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Abstract

Image and audio data are examples of domains in which DPCM (Differential
Pulse Coded Modulation) is an effective method for removing much of the linear cor-
relation between data samples. However, most simple DPCM schemes cannot simul-
taneously cater for smooth signals, noisy signals, and discontinuities such as edges
in images. To overcome this, many adaptive DPCM schemes have been proposed,
including median predictors, gradient-based switching predictors and gradient-based
blending predictors. In this paper we generalize the idea of blending predictors, and
describe a powerful technique for creating locally adaptive compound predictors.
The result is a prediction scheme which works well over a range of data types froms
smooth to noisy, and requires very few tunable parameters. We apply this scheme
to greyscale image data, colour image data, and audio data, and compare results
with some of the current best adaptive DPCM predictors.

1 Introduction

Image and audio data are examples of domains in which (a) we typically have a large
amount of data, (b) the data samples belong to a large alphabet (> 256), and (c) the
data samples are usually highly correlated. Features (a) and (¢) make images and audio
ideal candidates for data compression, however the memory requirements of (b) preclude
the naive use of Markov models.

A common approach is to first “decorrelate” the samples so that lower order Markov
models will be more effective. In DPCM, we make a prediction f; of the current sample
fi, and only encode the prediction errors e; = ﬁ — fi, which will usually have a lower
zeroth order entropy. In forming the prediction, the encoder can use all the previous
samples fy...fi_1, but by using only a small local subset of previous samples, there is
typically little loss in compression performance. This approach has the advantages of
being parallelizable and simplifying the prediction models.

The simplest prediction model is a linear one in which our prediction ﬁ is a linear
combination of samples from some local causal neighbourhood Q, with weights a;.

fi= Y, a4 f (1)
JEQ, j<i

For one dimensional data such as audio, there is an obvious encoding order, and the local
neighbourhood Q would consists of the n previous samples. For image data, we typically



encode using a raster scan order!, in which our local neighbourhood does not necessarily
consist of the most recently encoded pixels. Figure 1 shows the position and names given
to the nearest neighbours relative to the current pixel f;.

Figure 1: Compass Point Notation For Neighbouring Pixels
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A static predictor is one for which the weights a; are constant for each sample in the

data. For example, the Delta predictor in audio compression has the formula ﬁ = fi_1.
Table 1 lists various static predictors used throughout the literature for images, some of
which are part of the existing lossless JPEG standard [1]. Tt is also possible to construct
optimal? static linear predictors for a given set of data.

Table 1: Common Static Linear Predictors for Images

| Predictor | Formula | | Predictor | Formula |
Null 0 JPEG Mode 5 W+ (N — NW)/2
West W JPEG Mode 6 N+ (W— NW)/2
North N GradWest 2N — NN
NorthWest NW GradNorth 2W — WW
NorthEast NE Mean (W+N)/2
Plane N+ W—NW Average-4 (W+NW+ N+ NE)/4
Plane-2 W+ NE—N Pirsch (2W+ N+ NE)/4

An adaptive predictor is one for which the coefficients a; are varied for each prediction
event based on some assessment of the local neighbourhood. Adaptive predictors usually
perform better than static ones as properties such as smoothness, discontinuities, and
noise content often differ throughout the data. One of the earliest examples of an adaptive
image predictor is Graham’s switching predictor [3]

;[ N if |NW—N|> |NW—W| .
fi= { W otherwise (2)
which will choose between two fixed sub-predictors N and W depending on whether it
detects a horizontal or vertical edge around the current pixel. A more advanced form
of this is the Gradient Adjusted Predictor [4] which computes two gradient measures
dh = |W — WW| + |N — NW| + |NE — N| and dv = |W — NW| + |N — NN| + |NE — NNE| to choose
between seven static linear sub-predictors.

1In a raster scan we encode one row at a time, top to bottom, left to right.
2Optimality with regards to a particular criterion, typically least sum of squared errors, least absolute
deviations, or least-entropy. See [2] for an examination of the performance of these three criteria.



The MED predictor used in the LOCO-I [5] scheme is a nonlinear switching predictor,
where the switching rule is to choose the median from a set of values produced by its
sub-predictors, namely {W, N, W+ N—NW}. MED cannot choose a predicted value outside
the range min(N, W) to max(N, ).

Roos et al [6] describe a more elaborate blending scheme by Heifl [7] which first
calculates four gradients in the N, W, NW and NE directions. For example, the NW gradient
G(NW) = |[NWNW — NW| + |NNW — N| + |[NN — NE| 4 |[WNW — W|. A large gradient value suggests
the presence of a contour perpendicular to that gradient direction, hence the pixel in that
gradient’s direction should be given less weight in the prediction. Heifl computed the
weights a(z) as

1

a(z) = m where z € {W NW N NE} (3)

which are then normalized so that ) a(-) = 1. His scheme does not take into account the
fact that his G(-)s have different numbers of terms in them. Roos et al used v = 3 and
6 = 20 for a set of 9 bit medical images in their paper. We point out that the coefficients
a(+)s in this scheme are always positive.

In Section 2, we describe a blending algorithm which generalizes some of the schemes
just described. In the next three sections we then apply this new algorithm to greyscale
image data, colour image data, and audio data. The final section then gives conclusions
and future directions for the algorithm.

2 A Generalized Blending Algorithm

Consider Heif3’s scheme. He blends the four neighbouring pizel values based on the four
gradients aligned in the direction of each of those four pixels. To generalize switching and
blending prediction schemes, we suggest an alternative interpretation. The four pixels can
be thought of as the four local sub-predictors W, N, NE, NW, and the gradient measure as
the sum of absolute prediction errors or the penalty term for each sub-predictor, evaluated
at various positions within the local neighbourhood.

By moving away from the pixel-gradient view, we are no longer limited to the four
simple neighbour predictors W, N, NW, NE. We can use any sub-predictors we choose,
including nonlinear ones. We now describe a general blending algorithm which only
requires a suitable set of sub-predictors, and positions near the current sample to evaluate
them at, so that the gradients or penalty terms can be computed.

2.1 Notation

Let us assume we have a data stream f, and we are trying to to make a prediction ﬁ of
sample f; using only some subset Q of the previously encoded data fy...f;—1. We also
have a set P of n suitable sub-predictors P; with j = 1...n. Let h(P;, fi) denote P;’s
predicted value for position f in the data stream.

2.2 Algorithm Blend

1. Compute a penalty term G; for each sub-predictor P; using the sum of absolute
prediction errors it produces in the current neighbourhood €.

Gi= > |h(P;, fi) — fil VP eP (4)

freQ



2. For each sub-predictor, compute its prediction PVj for the current sample f;, and
clip it to the legal range of pixel values3.

PV]I}L(PJ,fZ) VP]EP (5)

3. Each PV is then weighted inversely proportionally to its corresponding penalty
term G, with the resulting blend normalized so },(1/G;) = 1.

. "1 1
" = — . PV; | = — 6
! ;Gj ’ ;GJ )

4. The final predicted value is taken to be the integer VZ + 0.5J .

If exactly one G happens to be zero (meaning that sub-predictor P; predicted eactly
throughout the local neighbourhood) then we “switch” to that sub-predictor, taking fi =
P;. If two or more (5js are zero then we can either blend only those P;s with G; =0, or
we can arbitrarily choose one P;. Our experiments have shown that this situation does
not happen often, and choosing just one of the P;js has little effect on the final entropy.

This blending approach can be easily modified to behave as a switching predictor,
where we simply choose the sub-predictor with the minimum penalty term . However,
if P is chosen well, the performance of the blend should never be much worse than
switching, and in many cases, it will be better than switching.

2.3 Choice of Parameters

Although Algorithm Blend is general in nature, it does require (a) a set P of sub-predictors
which cover the range of expected behaviour in the data to be compressed, and (b) a
suitable local region € from which meaningful penalty terms can be computed. In the
following sections, we will apply Algorithm Blend to the lossless compression of greyscale
image data, colour image data, and audio. In each section we will discuss the issues
involved in choosing an appropriate P and 2, and compare the performance of each
prediction scheme to others in the literature.

3 Greyscale Image Data

3.1 Parameters

Most image data is not homogeneous, and typically consists of edges, textures, regions
where the intensity varies smoothly, and a variable amount of noise.

3.1.1 Smooth Regions

A large proportion of a typical continuous-tone image would contain areas where the
intensity varies in a linear or smooth manner, and these are usually easy to predict. Let
us assume we are trying to predict the current pixel ﬁ using a linear combination of our
nearest four neighbours.

ﬁ'IaNN—}-(le—i—anNw—l—aNENE (7)

3For an image with o bits per pixel, the legal range of pixel values is 0 to 2% — 1.



If our four neighbours have the same value, we would like to predict that same value.
This requires that )", a; = 1. The next useful situation is to ensure that predicted value
is exact if all the pixels lie in the same plane. This introduces two additional constraints
for the # and y directions respectively, with the Plane and Plane-2 predictors of Table 1
being just two possible solutions. Note that these three constraints require that the
solution contain at least one negative coefficient a;, in order to estimate a gradient. The
one dimensional analogues to the Plane-like predictors are GradWest and GradNorth
(Table 1), which do simple linear extrapolation in the horizontal and vertical directions
respectively.

3.1.2 Noise

Most images are not perfectly smooth, and may contain noise which is inherently unpre-
dictable. We can model an image as an underlying smooth function with a random noise
term. If we assume we can predict the smooth component exactly, then the error in the
predicted value will depend only on a linear combination of the noise terms in the four
neighbouring pixels.

e; = aynoisey + aywnoiseyw + aynoisey + aygnoiseNg (8)

If we also assume that the noise terms are bounded in magnitude by € then the noise in
the predicted value will be bounded in magnitude by

worst case |e;| = ¢ (lan| + lanw ]|+ lan| + |anEe]) (9)

Thus, we would like to keep the sum of the absolute coefficient magnitudes as small as
possible. To also maintain ), a; = 1, this means we also require all the coefficients to be
non-negative. Hence, in the presence of noise, 1t 1s usually best to take an averaging ap-
proach like the Mean, Average-4 and Pirsch [8] predictors. Not taking this approach risks
amplifying and introducing noise into the predicted value, which can never be removed.
Unfortunately, the constraints on predictor coefficients for noisy and smooth regions are
in contradiction.

3.1.3 Edges and Texture

Edges are the most visually important parts of an image, but they typically comprise only
a small percentage of the pixel data. Thus, for lossless image coding, efforts to predict
strong edges only give small improvements in compression. The four neighbour predictors
W, N, NW, NE are good for predicting their corresponding edge directions, and the Plane
predictor has the additional property of also being exact for ideal horizontal and vertical
edges. An effective model for texture has yet to be devised, but for the purposes of this
paper we may consider it to be some combination of edges and noise.

3.1.4 Final Choice

For image data we would like to use sub-predictors which cater for all the above situations.
In our experiments we decided to compare three schemes, each using a small set of static
linear predictors, which are listed in Table 2. All three incorporate the four neighbour
predictors — it is hoped these will “detect” stronger edges and have an averaging approach
in noisy areas. Blend-5 and Blend-7 additionally include some predictors with negative
coefficients, which should predict better in the presence of smooth gradients.



Table 2: Blending Sub-Predictors used for Greyscale Images

| Name | Predictors Used (P) |
Blend-4 | W, N, NW, NE

Blend-5 | W, N, NW, NE, Plane

Blend-7 | W, N, NW, NE, Plane, GradWest, GradNorth

The choice of position and number of penalty terms is somewhat data dependent. We
found that using 3 terms in the current pixel’s immediate neighbourhood gave the best
results over a range of image types. Table 3 lists the penalty terms with e(z) denoting the
prediction error produced by that sub-predictor at pixel . For example, e(N) for Plane
would equal |N — (NN + NW — NNW)]|.

Table 3: Penalty terms used for Greyscale Images

| Predictor | Penalty Term |

W SO0 £ ] T 0]
N e(N)| + |e(W)] + |e(NE)
NE e(N)| + |e(W)] + |e(NE)
NW e(N)| + |e(W)] + |e(NW)
Plane e(N)| + |e(W)] + |e(NE)
GradWest e(N)| + |e(W)] + |e(NE)
GradNorth e(M)] + |e(W)] + |e(WW)

3.2 Results

We present results for a set of 8 and 12 bpp (bits per pixel) images. The 8 bpp images are
the original 720 x 576 greyscale ISO JPEG test set, plus the standard 512 x 512 lenna
and peppers image [9]. Three 12 bpp medical images are also included. ref12b-0is a
smooth 512 x 512 CAT-scan slice from Siemens, chestxray is a smooth 1024 x 1024 chest
x-ray, and c00156 is a noisy 1755 x 1463 cervical x-ray.

Results are presented for three sets of the images — the originals, noisy versions and
smooth versions. The noisy versions were created by adding Gaussian noise with g = 0
and o2 = 32 to each pixel in the original. The smooth versions are the result of convolving
the original image with the 3 x 3 smoothing filter %{1, 2,1, 2,4,2, 1,2,1}. The pixels
were encoded in a raster scan order, and border pixels were encoded using a simple DPCM
scheme.

The results are the zeroth order entropy of the prediction errors in bits per pixel.
We compare our results to the simple linear predictors Pirsch (good for noisy images)
and Plane (good for smooth images), as well as to GAP and MED, two of the leading
DPCM-based contenders for the next lossless JPEG standard [10]. We defer inclusion
of the MAP (Mean Adjusted Prediction) device and coding contexts until later, as we
wish to initially restrict the prediction schemes to purely local information (MAP is a
history-based technique). However, to be fair, we do adaptively scale the GAP thresholds
based on the standard deviation of the prediction errors of the previous row, as described

in [4].



Table 4: Zeroth Order Entropy (bpp) — Original Images

| Image || Blend-4 | Blend-5 | Blend-7 || GAP | MED || Pirsch | Plane |

balloon 3.04 2.94 2.93 3.04 3.12 3.20 3.34
barb 5.19 5.06 4.90 5.13 5.20 5.44 5.49
barb2 5.21 5.10 5.02 5.05 5.18 5.43 5.51
board 3.93 3.80 3.81 3.90 3.95 4.24 4.27
boats 4.39 4.21 4.16 4.28 4.31 4.61 4.54
girl 4.11 3.97 3.91 4.11 4.21 4.35 4.39
gold 4.77 4.66 4.65 4.68 4.72 4.84 5.00
hotel 4.72 4.61 4.58 4.65 4.73 4.96 5.03
zelda 3.95 3.88 3.90 3.95 4.11 4.10 4.43
lenna 4.39 4.33 4.32 4.39 4.55 4.50 4.80

peppers 4.34 4.34 4.42 4.53 4.72 4.48 5.13
c00156 5.90 5.90 6.01 6.01 6.22 5.99 6.61

chestxray 5.80 5.56 5.46 5.67 5.72 5.92 5.75

ref12b-0 3.44 3.08 2.98 3.48 3.20 3.62 3.11

The performance of the static predictors Pirsch and Plane can often give a good
indication of the noise content of an image. For example, Pirsch performs much better
than Plane on the zelda, lenna, peppers, and c00156 images. This is likely to be due
to Plane’s negative NW coefficient which has the effect of amplifying noise in the predicted
value as described in Section 3.1.2. Images such as chestxray, ref12b-0, and boats all
do better with Plane, as it performs well on the large smooth (and relatively noise free)
areas they contain. The rest of the JPEG test set has Pirsch beating Plane by smaller
amounts, so we can consider them moderately noisy.

For the original images, Table 4 shows that Blend-7, followed closely by Blend-5, did
best on the 8 bpp and the smooth 12 bpp images. Those images for which Blend-4 and
Blend-5 did better were the same ones previously classified as noisy. The relative failure of
Blend-7 in those cases is probably due to the extra negative coefficients introduced by the
GradNorth and GradWest predictors. This suggests that the absolute sum of prediction
errors may not be a strong enough penalty function to separate the Blend components
properly. However, it was found that squaring the weights occasionally helped for 12 bpp
images, and often made 1t worse for the 8 bpp ones. Overall, GAP and MED were not
far behind, with exceptions being the noisy peppers and c00156, the smooth chestxray
and ref12b-0, and barb and girl which contain large regions of edgy textures.

The results in Table 5 show that the addition of artificial noise to the test images has
an interesting effect on predictor performance. As expected, Pirsch did much better than
Plane on every image, generally beating MED (except on the originally smooth images)
and sometimes beating GAP. MED cannot cope well with noise as it has no mechanism
to to take an averaging approach, whereas GAP is probably successfully switching to
its central predictor*.We also observe that Blend-7 has now fallen behind the first two
Blends, which achieved similar results, especially on the images we originally classified
as the noisiest. This suggests that the Plane sub-predictor in Blend-5 is successfully

*GAP is a switching predictor, with seven sub-predictors. The central predictor is for “smooth”
regions, and the other six are for weak, moderate, and strong vertical and horizontal edges. The central
predictor has the formula 0.5W + 0.58 — 0.250W 4+ 0.25H0E, which is similar to Pirsch, except it has a small
negative NW coefficient



Table 5: Zeroth Order Entropy (bpp) — Noisy Images

| Image || Blend-4 | Blend-5 | Blend-7 || GAP | MED || Pirsch | Plane |

balloon 4.87 4.88 4.98 4.99 5.17 4.93 5.59
barb 5.76 5.70 5.66 5.76 5.88 5.90 6.24
barb2 5.72 5.65 5.65 5.64 5.79 5.87 6.15
board 5.10 5.07 5.14 5.15 5.30 5.22 5.69
boats 5.28 5.22 5.26 5.27 5.40 5.37 5.74
girl 5.10 5.08 5.14 5.17 5.33 5.17 5.69
gold 5.37 5.33 5.39 5.38 5.51 5.39 5.87
hotel 5.44 5.38 5.41 5.42 5.55 5.54 5.88
zelda 5.00 5.01 5.09 5.10 5.28 5.07 5.69
lenna 5.21 5.20 5.26 5.29 5.47 5.27 5.82

peppers 5.15 5.16 5.25 5.31 5.47 5.23 5.88

c00156 6.06 6.07 6.17 6.18 6.38 6.15 6.77

chestxray 6.06 5.90 5.86 5.98 6.08 6.16 6.23

ref12b-0 5.01 5.00 5.07 5.12 5.23 5.09 5.64

being blended out, otherwise we would expect it to amplify the noise, resulting in a
higher entropy. However, we can not say the same for the GradNorth and GradWest
components in Blend-7. This could be due to the fact that the penalty terms for these
two predictors need to use more remote pixels than the others.

Table 6: Zeroth Order Entropy (bpp) — Smooth Images

Image || Blend-4 | Blend-5 | Blend-7 || GAP | MED || Pirsch | Plane

balloon 2.14 1.89 1.79 2.25 2.09 2.43 2.00
barb 4.01 3.69 3.36 3.95 3.86 4.27 3.83
barb2 4.00 3.63 3.37 3.81 3.79 4.26 3.71
board 2.68 2.32 2.18 2.77 2.36 3.17 2.36
boats 3.32 2.92 2.71 3.27 3.00 3.61 2.91
girl 3.23 2.82 2.57 3.29 3.21 3.59 3.00
gold 3.60 3.19 2.98 3.50 3.23 3.80 3.14
hotel 3.57 3.18 2.93 3.48 3.23 3.94 3.21
zelda 2.72 2.35 2.18 2.71 2.56 2.96 2.35
lenna 3.25 2.95 2.77 3.24 3.25 3.51 3.11

peppers 3.04 2.68 2.49 3.02 2.92 3.25 2.74

c00156 4.14 3.84 3.67 4.09 4.01 4.28 3.93

chestxray 5.04 4.38 4.02 4.99 4.78 5.42 4.29

ref12b-0 3.02 2.37 2.15 3.27 2.71 3.42 2.22

Smoothing the images has the desired effect of averaging away some of the noise, as well
as smoothing edges into gradients. As expected, Table 6 reveals that Plane did better than
Pirsch on all of the images. The presence of gradient-style predictors Plane, GradWest
and GradNorth in Blend-7 helped it to beat all others on the smoothed images. MED
also performed much better, even beating GAP on every image except lenna, suggesting
it is better suited to smoother data. GAP and Blend-4 suffered somewhat with this



smoothed data, being beaten by Blend-7 by about 0.5-0.6 bpp for the 8 bpp images, and
up to 1.0 bpp for the 12 bpp ones. We suggest that this is due to Blend-4’s complete
inability to obtain any negative coefficients, and GAP only being able to reach -0.25NW.
MED however, can switch to the Plane sub-predictor.

3.3 Prediction Error Modeling

Although the Blend predictors typically performed better than GAP, MED, and the static
predictors in the previous section, we must take certain facts into consideration. GAP
and MED are only relatively simple predictors, existing as one part of a larger overall
compression scheme (CALIC and LOCO-T respectively), and have been designed with
efficient implementation in mind. On the other hand, Blend is more complex. It uses
more neighbouring pixels and computes more functions of those pixels.

3.3.1 Error Feedback
An important feature of CALIC and LOCO-T is the error feedback scheme (which CALIC

calls MAP or “Mean Adjusted Prediction”) designed to correct systematic errors within
a context. To see how this affects performance, we implemented a form of MAP similar
to that in [4], using (A/2)-256 contexts, except that A was set to be the integer log of the
standard deviation of the six nearest neighbours. The expectation counters within a given
MAP context were also halved every 256 events. Table 7 has results for the prediction
error entropy after MAP was applied.

Table 7: Effect of MAP (Mean Adjusted Prediction)

| Image || Blend-4 | Blend-5 | Blend-7 || GAP | MED || Pirsch | Plane |

balloon 2.95 2.90 2.89 2.96 3.00 3.06 3.09
barb 4.92 4.84 4.73 4.91 4.97 5.08 5.13
barb2 5.00 4.94 4.89 4.92 4.98 5.15 5.14
board 3.76 3.69 3.68 3.75 3.78 3.96 3.93
boats 4.20 4.10 4.07 4.15 4.16 4.34 4.26
girl 3.95 3.87 3.84 3.96 4.01 4.10 4.09
gold 4.67 4.61 4.61 4.63 4.64 4.72 4.76
hotel 4.58 4.52 4.49 4.55 4.58 4.73 4.72
zelda 3.85 3.81 3.82 3.86 3.93 3.93 4.08
lenna 4.30 4.27 4.26 4.31 4.39 4.37 4.50

peppers 4.28 4.28 4.31 4.39 4.47 4.38 4.69

c00156 5.84 5.83 5.88 5.88 5.99 5.89 6.19

chestxray 5.57 5.45 5.42 5.51 5.57 5.65 5.56

ref12b-0 3.16 2.97 2.94 3.18 3.08 3.27 3.03

We can see that MAP has helped GAP and MED improve by up to 0.3 bpp compared
to Table 4. However, the Blends also improved by up to 0.2 bpp, which kept them ahead
of GAP and MED. This tells us that the Blend algorithm is capturing some features of
the data that MAP was designed for, but not all of them. For all the images except barb
and barb2, MAP has brought Blend-5 within 0.05 bpp of Blend-7. This is probably due
to the GradWest and GradNorth-like elements within the texture component used in the
determination of MAP contexts.



If we consider Blend without MAP compared to GAP with MAP, we find Blend to
be much better still on the 12 bpp images, but about equal in performance on the 8 bpp
images. The poor performance on 12 bpp images for GAP may be due to an inappropriate
choice of switching thresholds. It is interesting to see that MAP reduces the margin
between the adaptive and static predictors. For example, Pirsch4+MAP beat MED on
the original noisy images, and Plane+MAP beat it on the smooth ones. Before MAP,
Pirsch was ahead of Plane on most of the ISO JPEG images, but after MAP, it is slightly
ahead. This suggests MAP does a good job of removing systematic errors introduced by
an inappropriate predictor.

3.3.2 Context Coding of Prediction Errors

Most modern DPCM schemes in the literature try to encode prediction errors based on the
context of the current pixel, where the context is usually some estimate of the expected
size or variance of the error. To see the effect of this context coding, we implemented
a simple scheme using A (as defined in 3.3.1) Sign-Magnitude Bit-plane (SMB) [11]
contexts. These were chosen as they adapt quickly, are easily extended to 12 bpp data,
and work well with the centered (zero mean) prediction errors produced after the MAP
stage. The SMB counters were halved every 256 events.

Table 8: Effect of both MAP and Coding Contexts

Image || Blend-4 | Blend-5 | Blend-7 || GAP | MED || Pirsch | Plane

balloon 2.87 2.83 2.84 2.87 2.92 2.90 3.02
barb 4.55 4.50 4.43 4.55 4.61 4.66 4.77
barb2 4.64 4.60 4.57 4.60 4.66 4.71 4.83
board 3.60 3.56 3.57 3.60 3.65 3.68 3.82
boats 3.92 3.86 3.84 3.89 3.93 3.98 4.06
girl 3.83 3.78 3.76 3.84 3.90 3.92 4.00
gold 4.46 4.41 4.42 4.43 4.45 4.47 4.57
hotel 4.33 4.29 4.29 4.32 4.37 4.39 4.53
zelda 3.79 3.77 3.79 3.81 3.89 3.84 4.05
lenna 4.13 4.12 4.12 4.16 4.21 4.18 4.34

peppers 4.17 4.17 4.21 4.27 4.35 4.22 4.57

c00156 5.79 5.80 5.85 5.84 5.94 5.81 6.13

chestxray 5.38 5.29 5.27 5.31 5.38 5.38 5.40

ref12b-0 2.89 2.76 2.74 2.87 2.84 2.90 2.82

Table 8 gives the bit rates after the MAP transformed prediction errors have been
context-coded. We see that once again, GAP and MED have improved slightly more than
the three Blends did, reducing the difference to less than 0.1 bpp. Blend-5 has also gained
on Blend-7, leaving very little between the two. Even the static predictors improved, often
getting within a few percent of the best predictor. We found similar behaviour to occur
for the artificially noisy versions of the images. The Blend approach however, remained
up to 0.3 bpp ahead of the others on the smoothed versions, particularly the 12 bpp data.

10



4 Colour Image Data

4.1 Parameters

Colour image data consists of three colour bands, typically red (R), green (G), and blue
(B), which can be thought of as three separate images. In lossy (non-reversible) com-
pression, these bands are usually converted to another colour space such as Y/Cr/Cb
to try to remove the inter-band correlation which exists in R/G/B space. However, the
conversion itself is non-reversible unless the samples are stored at a higher precision than
the original R/G/B ones, which for lossless compression, can cancel out the gain from
the actual compression process. By remaining in R/G/B space, we can try to exploit the
correlation to improve our predictions.

In our experiments on colour images, we took P to be the same as Blend-5. We
also assume that the image is encoded in an interleaved fashion — the first pixel’s G
component, R component, B component, and then onto the second pixel®. We considered
three methods for computing the penalty terms:

e Method A: This is equivalent to treating the bands as three separate greyscale
images, using the penalty terms of Table 3 (“intra”-band)

e Method B: The 1st band was processed as in Method A. The 2nd band can now
use the knowledge of the 1st band’s current pixel, as it has been decoded. We set
the penalty terms to be equal to be the actual e;s of each F; in the 1st band, and
the 3rd band used the average of the e;s in the first two bands (“inter”-band).

e Method C: The 1st band was also processed as before. The other two bands used
the average of the intra-band (Method A) and inter-band (Method B) information
that they had available.

4.2 Results

We present results in Table 9 for the 512 x 512 24 bpp colour images lenna, mandrill,
peppers, and yacht [9]. The entries labelled with an asterisk are the best result for that
colour band out of the three methods. We see that we can always do better by using
some or only previously decoded inter-band information, as the penalty terms are based
on actual errors, not estimated ones. However, within a given method, some bands may
fare worse than just compressing them separately (eg. the R band of peppers and yacht
for Method B).

Overall, Method C performed best based on total bit rates, except in the case of
mandrill, a very textured image with some large clearly defined red and blue segments.
In this case, the band information was probably more useful, and averaging in local
information only corrupted the penalty terms. For the other three, it was really only a
small improvement. This could be due to the inter-band information being most helpful
around edges, but which only make up a small percentage of the data.

We can conclude by saying that inter-band penalty terms are cheap to incorporate,
but improve results by only a small percentage when combined with the intra-band terms.
One possibility may be to use only the inter-band terms, trading it off for a small decrease
in compression but with improved throughput.

5There are 6 possible orderings of the colour components. The optimum ordering for a given image can
not be known without running the algorithm with all six combinations and seeing which does best. We
found that there was about a 1-3% variation between results for different orderings, with the optimum
being image-dependent, so we only considered the single ordering G,R,B.
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Table 9: Results for Colour Tmage Data (bits per pixel)

| Band | lenna | mandrill | peppers | yacht |

Method A
G 4.75 6.40 4.85 5.58
R 4.22 6.24 4.98 5.25
B 4.97 6.37 4.87 5.43
Total 13.94 19.01 14.70 16.26
Method B
G 4.75 6.40 4.85 5.58
R 4.19 5.99* 5.10 5.29
B 4.81* 6.15* 4.86 5.35*
Total 13.75 18.55 14.82 16.22
Method C
G 4.75 6.40 4.85 5.58
R 4.12% 6.05 4.95* 5.20*
B 4.86 6.23 4.82% 5.37
Total | 13.72 18.69 14.63 16.14

5 Audio Data

5.1 Parameters

Audio data is a 1-D signal, and is typically stored at 8 or 16 bits per sample. The sampling
rate determines the quality of the audio, and common rates are between 8 and 44 kHz
(CD quality). The higher the sampling rate and bits per sample, the smoother and more
correlated the samples are.

Table 10: Polynomial Extrapolating Predictors for Audio

| Order | Formula forf |

0 0

1 fia

2 2fi 1 — fio

3 3fic1—3fio+ fia

4 Afi 1 —6fi o4 4fia— fia

If we assume we do have smooth waveform data, then polynomial extrapolation pre-
dictors like those of Table 10 may be good candidates for P. The order [0, 1, 2] predictors
are like the [Null, W, GradWest] predictors used for images, with the predictor weights
being the binomial coefficients.
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5.2 Results

Table 11 gives results for five audio files. The first four are music (as used in [12]) and
the last one is speech, and they cover a range of features. For our experiments we tried
P={1,2},P={1,2,3},and P = {1,2,3,4}, where “1” represents the order 1 predictor
from Table 10. We defined the penalty terms to be the sum of absolute errors for each
sub-predictor over the last |Q] samples. We tried |Q] = 4, 8, and 32.

Table 11: Entropy of Audio Predictors (bits per sample)

File CU8 DS16 DS8 MF16 SC16
Samples 1,662,976 | 542,071 | 135,517 | 617,400 | 168,000
Bits/Sample 8 16 8 16 16
Freq. (kHz) 8 44 11 29 22
Order Static Predictors

0 4.87 13.85 5.90 12.80 13.32

1 4.15 11.83 5.26 11.19 10.43
2 4.56 11.60 5.85 10.97 7.62
3 5.28 11.82 6.60 11.24 5.82
4 6.10 12.28 7.28 11.68 6.27
9] Algorithm Blend with P = {1,2}

4 4.23 11.49 5.44 10.83 7.98
8 4.22 11.47 5.43 10.82 8.17
32 4.21 11.46 5.42 10.80 7.98
[9]] Algorithm Blend with P = {1,2,3}

4 4.40 11.29 5.67 10.67 6.04
8 4.38 11.26 5.65 10.65 6.12
32 4.36 11.24 5.63 10.63 5.96
9] Algorithm Blend with P = {1,2,3,4}

4 4.60 11.21 5.90 10.59 5.84
8 4.58 11.18 5.87 10.56 5.96
32 4.55 11.16 5.83 10.54 5.80

We see that the simple order 1 Delta predictor is the best performer for the two 8 bit
files. As more predictors were introduced into the blend, the entropy actually increased,
meaning the penalty function was not successful enough to zero out the poor performing
sub-predictors. Perhaps a switching approach could work better in this situation. The 8
bit files have a lower sampling rate, and could also be very noisy, which means the higher
order (> 2) sub-predictors may not be suitable as they contain large negative coefficients.
We note that the 8 bit results were relatively insensitive to the increase in the size of Q.

The smoother 16 bit data showed the opposite behaviour.The best results all occurred
for the largest 2 and P, and the Blend’s entropy was never much worse than that of each
sub-predictor’s alone. We also found that increasing 2 made tiny improvements, and
increasing P gave small decreases in performance.
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6 Conclusion

In this paper we have described an algorithm for producing locally adaptive compound
predictors, which only requires a small set of suitable sub-predictors, and an appropriate
local region from which to compute penalty terms from. In our examples, we blended
sets of linear predictors for greyscale images, colour images, and audio data.

For greyscale images, our results show Blend to be a better pure predictor than current
schemes such as GAP and MED, especially on low to average noise content. As noise is
increased, the difference is less distinctive, but this is expected with any prediction scheme.
The main advantage of our scheme is the ability to obtain (some) negative coefficients,
which are necessary for successfully predicting gradients. GAP’s sub-predictors only
have small negative coefficients, which tend not to be large enough in smoother areas,
and MED’s are too large for noisy regions. The addition of MAP and context coding still
had Blend ahead by up to 0.13 bpp, without any effort to tune the sub-predictors, the
coding contexts, or the MAP contexts.

This improved performance does come at some computational cost. An n component
blend can be implemented using (n + 1) divisions and 2(n — 1) additions, plus the cost of
computing each sub-predictor and its penalty terms. In contrast, GAP and MED can be
done using only binary shifts and additions.

The general nature of the Blend algorithm algorithm was shown by its ease of ap-
plication to colour image and audio data. For audio, we took existing predictors known
to work well, and obtained good results for 16 bit sound data. With the colour images,
we used the same predictors as for the greyscale images, and only modified the penalty
terms. The result was a scheme which worked slightly better than compressing the colour
bands separately.

As we store more and more digital image data, with a variety of properties, resolutions,
and bits per pixel, we can not expect simple prediction schemes to always perform well.
A general adaptive approach such as Blend, supplied with a reasonable set of parameters,
can adapt to a variety of data types without any training at all. Other possible areas of
application include volume imaging, video sequences and multi-spectral data.
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