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Abstract

Nowse cleaning is the process of removing un-
wanted noise from an itmage. The problem with
existing techniques ts that they do not preserve
two-dimensional image structure, and/or they re-
quire parameters to be supplied by the user. In
this paper we describe an algorithm called MNC
which explicitly segments the local neighbourhood
of the pizel to be cleaned, and filters using only
those pizels in the same segment. Additionally,
the Minimum Message Length principle is used to
decide on what is the best segmentation. We show
MNC to be a good performer, with little structure
loss and no special parameters.

1 Introduction

Noise cleaning is the process of removing noise
from a signal. Types of noise include additive
noise, multiplicative noise, and impulse noise,
with the additive variety being a good model for
the noise found in most digital images. Noise
cleaning is often considered a recovery process —
an original image I has been corrupted by some
independently distributed additive noise &, result-
ingin I’ = I +&. The aim is to compute the best
possible estimate I of T using only I’.

Figure 1: Local 3 x 3 neighbourhood of y

There exist many different noise cleaning tech-
niques [1, 2]. Typically a small local set of pixels
spatially enclosing the pixel y to be cleaned are
used for filtering. A square mxm neighbourhood
M (m odd) centered on y is a common choice,
with m € {3,5,7,9} being typical. Figure 1 gives
an example for m = 3.

Simple linear averaging or smoothing masks
such as the box operator (arithmetic mean of M)

tend to smooth edges and blur the image, result-
ing in a loss of image structure. Non-linear filters
such as the median [3] and weighted-median [4] fil-
ters will preserve certain structural configurations,
but fail on others. More complex approaches such
as the sigma [5], and k-nearest neighbour [6] filters
attempt to preserve some structure, but require
parameters to be supplied by the user.

In this paper we describe a noise-cleaning tech-
nique (called MNC — “MML Noise Cleaning”).
MNC endeavours to preserve image structure by
explicitly segmenting M and filtering only using
those pixels in the same segment as y. Addition-
ally, the Minimum Message Length (MML) [7, 8,
9, 10] information theoretic measure is used to de-
cide on the best segmentation to use for each pixel,
thus removing the need for arbitrary parameters.

2 Local Segmentation

MNC considers noise cleaning to be a two part
process. First, y and its local neighbourhood are
segmented into one or more regions. This leaves
us with two types of pixels — those which are in
the same segment as y, and those which are not.
We propose that only those in the same segment
be used in the filtering process. Techniques such
as mean and median filtering can now be used, as
the operations will no longer overlap any segment
boundaries, thus preserving the two-dimensional
image structure.

The problem of which segmentation to use can
be broken into two steps — producing good can-
didate segmentations, and deciding which of the
candidates is the best.

2.1 Neighbourhood Size

For the rest of this paper, we will assume that
only a local 3 x 3 neighbourhood M will be used
to compute I. However, MNC can be extended to
any m > 3.

A reasonable assumption would be that most
3 x 3 blocks can be modelled by either one or
two segments, representing flat and edge regions.
Additionally, within a segment, we assume that
a single representative value (RV) like the mean



or median is sufficient to describe the grey-level
properties of the segment. These assumptions are
utilised to good effect by the many varieties of the
lossy image compression technique Block Trun-
cation Coding (BTC) [11]. BTC uses only local
pixel information and is well known for its edge-
preserving properties.

2.2 One Segment Models

Clearly, a one segment model (1SM) is fully de-
fined by its RV, as the 9 pixels in M take the
value of the RV. If we are dealing with pixels hav-
ing z bits per pixel, there are 2* possible 1SMs.
However, if a given block M is well described by
a 1SM, we expect the RV to be around the mean,
median, or midpoint (average of the highest and
lowest pixels in the block). In MNC, we consider
only these three.

2.3 Two Segment Models

A two segment model (25SM) is described by a 3x3
bitmap and 2 RVs. There are om’ _ 9 possible
bitmaps, with the first and second segments hav-
ing 2% and 2% — 1 possible RVs respectively. This
results in approximately gm?*z* possible 2SMs.
For MNC, we can reduce this search space sig-
nificantly. We expect a large proportion of true
two segment regions to have histograms which are
bimodal in nature. This suggests a simple thresh-
olding technique like that used in BTC would be
sufficient to segment a small region. In fact, as
there are only m? pixels in M, only m? —1 thresh-
olds need be considered, and even fewer if M con-
tains duplicate pixels. Additionally, the optimal
RVs for the two segments are also expected to be
close to the mean. In MNC, only the means of the
two segments are considered as potential RVs.

3 An MML Approach

Given a set of candidate segmentations, the prob-
lem remains as to which of them is the best seg-
mentation. A well-grounded approach which takes
the complexity of the model into consideration, is
the MML approach.

MML [7, 8, 9, 10] is is an information the-
oretic approach to inductive inference, similar
to MDL [10] and Bayesianism. Let us assume
we have some measurements X = {z1,29,...}
from the real world, and a set of models M =
{mi,ms, ...} with which we attempt to explain
X.

MML can be used to assess the quality of each
m; € M. This is done by constructing a descrip-
tion of (a) the model m;, and (b) the data X in

terms of the model m;. The description, or mes-
sage, takes the form of an efficient losslessly en-
coded binary string S. The length of S is mea-
sured in bits, and is called the code length. The
MML principle states the the best model for the
data is the one which has the shortest overall code
length. We do not actually need to construct each
S explicitly, only measure how long it would be.

For our application, the models M consist of
segment maps and RVs for the segments. The
data X are the residuals resulting from the differ-
ence between the given model m; and the actual
pixels.

3.1 Probability Estimation

The message takes the form of a series of events
E. Each event E consists of n possible outcomes
€1 to en. In MNC, sets of frequency counters f(e;)
are kept for each event, one counter per outcome.
These are used to determine a probability Pr(e;)
for each outcome using the formula

Pr(es) = —£S) (1)

n+ 320 f(e)

The code length C'L(e;) for a given outcome e; is
then

CL(e;) = —log, Pr(e;) bits (2)

If an event E consists of k discrete possibilities
assumed equally likely, then it clearly follows that

CL(F) = —log, k bits (3)

The overall code length is simply the sum of all
the individual code lengths for each component
event in the message.

4 Message Format

All the messages have the following overall struc-
ture:

I. A binary event stating whether this is a 1SM
or a 2SM.

IT. A series of events describing the segmenta-
tion of M. These will differ depending on
the result of Part I.

ITI. The encoding of the residuals — the differences
between the actual pixel values (from I') and
those represented in the model from Part II.

We will now describe the details for Parts II,I1I
for the 1SM and 2SM cases separately.



4.1 One Segment Events
Part II:

1. The RV value for the whole segment. As-
sumed uniformly distributed on [0, 2% — 1].

Part III:

2. The residuals for the segment. The frequency
counts used are separate from those used in

the 2SMs.

4.2 Two Segment Events
Part II:

1. The number of pixels £ (1 < k < 8) in the 0
segment (the segment with the lower RV).

2. A binary bitmap consisting of £ 0s and (9—#)
1s. As we have already transmitted the value
of k, there are only (:) possible bitmaps.

3. The RV for the 0 segment, assumed uniformly
distributed on [0, 2% — 1].

4. The RV for the 1 segment. As the previous
RV (say ) is known to be the lower of the
two, this RV is assumed uniformly distributed
on [z + 1,2% —1].

Part III:
5. The residuals for the 0 segment.

6. The residuals for the 1 segment. Separate
frequency counts are used for these and the
previous residuals.

5 Prior Distributions

Each event of the segment descriptions in Sec-
tion 4 consists of some set of possibilities (eg.
Step 1 for the 2SM case has 8 possible outcomes).
MML requires that each component have some
prior probability distribution.

We expected the distribution of the residuals
to be highly non-uniform, so the priors for them
were initially estimated from the images by using
the relative frequencies of the residuals from a 4-
neighbour averaging filter. For all other events, a
uniform prior distribution was used.

We then took an iterative approach. The first
iteration used the priors just described. The pos-
terior (actual observed) probabilities of all the
events after the first iteration were then used as
the priors for the second (and final) iteration.

6 MNC Algorithm

For each pixel y in the image to be cleaned:

1. Gather the local neighbourhood M of y.

2. Construct messages for one segment models
of M. We used used the mean, median, and
midpoint of M.

3. Construct messages for two segment models

of M. We used 8 binary thresholds.

4. Find the message S with the shortest message
length.

5. Replace y the current pixel with the RV as-
signed to it by S.

Pixels on the edge of the image which do not
have a full 3 x 3 neighbourhood are simply re-
placed by the average of as many pixels from its
8-neighbourhood as possible.

7 Results

For our experiments, we used the 512 x 512 x 8 bit
synthetic image shapes of Figure 2. It was chosen
because it contains a variety of smooth and edge
regions, including sections which are not modelled
particularly well by only one or two segments. We
then added Gaussian noise! with y =0 and ¢? =
256, resulting in Figure 3.

Figure 2: Original shapes test image

1Tf the addition of the noise resulted in a pixel taking on
an illegal value, it was clipped to fall in the range [0,27 —1].



Figure 3: Image shapes with noise ~ N (0, 256)

The PSNR was taken as —log,o(MSE/22 ,.)
where 4, 18 the maximum pixel value 255.
MNC is the technique described in this pa-
per. The Box and Gauss filters are the
smoothing masks ${1,1,1, 1,1,1, 1,1,1} and
L{1,2,1, 2,4,2, 1,2,1} respectively. The
w-median entry is a weighted median filter, similar
to the plain median filter except that the middle
pixel y is included 3 times. For kNN (k-Nearest
Neighbour) we used & = 6 as it gave the best
results, and Lee’s sigma filter was over a 3 x 3
neighbourhood.

Algo- PSNR | RMSE Filt. Resid.
rithm (dB) Tmage? | Struct?
MNC 33.43 5.43 sharp (little)
Box 31.46 6.82 blurred much
Gauss 32.14 6.31 blurred much
median 32.57 6.00 sharp some
w-median | 31.80 6.55 sharp little
kNN 32.19 6.27 sharp some
sigma 30.87 7.30 ok some

Table 1: Noise cleaning performance

8 Discussion

The quantitative results in Table 1 show MNC to
be a good performer, beating the weighted median
and k-Nearest Neighbour algorithms by about 0.8
dB. However, a single scalar such as PSNR does
not fully capture noise cleaning performance. Ta-
ble 1 also gives our qualitative examination of the

Figure 4: Close-up of MNC residuals

Figure 5: Close-up of Median residuals

filtered images and the amount of structure in the
residual image (difference between the noise-free
original and the filtered image).

As expected the simple smoothing masks re-
sulted in blurred edges, leaving much structure
in the residuals. The sigma filter did not per-
form as well as expected; it would probably do
better with a larger neighbourhood size. The
weighted median image had better structure pre-
serving properties than the plain median, but per-
formed slightly worse in terms of PSNR. This
highlights the problem of choosing the weights for
an arbitrary image.



The median and k-Nearest Neighbour filters
came closest to MNC’s performance. Figures 4
and 5 show a close-up of the residuals for the MNC
and median filters near the peak of the tall upright
white cone on the left of the shapes image. Mid-
grey represents zero error. We can see that MNC
had difficulty with the cone’s left edge. This is
because it was really a 3 segment region, which
MNC tries to approximate with 2 segments.

Overall, MNC was the most successful algo-
rithm. It produced a sharp output image with
little structure loss, had a high PSNR, and did
not require any special parameters to be supplied
by the user.

It is possible to extend MNC to larger win-
dow sizes, however, the l-or-2 segment assump-
tion breaks down at larger scales. An efficient
search mechanism for good candidate 3 and 4 seg-
ment regions is required. If one produces a bitmap
with 0s for when MNC chose a 1SMs and 1s for
2SMs, the resulting image is an edge map. This
suggests that MNC may be used for global image
segmentation by combining the results of many
noise-insensitive local segmentation operations.
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