time. Conversely,
δ18O values of 7.69 to 8.17‰ for the melt-precipitated rims (643–581
Ma) are significantly higher than the mantle zircon, indicating involve-
ment with crustal material or addition of water during the melting
event. The granodioritic schollen also have low initial 87Sr/86Sr of
0.7020 and positive εNd(t) of +3.84 at (t = 892 Ma), pointing to the
derivation of juvenile mantle-derived sources.

Sample DKE-273B, representative of the diatexite matrix yielded
younger ages and several inherited zircons from the melted protolith.
Zircons from this sample are also euhedral, transparent, colorless, with
crystals ranging in length from 80 to 200 μm (Fig. 6). The calculated
concordia age at 618± 4.1Ma (Fig. 7) was acquired from newly formed
zircons from the melt (c.f. zircons 3.1 and 9.1 — Fig. 6) or from melt-
precipitated overgrowths around older magmatic cores (c.f. zircons
2.2 and 7.1 — Fig. 6). This age is equivalent to that obtained from the
melt-precipitated overgrowths found in the zircons from the schollen
in sample DKE-273A and also from the diatexite sample DKE125B, and
represents more precisely the time of the anatexis. Ages from older
cores (c.f. zircons 2.1 and 4.1 — Fig. 6) scatter between 728 and
879 Ma and do not define a precise age in the concordia diagram,
suggesting an inherited nature from the precursor source material
prior the melting event. In general, variations between the initial
176Hf/177Hf ratio and the 206Pb/238U ages for the melt-precipitated
zircons in diatexite of the sample 273B are significantly higher than
the zircons extracted from the schollen, with values ranging from
0.282152 to 0.282687 for ages between 637 and 607Ma and correspon-
dent εHf(t) varying from −1.4 to + 5.4 (Fig. 10A). Two older cores,
inherited from the schollen were also analyzed and yielded εHf(t) of
−0.5 and +14.5, suggesting some incorporation of juvenile material
from the schollen protolith, as expected from field observations. The
δ18O values for the melt-precipitated rims and newly formed zircons
of 6.41 to 9.10‰ are also higher than the mantle zircon, indicating the
addition of water during the melting event and or contamination with
crustal material (Fig. 10B). As also expected, the older cores inherited
from the schollen have mantle signatures with zircons values ranging
from 4.64 to 5.53‰ (Fig. 10B). This diatexite has initial 87Sr/86Sr ratio of
0.7079 and negative εNd(t) of −3.55 at t = 618 Ma, suggesting that
crustalmaterial was also involved in the genesis of the diatexites (Fig. 11).
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3.2. Zircon SHRIMP O isotopes in detrital zircons

Forty-one analyses of Neoproterozoic zircons (939–648 Ma)
extracted from two samples of metatexitic paragneisses (samples
DKE-43 and 45) of the Ceará Complex (close to Miraíma town) were
also performed to evaluate the changes in mantle and crustal involve-
ment with time. 206Pb/238U ages of the same analyzed zircons were
previously acquired by Ganade de Araujo et al. (2012a) and the ages
of the paragneisses are younger than 650 Ma and their anatexis was
estimated to be at 640–600 Ma.
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According to these authors zircons were shed from a long-lived arc
system (the Tamboril-Santa Quitéria Complex) and deposited in a
forearc basin. In general both samples have a significant variation
between low and high δ18O values, however, lower mantle-like values
(δ18O b 6.0‰) are consistently more abundant in the sample DKE-43.
The δ18O values for this sample range from 3.64 to 8.11‰ with 78% of
the total analyzed zircons (n = 22) exhibiting values of δ18O b 6.0‰
throughout the range of 949 to 648 Ma (Fig. 10B). For the sample
DKE-45 δ18O values vary from 5.09 to 7.73‰ with 36% of the analyzed
zircons (n = 19) showing values b6.0‰ for a narrower range of time
between 932 and 711 Ma (Fig. 10B). 206Pb/238U ages and δ18O values
indicate that mantle derived sources persisted throughout time since
the beginning of the Neoproterozoic arc magmatism, however the
presence of zircons with high δ18O values (N6.0‰) from 869 to
662 Ma also suggests that the sources (magmas) of these zircons also
have interacted with crustal materials.

3.3. Major and trace elements

Geochemical results do not allow discrimination among the major
units of the Tamboril-Santa Quitéria Complex, instead, granitoids
show similar trace and REE patternsmostly characteristic of convergent
plate margins.

3.3.1. Lagoa Caíçara unit
The non-melted portions of the older group of gneisses and

migmatites (ca. 830 Ma) have SiO2 ranging from 65.3 to 68.2 wt.%.
The K2O contents range between 2.1 and 5.9 wt.% with an average of
3.9 wt.% with the samples plotting mostly in the high-K calc-alkaline
field in the K2O versus SiO2 classification diagram of Peccerillo and
Taylor (1976) (Fig. 8A). Their Al2O3 contents range from 13.8 to
19.6wt.% yielding ametaluminous to subordinatelyweak peraluminous
signatures (ASI = 0.73–1.08) (Fig. 8B). The geochronological data pre-
sented herein identified not only Early Neoproterozoic migmatitic
orthogneisses, but also orthogneisses, whose protoliths have crystalized
at ca. 650 Ma. These ca. 650 Ma orthogneisses have SiO2 ranging from
55.5 to 62.2 wt.% with an average of 57.7 wt.% and similar K2O (1.77–
4.86 wt.%) contents of the older gneisses.

In the primitivemantle-normalized spidergram (Fig. 9), the samples
from both groups (ca. 800 and ca. 650Ma) show characteristic negative
anomalies of Th, Nb, La, P and Ti. In the case of P and Ti this is attributed
to a residue of apatite and ilmenite in the parental magma. These rocks
have similar REE contents when compared with typical I-type granites.
All samples of the older group (ca. 800 Ma) exhibit high REE contents,
relatively enrichment of LREE ((La/Yb)N ratios of 4.3 to 44.5 with an av-
erage of 10.2), flat HREE patterns ((Tb/Yb)N ratios of 1.0 to 2.4) and
strong to weakly negative Eu anomalies (Eu/Eu* ratios of 0.56 to 0.99)
(Fig. 9). Samples from both groups plot within the VAG field in the tec-
tonic discriminant diagram of Pearce et al. (1984) and in the active-
margin granites of Schandl and Gorton (2002) (Fig. 8C and D).

3.3.2. Boi unit
In general, samples from this unit have SiO2 ranging from 67.0 to

69.1 wt.% with an average of 67.8 wt.%. They have rather high K2O
(2.4–7.4 wt.%) and low MgO (0.63–1.0 wt.%) contents with samples
plotting mostly in the high-K calc-alkaline field in the K2O versus SiO2

diagram (Fig. 8A). Their Al2O3 contents are between 14.9 and 15.7 wt.%
giving the rock a weak peraluminous signature (ASI = 0.99–1.06)
(Fig. 8B). They have low Ba (479–868 ppm) and Sr (152–329 ppm)
contents, and characteristic negative anomalies of Nb and Ti and posi-
tive anomalies of U, K and Ce in the primitive mantle-normalized
spidergram (Fig. 9). Normally, the samples show a relatively enrich-
ment of light rare earth elements (LREEs)((La/Yb)N ratios of 8.2 to
91.5 with an average of 11.8), and a predominant strong negative Eu
anomalies (Eu/Eu* ratios ≈ 0.63).
3.3.3. Santa Quitéria unit
Geochemically, the samples of Santa Quitéria unit have SiO2

contents in between 58.7 and 75.4 wt.%, with an average of 61.1 wt.%.
K2O contents range between 1.8 and 7.4 wt.% with an average of
3.1 wt.% with the samples plotting mostly in the high-K calc-alkaline
and shoshonitic fields in the K2O versus SiO2 classification diagram
of Peccerillo and Taylor (1976) (Fig. 8A). The samples demonstrate
overall patterns of decreasing Mg, Fe, Ca, Ti, Al and P with increasing
SiO2. Their Al2O3 contents are in between 13.3 and 17.4 wt.% indicating
a metaluminous to weak peraluminous character (ASI = 0.73–1.07)
(Fig. 8B). The samples display an enriched LILE pattern, defining a
downward sloping profile in the primordial mantle normalized
spidergram, combined with positive anomalies of K, Pb and Nd and
negative Nb, Th, P and Ti anomalies (Fig. 9). In spite of the significant
variance of Ba and Sr, the former appears especially abundant, with
average values of 727 and 223 ppm, respectively. Generally the
analyzed samples exhibit high REE contents, relatively enrichment of
light rare earth elements (LREEs)((La/Yb)N ratios of 3.3 to 67.8 with
an average of 14.9), flat HREE patterns ((Tb/Yb)N ratios of 0.7 to 3.1)
and predominant negative Eu anomalies (Eu/Eu* ratios ≈ 0.83).

3.3.4. Tamboril unit
In general terms, samples of theTamboril diatexite are geochemically

similar to those of the Santa Quitéria unit. They have SiO2 ranging from
62.4 to 68.3 wt.% with an average of 64.3 wt.%. K2O contents range
between 1.6 and 6.5 wt.% with an average of 3.9 wt.% with the samples
plotting mostly in the high-K calc-alkaline and shoshonitic fields
(Fig. 8A). Their Al2O3 contents are in between 13.6 and 16.9 wt.% that
gives ametaluminous to subordinatelyweak peraluminous characteris-
tic (ASI = 0.84–1.04) (Fig. 8B). In the primitive mantle-normalized
spidergram samples show characteristic negative anomalies of Nb, P
and Ti that should be attributed in part to residue of apatite and ilmenite
in the parental magma. The samples exhibit high REE contents, relative
enrichment of light rare earth elements (LREEs)((La/Yb)N ratios of 2.9
to 85.1 with an average of 20.4), flat HREE patterns ((Tb/Yb)N ratios of
0.7 to 4.7) and predominant negative Eu anomalies (Eu/Eu* ratios
≈ 0.63) (Fig. 9).

4. Discussion

4.1. Magmatic evolution

Geochemistry, U-Pb zircon ages, time-resolved zircon Hf-O isotopic
determinations and whole-rock Sr-Nd isotopes of the Tamboril-Santa
Quitéria Complex provide important constraints on the magmatic and
tectonic evolution of the Ceará Central Domain. Trace element concen-
trations of the investigated samples display a typical spectrum of arc-
related igneous rocks, the so-called “arc-signature”, characterized by
the enrichment of highlymobile large ion lithophile elements (LILE) rel-
ative to high field strength elements (HFSE) (McMillan et al., 1989).
However, it is the isotopic composition that characterizes better
the source of the investigated granitoids. Essentially, magmatism
can be divided into three main periods with their particular characteris-
tics: i) an early period comprising essentially juvenile arc magmatism
at ca. 880–800 Ma, ii) a more mature arc period at ca. 660–630 Ma
characterized by hybrid mantle–crustal components, and iii) crustal
anatexis at 625–618 Ma continuing until ca. 600 Ma. In the following
discussion we will avoid the unit nomenclature based on mapping,
and divide the investigated samples according to their age and isotopic
signatures.

4.1.1. Early 880–800 Ma juvenile arc-related magmatism
Samples 273A and DKE-221 of granodioritic/tonalitic composition,

yielded the oldest zircon crystallization ages at 892 ± 7.5 and 833 ±
6.1 Ma, respectively. These samples have predominantly positive
εHf(t) (−3.6 to + 19.3) and positive εNd(t) (+4.98 to +3.84)
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combined with low initial 87Sr/86Sr (b0.7025), suggesting derivation
from a depleted mantle (juvenile) source. Detrital zircons from forearc
deposits of the Ceará Complex suggest thatmagmatismwas continuously
active from at least ca. 900 to ca. 650 Ma (Ganade de Araujo et al.,
2012a) (Fig. 12). The δ18O values retrieved from the same detrital
zircons previously dated by these authors (samples DKE-43 and DKE-
45 of the Ceará Complex), indicate that the juvenile input persisted
throughout great part of the convergent magmatism ascribed to the
consumption of the Goiás-Pharusian Ocean (Fig. 10B).

Geochemistry of these 880–800 Ma tonalitic to granodioritic rocks
suggests that this juvenile signature was acquired in an arc-related
setting rather than during rifting. In the Ceará Central Domain, some
authors favor break-up and rift development at around 770–750 Ma
(Arthaud, 2007; Brito Neves and Fuck, 2013; Castro, 2004; Fetter et al.,
2003), however the lack of characteristic features of rift settings such as
concomitant immature terrigenous sedimentation, abrupt tectonically-
controlled facies variations and abundant bimodal volcanism, does not
support this idea. Instead, such extensional event may be related to an
extensional subduction setting and development of diachronous back-
arc basins to the east of the Lagoa Caíçara unit. On the other hand, a
U-Pb ID-TIMS age of ca. 770 (Fetter et al., 2003) retrieved from volcanic
rocks found associatedwith passivemargin deposits of theMartinópole
Group in the Médio Coreaú Domain (west of the Transbrasiliano
Lineament in Fig. 2) suggests that extension and passive margin devel-
opment was concurrent with subduction and arc development in the
Ceará Central Domain.

Evidence from the West Gondwana Orogen in Africa (Berger et al.,
2011; Caby, 1989, 2003; Dostal et al., 1994) and Central Brazil (Laux
et al., 2005; Pimentel and Fuck, 1992; Pimentel et al., 2000) demon-
strates that part of the Neoproterozoic growth of western Gondwana
occurred firstly during the Late Tonian and Cryogenian (950–750 Ma),
through the development of intraoceanic juvenile arcs, suggesting the
presence of a large ocean separating the São Francisco and Amazonian/
West African and Saharan cratons. In Hoggar, within the Silet region
(Algeria), diorite–tonalite and monzogranite plutons from the Iskel
magmatic arc yielded U-Pb zircon ages at ca. 868 and 839 Ma (Caby
et al., 1982). Occurrence of slices of pre-Pan-African basement directly
overlain by shelf sediments and capped by arc volcanic rocks in several
localities suggests that the Iskel magmatic arc was built on attenuated
continental crust adjacent to possible slices of oceanic lithosphere
(Caby, 2003; Lapierre et al., 1986). Further south, in the Gourma region
(Mali) the Tilemsi-Amalaoulaou intraoceanic arc assemblages (Dostal
et al., 1994) were dated within the 790–710 Ma time interval (Berger
et al., 2011; Caby, 1989). The Tilemsi arc is considered the upper crust
supra-structure equivalent of the Amalaoulaou complex (Berger et al.,
2011). Although precise geochronological data is lacking for the Kabyé
massif in the Dahomeyan belt (Togo), geochemical and field character-
istics suggest that this massif could in fact represent the roots of a con-
tinental arc (Duclaux et al., 2006).

In Africa the active continental margin (Andean-type) is located in
the east of the oceanic terranes (Berger et al., 2011; Caby, 2003). This
stage of ocean-continent subduction was dated at 696 ± 5 Ma within
the Kindal Terrane and at 716 ± 6 Ma in the Idras des Iforas region in
Mali (Bruguier et al., 2008; Caby and Andreopoulos-Renaud, 1987),
indicating that it was partially coeval with the ocean–ocean subduction
stage active further west. In Central Brazil, the Neoproterozoic Goiás
magmatic arc in the Brasilia Belt is composed of juvenile orthogneisses
ranging from ca. 920 to 780 Ma (Laux et al., 2005; Matteini et al.,
2010; Pimentel and Fuck, 1992). Younger ages at ca. 670–630 Ma were
Fig. 8. A. K2O versus SiO2 diagram of Peccerillo and Taylor (1976), showing that granitoids
are high-K calc-alkaline to shoshonitic in nature. B. A/NK vs. ASI diagram modified from
Shand (1947). C. Rb versus Ta + Yb tectonic discrimination diagram of Pearce et al.
(1984). D. Th/Hf versus Ta/Hf discrimination diagram between continental activemargins
and within plate volcanic zones of Schandl and Gorton (2002).
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also reported (Laux et al., 2005) andmay represent a second stage of the
pre-collisional magmatism in Central Brazil, also with hybrid mantle–
crustal isotopic signatures.

In other words, the juvenile nature of these rocks in the CCD and
geological relationships along the orogen in Africa and Central Brazil
suggest that the large Goiás-Pharusian Ocean was connected and did
not narrow into a small ocean in the Borborema Province as suggested
by some authors (Brito Neves and Fuck, 2013; Castaing et al., 1994;
Neves, 2003).

4.1.2. Mature Andean-type arc magmatism: ca. 660–630 Ma
The granitoids of the younger magmatism marked by the Santa

Quitéria and Boi units (samples DKE-211 and DKE-277) together
with the gneissic granitoids found in the Lagoa Caíçara unit (samples
DKE-269 and DKE-231) and granitoid schollen (samples DKE-170 and
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DKE-125A) found within the diatexites of the Tamboril unit, range in
age between 663 and 627 Ma. These rocks have negative to positive
εHf(t) (−18.7 to +13.2) and εNd(t) (−10.75 to +1.80) combined
withmoderate to high initial 87Sr/86Sr (0.7056–0.7143). Isotopic results
for the granitoids within this 30 m.y. span of magmatism indicate
sources ranging frommantle to continental (Table 2), which character-
izes a mature arc stage.

After the juvenile granitoids of the 890–800 Ma arc, the oldest
granitoid (663 ± 6.6 Ma, sample DKE-170) within the Tamboril-Santa
Quitéria Complex occurs as a raft inserted in the Tamboril unit close to
the contact with the Santa Quitéria unit. The εHf(t), εNd(t) and initial
87Sr/86Sr indicate that this granitoid was derived from the partial
melting of depleted mantle sources (Figs. 10 and 11). However, high
zircon δ18O values (5.94–9.06‰) suggest that these juvenile magmas
would have also interacted with (meta)sedimentary rocks that
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contributed to increased δ18O values. Sample DKE-170 contrasts with
sample DKE-200A, the next oldest rock in this group, however. Sample
DKE-200A is a mafic tonalite dated at 650.6 ± 5.1 Ma. Its isotopic
composition indicates that old continental rocks were its main source
(initial 87Sr/86Sr = 0.7105; εHf(t) = −5.45 and δ18O 6.73–8.19,
Table 2). The difference between the two samples is taken to indicate
that contrasting sources (crust and mantle) were mobilized in this
period. This is confirmed by the consideration of the remaining samples
in this group.

The high-K to shoshoniticmafic dioritic and tonalitic rocks of the Boi
unit are the oldest (648 ± 4.1 Ma, sample DKE-277) coherent and
mappable magmatic rocks identified within the complex. While εHf(t)
for sample DKE-277 is negative (−6.6 to −0.8) and suggestive of
crust participation, juvenile εNd(t) signatures (Fetter et al., 2003), attest
for mixing between rocks with mantle and crustal signatures. Mantle
involvement is further supported by the zircon δ18O values (5.48–
6.25‰). Thediorite gneiss of sampleDKE-125A although lacking isotopic
data, has a similar zircon U-Pb age of 646 ± 4.5 Ma and is correlated
with the Boi unit magmatism.

The youngest magmatic intrusive pulses in the Tamboril-Santa
Quitéria Complex are represented by the 632 ± 5.1 and 627 ± 4.9 Ma
biotite granitic magmatism found in the Lagoa Caíçara unit. Nd-Sr
isotopic data for these rocks are coherent with a crustal origin as also
suggested by high zircon δ18O values (6.73–10.82‰). Inherited zircons
with ages at 823 ± 23, 796 ± 19 and 761 ± 19 Ma indicate that Early
Neoproterozoic juvenile protoliths from the Lagoa Caíçara unit were
also important sources for this granitic magmatism, and may have con-
tributed to the partially positive εHf(t) in sample DKE-269.

As discussed above, one of the main features of the Santa Quitéria
monzogranitic magmatism is the close association with syn-plutonic
mafic dykes of enriched mantle affinity, likely connected with the Boi
unit magmatism. This mantle input is geochemically enriched and pre-
dominantly shoshonitic in nature (Costa et al., 2013; Zincone, 2011).
Available geochronological data for the high-K to shoshonitic porphyritic
granites of the Santa Quitéria unit allow us to bracket its formation to
within the 640–635 Ma time interval (Fetter et al., 2003 and our data).
Negative εHf(t) (−12.2 to −2.9) and εNd(t) (−4.25) values together
with high initial 87Sr/86Sr (0.7107) and high zircon δ18O values (7.06–
8.57‰) indicate that crust was involved in the formation of the Santa
Quitéria monzogranites. The Boi and Santa Quitéria units are part of
the same magmatic system and illustrate well the interaction of
crust–mantle sources commonly described in mature arcs (DePaolo,
1981).

The enriched signatures observed in the Santa Quitéria-type granit-
oids could be explained by partial melting of a modified metasomatic
mantle combined with significant crustal contamination, rather than
an asthenosphere input. Inmany arcsmagmas have enriched geochem-
ical features, which are consistent with a derivation from mantle
sources modified by metasomatic fluids. These fluids can be derived
from subducted incompatible element-rich sediments (Tatsumi,
1986), or from slab melts (Martin et al., 2005). The relative roles of
crustal contamination and mantle source enrichment (e.g. through the
contribution of subducted terrigenous sediments or slab fluids) are
often debated in arc petrogenesis (e.g. Fourcade et al., 1994), but diffi-
cult to quantify. The expected modifications in the underlying mantle
would arise from the long-lasting interaction of subduction derived
melts since the ca. 850 Ma, initiated by the Lagoa Caíçara juvenile
magmatism.

Along the West Gondwana Orogen, other Andean-type arcs have
also been identified in the time bracket between 650 and 600 Ma. As
mentioned above, in Hoggar (Mali) such arc magmatism is related
with the consumption of the Goiás-Pharusian Ocean by east–southeast
directed subduction (Caby et al., 1981) and the formation of the large
Adrar des Iforas continental arc batholith at around 630 Ma (Liégeois
et al., 1987). In the Dahomey section of the orogen in Togo and Benin,
arc-type Neoproterozoic granitoid rocks dated at ca. 650–630 Ma
(Kalsbeek et al., 2012) are also related with an east-dipping subduction
zone evolved during the consumption of the Goiás-Pharusian Ocean.
Finally, in the central Brazil branch of the orogen, final magmatic pulses
of the Goiás magmatic arc at ca. 630 Ma (Laux et al., 2005; Pimentel
et al., 1999) could be correlated with this mature arc setting that pre-
dates final collision in the West Gondwana Orogen.

4.1.3. Reworking of arc rocks: the 620–610 Ma crustal anatexis event
Samples of neosome resulting from crustal anatexis define the youn-

gest group of rocks within the complex at 625–610 Ma, generally
grouped in the Tamboril unit. In the field the Tamboril magmatism re-
sults from the remelting of the surrounding protoliths (Fig. 5), mainly
orthogneisses of intermediate compositions of the Lagoa Caíçara and
Santa Quitéria units and minor metasedimentary rocks of the Ceará
Complex.

The resulting magmatism in the Tamboril unit dated here at 625–
618 Ma (samples DKE-273 and DKE-125) consists of neosomes and
their isotopic composition reflects the variations of their source from
juvenile to hybrids with some crustal input.
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The schollen diatexite sample DKE-273 suggests that it was derived
from the partial melting of the juvenile rocks of the Lagoa Caíçara unit.
Intermediate granitoids, such as those of the Lagoa Caíçara unit have
no muscovite and small amounts of biotite or hornblende (10–25%),
precluding generation of large melt fractions by dehydration melting
(Sawyer, 2008). The large melt fraction and the lack of anhydrous
phases in these migmatites, such as garnet, sillimanite, orthopyroxene
or cordierite, suggestmelting by influx ofwater close to the solidus tem-
perature promoting water-saturated melting of quartz + plagioclase-
K-feldspar (Kenah and Hollister, 1983; Sawyer, 1998, 2008). In support
of this interpretation is the existence of peritectic hornblende in
leucosomes in some sections of the Lagoa Caíçara unit (see sample
DKE-221). Gardien et al. (2000) have demonstrated that the stability
of hornblende formed from biotite breakdown requires the addition of
external water.

Close investigation of our analyses of schollen and diatexitic granite
of samples DKE-273A and 273B suggests however that other sources
were also involved in the generation of melts surrounding the schollen.
Although melting of the tonalitic/granodioritic paleosome and genera-
tion of the diatexite melt are evident in the field, zircon εHf(t) values
diverge from the whole-rock εNd(t), suggesting Hf-Nd isotope
decoupling in the diatexites (Fig. 11A). The behavior of the Lu-Hf system
during melting is analogous to that of the Sm-Nd system, with the
daughter elements Hf and Nd fractionating into the melt to a higher
degree than the parent elements Lu and Sm (Scherer et al., 2007).
Because Hf and Nd fractionate more strongly into melts than Lu and
Sm, themelt will have lower Lu/Hf and Sm/Nd values than the protolith
and over time the isotopic compositions of the melt and protolith will
diverge into lower and higher 176Hf/177Hf and 143Nd/144Nd values,
respectively. The (176Hf/177Hf)i values for the zircons of the diatexite
of the Lagoa Caíçara unit are higher or equal to the (176Hf/177Hf)i of
the source juvenile material (schollen), indicating that radiogenic
176Hf remained constant or slightly increased during the melting
event. We interpret this feature as a direct consequence of the isotopic
inheritance of the juvenile source zircons to the melt-precipitated
zircons. We believe that the Hf budget in the melt is being controlled
mainly by the zircons with high (176Hf/177Hf)i derived from the juve-
nile protoliths and that rapid melting by the addition of water would
preclude radiogenic 176Hf to homogenize with other possible sources
and thus reflect the direct isotopic composition of the protolith
(Fig. 12). The decoupling of zircon Hf versus whole-rock Nd isotopes
in the Lagoa Caíçara diatexites is due to the retention of radiogenic Hf
during partial melting of juvenile arc-derived zircons, similarly sug-
gested by Wu et al. (2006) for the reworking of juvenile crust in
South China. Since the bulk 143Nd is available from a variety of minerals
and sources, rather than zircon which, is the main container of Hf in
crustal rocks (Hoskin and Schaltegger, 2003) we believe that during
partial melting the whole-rock Sm-Nd system was readily equilibrated
with the new melt, and reflects the addition of other external, old con-
tinental sources that contributed to the lower and less radiogenic εNd(t)
value. Hf provided by zircons from the external contaminants was
minor compared with the Hf provided by the juvenile protolith, and
this may reflect: i) low zircon fertility of crustal contaminants; ii) low
magmatic resorbtion of these zircons in the melt; or iii) a bias intro-
duced by our low resolution sampling. These external sources are also
observed in the field as preserved schollen of metasedimentary rocks,
granites and older Paleoproterozoic (2.1 Ga) orthogneisses from the
basement.

The rapid addition of water during melting could explain the
conservation of the protolith Hf isotopic signature of the melt-
precipitated zircons as well as their high δ18O values (Fig. 12). The
origins of the fluids in geological processes are always intriguing and
difficult to address. The time of diatexite formation is in agreement
with the time of continental collision in Ceará Central Domain
(see discussion below) and thus fluids associatedwith subductedmate-
rial and underlying metasomatized mantle wedge are not possible
sources. Instead, fluids released by prograde collisional metamorphic
dehydration-type reactions of the adjacent rocks are suitable candi-
dates, as proposed by White et al. (2005) at a smaller scale for the
diatexites of Broken Hill, Australia.

4.1.4. Bracketing collision time
The fundamental question that arises when addressing temporal

relationship of magmatic lineages of a given orogenic system, using
the prefixes pre-, syn- and post-collisional is: when did the collisional
stage start? Initial collision, starting at the first contact of the continental
blocks, evolves into crustal thickening (due to plate overriding) followed
much later by thinning due to gravitational adjustments in response to
the delamination of crustal root (Leech, 2001). Each of these tectonic
stages can be fingerprinted by a related tectono-thermal and magmatic
manifestation preserved within the final orogenic record.

Retrogressed eclogitic rocks found between the western border
of the Santa Quitéria Complex and the Transbrasiliano Lineament
(Santos et al., 2009) are an essential piece of the collisional story of de
orogen. Santos et al. (2013) reported the find of coesite inclusions
within garnet, suggesting UHP (N2.7 GPa) metamorphic conditions at
depths greater than 90 km. It is well known from recent collisional
orogens, as well as in some fossil collisional zones, that eclogite facies
metamorphism, including UHP rocks, is one the best markers of the
onset of the collisional process (e.g. de Sigoyer et al., 2000; Gilotti, 2013;
Leech et al., 2005; Liou et al., 2004; Liu et al., 2008). Petrochronology for
the (U)HP metamorphism in the Forquilha eclogitic zone in CCD and
along the West Gondwana Orogen in Togo and Mali indicates that the
timing of continental collision was nearly synchronous for at least
2500 km along the orogen around 615–610 Ma (Ganade de Araujo
et al., in revision).

Given themarked change in the nature ofmagmatism, from primary
arc magma intrusion down to 625 Ma, to secondary magmatic
rocks derived from the remelting of these primary magmatic rocks,
at around 620–615 Ma, we postulate that this marks a change from
early magmatism related to plate convergence associated with the con-
sumption of the Goiás-Pharusian Ocean to crustal recycling due to
collision.

The India-Asia collision is our type locality for large-scale continental
collision. There collision started ca. 55 Ma (Klootwijk et al., 1992),
ultimately creating theHimalaya and Tibet. Themost obviousmetamor-
phism occurred during partial melting ca. 20 Ma, but rare relict
metamorphic minerals, textures, and isotope ages as old as 35–55 Ma
attest to earlier Himalayan metamorphism (e.g., see Hodges, 2000; de
Sigoyer et al., 2000). In the Himalayas ages for the coesite-bearing
UHP eclogites are 45–55 Ma (de Sigoyer et al., 2000; Donaldson et al.,
2013; Kaneko et al., 2003) while geochronology on the partially melted
rocks indicates that melting was at 18–22 Ma (Harrison et al., 1998),
constraining a gap of between 37 and 23 m.y. since the beginning of
the collision and the main period of melting. Thus, widespread melting
of mid-crustal levels is thought to have started at around 30 Ma, with
more voluminous magmatism at around 20 Ma, and with melt present
today ~15 km below the surface underneath the Tibetan Plateau
(Harrison, 2006). Thermal modeling of crustal thickening suggests
that the concomitant thickening of the layer enriched in heat producing
elements leads to crustal heating generating crustal anatexis some tens
of millions of years after crustal thickening in accordance to observa-
tions (England et al., 1988). This seems not to be the case in the Ceará
Central Domain.

If our interpretation is correct, the change from arc magmatism to
crustal anatexis occurred concurrently with collision suggesting one of
several possibilities: a) the CCD is a deeper section of the collisional
belt than the one presently exposed in the Himalayas, b) the thermal
evolution of the exposed section of the CCD was different from that of
the Himalayan front upon collision, with the CCD remaining hotter, or
c) arrival of continental sediments into the subduction zone bringing
water to the arc. Although melting was synchronous to the onset of
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collision in CCD, younger leucosomes containing anhydrous peritectic
garnet and sillimanite derived from the partial melting of the
metasedimentary rocks of the Ceará Complex were dated at 610–
600 Ma (Arthaud, 2007; Castro, 2004) and possibly younger at 580 Ma
(Fetter, 1999).

5. From a juvenile to mature arc setting and terminal collision

Our new data indicate that subduction initiation of the Goiás-
Pharusian Ocean may have been active as early as 890 Ma in the Ceará
Central Domain and, as suggested by detrital zircon studies from
supracrustal rocks (Ganade de Araujo et al., 2012a), may have been
continuous until terminal collision at ca. 620–615 Ma. However, the
continuity of detrital zircon spectra contrasts with the apparent long
pause between ca. 800 Ma and 660 Ma recorded by the magmatic
rocks of the CCD alone. This apparent gap could be due to the erosion
of the earlier arc granitoids or by insufficient geochronological data
(Fig. 13).

In any case, the igneous samples investigated here record two main
arc-building stages. The first, early to middle Neoproterozoic stage I,
comprising mainly juvenile tonalites and granodiorites from the Lagoa
Caíçara unit, followed by a second stage (stage II) that comprises
abundant diorites, tonalites and mainly high-K monzogranites with
mixed mantle–crustal signatures from the Santa Quitéria and Boi units
and younger orthogneisses found in the Lagoa Caíçara unit.

The juvenile nature of the stage I arc granitoids suggests an initial
emplacement outboard of the leading edge of the continental margin
of the Paleoproterozoic-Archean basement of the Borborema Province
to the east, at ca. 890 Ma possibly in an oceanic environment. This
scenario is similar to that described in the earlier stages of Mesozoic
convergent margin of Baja California, Mexico (Busby, 2004). In this
area, the subducting Farallon plate at that time was old and cold at the
trench and therefore the subduction zone was in retreat and the arc
was thus emplaced in an extensional setting, generating intra-arc to
backarc basins. Similarly, if the oceanic plate of the Pharusian-Goiás
Ocean was old and cold at the time of subduction in the Ceará Central
Domain an extensional setting would have developed between stage I
arc and the former continental margin explaining for example the
sediments deposited in the rear area of the arc in a possible back-arc set-
ting between the juvenile Lagoa Caíçara unit and the Paleoproterozoic/
Archean basement to east. However, provenance studies through detri-
tal zircon investigation in thesemarine sediments of the Ceará Complex
have both arc and continental signatures (Ganade de Araujo et al.,
2012a) suggesting that stage I arc magmatism was not far off the
continental margin (Fig. 14A and B). Furthermore, some authors have
proposed that the bimodal alkaline (high-Nb) and mafic magmatism
associated with these sediments between 840 and 750 Ma is related
to extension (Arthaud, 2007; Arthaud et al., 2008; Castro, 2004).
Imprecise upper intercept ID-TIMS U-Pb zircon ages at ca. 840 Ma
from alkaline rhyolites with high-Nb content close to Itataia town
(Castro, 2004) and ID-TIMS U-Pb zircon ages of 772 Ma from felsic
gneissic sheets found further south close to Independência town may
constrain the period of extension.

Development of a back-arc basin during stage I arc magmatism and
extension of the continental crust to the east of the Lagoa Caíçara unit,
generated space that was filled with progradational back-arc deposits
that record arc growth above sea level to the west (Fig. 14B). No clear
evidence is available to say if the back-arc basin developed into an incip-
ient oceanic crust, however the mafic rocks close to Pentecoste town
could be candidates and should be studied in detail.

Themature arc stage II magmatism is comprised of several pulses of
granitoids and overprints magmatism related to stage I between 660–
630 Ma (Castro, 2004; Fetter et al., 2003; Ganade de Araujo et al.,
2012b) (Fig. 14C). These magmatic rocks are geochemically enriched
when compared with the intermediate granitoids of stage I (Fig. 8A).
Likewise, contrasting to the stage I granitoids, isotopic signatures of
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stage II rocks show variable mixtures between juvenile and crustal
material.

We postulate that after the last pulse of arcmagmatismat ca. 627Ma
(sample DKE231), initial continent–continent collision in Ceará Central
Domain is marked by the first contact between the stretched passive
margin of Paleoproterozoic-Archean basement to the east (the
Northern Borborema basement) and the Paleoproterozoic basement to
the west (the Parnaíba + Granja Complex). Continental subduction is
evidenced by the (U)HP eclogitic metamorphism in the Forquilha HP
domain, which may have initiated as early as ca. 624 Ma reaching
peak P conditions at ca. 615 Ma (Ganade de Araujo et al., in revision)
(Fig. 14D). At this stage remelting of the arc assemblages took place in
the Tamboril-Santa Quitéria Complex.

Eclogites and HP gneisses were also described in the back-arc basin
in the vicinity of the Itataia town (Arthaud, 2007; Castro, 2004) and
could be related to the west-dipping incipient subduction of the back-
arc basin and stretched Paleoproterozoic continental crust during
collision.

Images of the deep electrical structure across the Tamboril-Santa
Quitéria Complex revealed two resistive features dipping from the
upper crust into the upper mantle in downward convergence
interpreted as the remnants of former subduction slabs (Padilha et al.,
2014). However, in their northernmost magnetotelluric profile (closer
to the study area) the images of these two resistive structures are not
clear and the profile is characterized by a conductive east-dipping slab
to the west of the Tamboril-Santa Quitéria Complex (Fig. 2 in Padilha
et al., 2014).

The east-dipping resistive/conductive slab images between the
Transbrasiliano Lineament and the arc rocks of the Tamboril-Santa
Quitéria Complex are in agreement with the position of the (U)HP
eclogites of Forquilha zone. We expect that the eastward subducting
cold and dense slab of the oceanic crust was responsible for the mature
arc stage magmatism at 660–630Ma and pulled the attached continen-
tal crust tomantle pressures at ca. 615Ma as recorded by the age of (U)
HPmetamorphism (Ganade de Araujo et al., in revision). This eastward
subduction polarity has been also proposed to explain the geometry of
supracrustal structure in other sectors of the West Gondwana Orogen
(e.g. Caby, 2003; Duclaux et al., 2006; Liégeois et al., 1987), thus
indicating an extensive eastward dipping subduction system during
the Neoproterozoic.

The period following continental subduction at ca. 615 Ma is related
to exhumation of the (U)HP eclogites, especially those found at
the Forquilha (U)HP domain. The emplacement of the (U)HP rocks
into shallower crustal levels was probably facilitated by extensional
tectonics and buoyancy-aided exhumation (Fig. 14E).

6. Conclusions

The Ceará Central Domain of the Borborema Province is a
Neoproterozoic orogenic area (Brito Neves et al., 2000), part of the
5000 km-long West Gondwana Orogen (Ganade de Araujo et al.,
2014),which extends fromAlgeria in Africa to Central Brazil. Our results
allowed the determination of three stages of magmatism reflecting
three distinct tectonic environments: i) an early period of essentially
juvenile arc magmatism at ca. 880–800 Ma, ii) a second, mature arc
period between 660 and630Ma, characterized by hybridmantle–crustal
components, and iii) remelting of the arc-related igneous rocks during
continental collision, evidenced by abundant extensive migmatization
dated to between 625 and 600 Ma. These ages overlap with those of
(U)HP eclogitic metamorphism at 624–615 Ma suggesting that
migmatization occurred during continental subduction in a continent–
continent collisional setting. The apparent gap between the two periods
of arc magmatism could be explained by incomplete exposure and
erosion. Evidence for continuous magmatism comes from abundant
detrital zircons in the fore- and back-arc basins with ages in the range
of 900 to 650 Ma. Oxygen isotopes from detrital zircons in the fore-arc
indicate that juvenile input persisted throughout the entire evolution
of convergentmagmatism. Igneous rocks of the Tamboril-Santa Quitéria
Complex record a long-lived history of convergent magmatism lasting
up to 350 m.y.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2014.05.015.
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Appendix A. Analytical procedures

In order to better understand the temporal evolution and the source
of different magmas we carried out in situ U-Pb zircon geochronology
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coupled with Hf and O isotopes on the same dated zircon domains.
Zircon isotopic data were complemented by whole-rock Nd and Sr iso-
topes to better constrain granite sources for the same representative
samples used for zircon investigation.

Zirconswere separated from fresh crushed rocks (3–5 kg) using con-
ventional and heavy liquid and magnetic techniques (jaw crusher, disk
grinder, Wilfley table, Frantz isodynamicmagnetic separator and densi-
ty separation using bromoform and methylene iodite). Around 50–80
zircons from each sample were mounted in epoxy resin, polished to
half of mean grain thickness for further imaging with transmitted light
and cathodo-luminescence to unravel internal complexities. Cathodo-
luminescence (CL) images of zircons were obtained using a Quanta
250 FEG electronmicroscope equippedwithMono CL3+ cathodo-lumi-
nescence spectroscope (Centaurus) at the Geochronological Research
Center in São Paulo University, Brazil.

U-Pb analyses were done using SHRIMP IIe at the Geochronological
Research Centre (CPGeo) at the São Paulo University. The data have
been reduced in a manner similar to that described by Williams (1998
and references therein), using the SQUID Excel Macro of Ludwig
(2001). Uncertainties given for individual U-Pb analyses (ratios and



187C.E. Ganade de Araujo et al. / Lithos 202–203 (2014) 167–189
ages) are at the 1σ level, however uncertainties in the calculated
weighted mean ages are reported as 95% confidence limits and include
the uncertainties in the standard calibrationswhere appropriate. For the
age calculations, corrections for common Pb were made using the
measured 204Pb and the relevant common Pb compositions from the
Stacey and Kramers (1975) model. Concordia plots, regressions and
any weighted mean age calculations were carried out using Isoplot/Ex
3.0 (Ludwig, 2003) andwhere relevant include the error in the standard
calibration. U-Pb geochronological results are presented in Table S1 of
Supplementary data.

Lu-Hf analyses were also carried out at the Geochronological
Research Centre (CPGeo) at the São Paulo University on a Neptune
laser-ablation multi-collector inductively coupled plasma mass
spectrometer equipped with a Photon laser system. The laser spot
used was 39 μm in diameter with an ablation time of 60 s, repetition
rate of 7 Hz, and He used as the carrier gas (Sato et al., 2009). 176Hf/
177Hf ratioswere normalized to 179Hf/177Hf= 0.7325. ZirconHf isotopic
data are presented in Table 3. The isotopes 172Yb, 173Yb, 175Lu, 177Hf,
178Hf, 179Hf, 180Hf, and 176(Hf + Yb + Lu) were simultaneously mea-
sured. 176Lu/175Lu ratio of 0.02669 was used to calculate 176Lu/177Hf.
Mass bias corrections of Lu-Hf isotopic ratios were done applying the
variations of GJ1 standard. A decay constant for 176Lu of 1.867 × 10−11

(Söderlund et al., 2004), the present-day chondritic ratios of 176Hf/
177Hf=0.282772 and 176Lu/177Hf= 0.0332 (Blichert-Toft and Albarede,
1997) were adopted to calculate εHf values. A two-stage continental
model (TDM) was calculated using the initial 176Hf/177Hf of zircon and
the 176Lu/177Hf = 0.022 ratio for the lower continental crust (Griffin
et al., 2004). Zircon Lu-Hf isotopic results are presented in Table S2 of
Supplementary data.

Oxygen isotopic compositions were obtained in three separate
analytical sessions using the SHRIMP-II equipped with a Cs-gun at the
Research School of Earth Science (RSES) in The Australian National
University as described by Ickert et al. (2008). TEMORA 2 zircon
(δ18O = 8.2‰; Black et al., 2004) was analyzed along with FC1 zircon.
The results are presented in Table S3 of Supplementary data and plotted
on Fig. 10A. No corrections for IMF/gain drift or EISIE were necessary.
Oxygen isotope analyses of FC1 on SHRIMP II, normalized to TEMORA
2, yield a mean δ18O value of 5.5 ± 0.3‰.

Nd-Sr isotopic compositions were determined by thermal ionization
mass spectrometry (TIMS) in a VG354 spectrometer equipped with a
single Faraday detector at the Geochronological Research Centre
(CPGeo) at the São Paulo University. The same powders used for whole-
rock elemental analyses were taken into solution by acid digestion, and
the elements of interest were separated in ion-exchange columns follow-
ing the procedures described by Sato et al. (1995). No spikeswere added;
87Rb/86Sr and 147Sm/144Nd ratios were calculated from whole-rock
analyses obtained by XRF (Rb and Sr) and ICP-MS (Sm and Nd). Nd-Sr
isotopic results are presented in Table S4 of Supplementary data.

Major and trace elements, were analyzed at the SGS GEOSOL
laboratories according to the package used by the Geological Survey
of Brazil. Major element oxides were determined using a Varian
Vista Pro ICP-AES. Trace elements were determined using a Perkin-
Elmer Sciex ELAN 6000 ICP-MS. Analyses of USGS rock standards
(BCR-2, BHVO-1 and AGV-1) indicate precision and accuracy better
than 1% for major elements and 5% for trace elements and REE.
Whole rock geochemical results are presented in Table S5 of Supple-
mentary data.
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