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Abstract

In this paper we describe a new lossless tmage
compression algorithm called HBB. HBB has been
destgned to see how much further we can push the
current one-pass DPCM approach to lossless im-
age coding. Its features include a novel scan or-
dering and a complex adaptive history-based mech-
anism which blends sub-predictors for prediction.
Its performance is not sensitive to the values of
its parameters, and 1t extends easily to different
pizel depths. We show HBB to out-perform cur-
rent state-of-the-art lossless codecs, but at a com-
putational cost.

1 Introduction

Most modern lossless DPCM image compression
algorithms [1, 2, 3, 5, 6, 9] consist of some or all
of the following steps: (1) one-pass raster scan
traversal of pixels, (2) determination of a context
for the current pixel based on neighbouring pix-
els, (3) locally adaptive prediction of the current
pixel, (4) history-based error feedback to correct
systematic errors in prediction, and (5) entropy
coding of the final prediction errors.

In this paper we describe an image compres-
sion system called HBB (History Based Blend-
ing). HBB uses a similar architecture to that
described above, but focuses on optimizing those
components which are often neglected in the push
to minimize storage and computational costs. In
particular, a new scan ordering and a more com-
plex adaptive non-linear predictor are used.

We show HBB to be very competitive with the
current best lossless image compression codecs,
beating systems such as CALIC [4, 5] and
LOCO [6], but at a greater computational cost.
The gains in compression are small compared to
the effort expended. This suggests that large im-
provements should not be expected without mov-
ing toward a new approach to lossless image com-
pression, such as TMW [T7].

2 Scan Order

Traditionally, the image pixels are encoded in a
raster scan order, as shown in Figure 1, traversing
the image one row at a time, top to bottom, left
to right. Although simple to program and only
requiring few row buffers, it does not order pixels
in a very spatially coherent manner.
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Figure 1: Raster Scan Ordering

High coherence is important for any history-
based mechanisms present in an image compres-
sion scheme, such as error-feedback schemes and
adaptive probability estimation for entropy cod-
ing. Ideally, the proper use of contexts for these
mechanisms should remove the dependence on or-
dering. However, most context modeling tech-
niques use only a small number of simple con-
texts, resulting in sub-optimal assignments. Thus
we suggest that an improved scan ordering may
still be beneficial.
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Figure 2: Rain Scan Ordering with A = 3

In HBB we use a rain scan ordering, shown in
Figure 2. The rain ordering groups h rows to-
gether into blocks. Within each block, the pixels
are traversed in a south-westerly direction, pro-
gressing from left to right, starting at the top-left
corner of the block. This ordering varies its z and



y position at each step, unlike the mainly one di-
mensional raster order. Using the compass point
notation of Figure 3 to label the current pixel’s
(CP) neighbours, we see that, at all times, the
conventional causal neighbourhood is available to
both encoder and decoder. We found using this
ordering with values of h around 32 to improve
results by up to 4% over the raster ordering.

NWNW | NNW | NN | NNE | NENE

WNW | NW N NE

Wi W CP

Figure 3: Causal Neighbourhood Notation

3 Context Determination

Contexts result from a many-to-one function of
the current pixel’s neighbourhood. They are used
in image compression to switch between different
models, in the hope that the conditioning will im-
prove some estimation or prediction process. For
example, CALIC uses 576 contexts for the error-
feedback stage, and around 10 contexts for the
entropy coding stage.

In HBB, we also use a small number of contexts
based on the position of the leading 1 bit in the
standard deviation ¢ of the six closest neighbour-
ing pixels. For a z-bit per pixel image, this results
in z contexts. Two extra contexts are also used,
one for the case when ¢ = 0 and one for the border
pixels, giving a total of z 4+ 2 contexts.

Although this is a simple scheme, 1t has the
advantage of being easily extendible to different
values of z. We have found it to be very similar
in performance to other techniques in the litera-
ture, even those which have been trained on image
sets. In HBB, these contexts are used by both the
prediction and entropy coding models.

4 Prediction Technique

4.1 Predictor Properties

The prediction stage is the most important one in
terms of entropy reduction. Tt is also the stage
at which a bad choice of predictor could risk am-
plifying and introducing noise into the predicted
value, which can never be removed.

Let us assume our predictor uses a linear com-
bination of neighbouring pixels N; to produce a
predicted value pv; that is pv = >, a; N;, where

a; are the weights. We propose that on a local
scale, a large proportion of an image consists of ar-
eas where the intensity varies smoothly, but with
varying amounts of noise present.

To minimize the amount of noise introduced
into pv we would like to keep > |a;| as small as
possible [8]. For correct prediction in flat areas,
we require Y a; = 1, and for correct prediction
in planar regions, we need at least one a; < 0 to
properly estimate a gradient. These constraints
can not all be satisfied simultaneously.

We suggest that the most important constraint
on predictor performance is its behaviour in the
presence of noise. Tt has been shown [9] that the
performance of most simple static and adaptive
predictors with negative a;s will degrade as the
noise level increases.

HBB’s predictor is designed to adapt to images
with differing (1) noise levels, (2) smoothness, and
(3) directional edges. Tt does this by blending the
predictions of three “experts”, weighted by how
well they have predicted in the past.

4.2 A HBB Unit

In its simplest form, a HBB unit blends the
clipped! predicted values pv; of n sub-predictors
to produce a final predicted value pv = > a; - pv;.
The blending weights a; are chosen to try to mini-
mize the size of the prediction error pe = pv —C'P
where C'P is the current pixel. In fact, exact pre-
diction in flat areas requires > a; = 1, so only
n — 1 weights need actually be determined.

Let us assume we have the set of all past
pvs and C'Ps. Then we could choose a =
(ai,as,...,a,_1)" to minimize the mean-squared
error (MSE) between our past predictions and the
actual pixels. This would involve a solving an
(n—1)x (n—1) linear system of the matrix/vector
foormP-.a=gq.

In HBB, P and q are not recomputed for each
pixel, but rather a running total is kept and up-
dated as P, = aP; + (1 — a)P,,,, (same for q),
where « is a fading factor (0 < « < 1) which
controls how quickly old observations are depreci-
ated, and P,, ,,, 1s the new observation. This is the
history mechanism of the HBB predictor. By di-
viding the new P and q by |pe|, it is possible to bias
the update process to minimize the mean absolute
error (MAE). The MAE criterion is more robust
than MSE, especially for 12 bit pixel data [10].

There are several reasons for blending predic-
tors rather than neighbouring pixels. Predictors
can span many pixels, hence reducing the order of
equations to be solved, and it is possible to include
non-linear predictors.

1The pixels are clipped to the legal permissable pixel
range [0, 2% — 1].



4.3 The HBB Predictor

It is possible to increase n and incorporate more
predictors into the blend, but the number of op-
erations required to solve for a has complexity
O(n?®). This can be reduced by using a cascaded
approach. In HBB we used three different n = 3
“child” units, the outputs of which were fed into
a separate n = 3 “parent” unit. In this case we
are a factor of 8 better off. For the three child
units, we chose groups of sub-predictors suited
to (1) noisy regions, (2) smooth gradients, and
(3) strong edges, in the hope of isolating these
three types of image behaviour. The actual sub-
predictors used are shown in Table 1.

Unit 1 - “Noise”
1] (W+N)/2
2| (2W+ N+ NE)/4
3| (W+N+NW+4NE)/4

Unit 2 - “Smooth”

1 |W+N—NW
2 | 2W — WW
3| 2N — NN

Unit 3 - “Edges”

1w
2| N
3 | NE

Table 1: Sub-Predictors used in HBB

5 Error Feedback

Both CALIC and LOCO use error feedback to
help correct systematic errors in their relatively
simple predictors. That is, a context sensitive es-
timate of the prediction error pe i1s added to pv to
try and centre it at zero.

CALIC’s “Mean Adjusted Prediction” (MAP)
uses the observed sample mean of past predic-
tion errors for the estimate, conditioned on 576
contexts. LOCO uses 1094 contexts and an ap-
proximation to the sample median as the estimate.
These error feedback schemes can significantly im-
prove the performance of a poor predictor [9].

In HBB we utilize a MAP scheme similar to
CALIC’s to correct predicted values pv. We use
26 contexts, a bit vector value D computed as

D = dydidsydzdads (1)
do = b(pv,N) dy = b(pv,W)
dy = b(pv,NW) ds = b(pv,NE) (2)
dy = b(pv,WW) ds = b(pv,NN)

where b(z,y) =0if z <y and l if z > y. MAP is
used at two different points in HBB. Firstly, the
9 initial sub-predictors (3 predictors into each of
the 3 child units) are each separately corrected,
using their own pv to compute D. Secondly, the
final output of the parent unit is also corrected in
the same way.

6 Coding Model

The predicted value from the previous stages is
used to form a prediction error, which can take
on values —2% — 1 to +2% — 1. This unnecessarily
doubles our alphabet size. We used the following
re-mapping strategy to keep the prediction errors
in the range [-27~1, 42°~! — 1], while still main-
taining decodability:

pe+2° if pe < —2%"1
pe' = pe—2° if pe>42°71 (3)
pe otherwise

The prediction errors are entropy coded us-
ing the SMB (Sign Magnitude Bitplane) [11] his-
togram approximation approach. SMB uses only
z + 1 binary arithmetic coding events to encode
symbols from an alphabet of 27, and is similar to
the Sunset approach [12]. First, one binary event
states whether pe = 0 or not. If pe # 0, further
events encode the sign bit and the bit planes of
the binary representation of the error magnitude.

The advantage of SMB is that it is well suited
to zero-mean, Laplacian distributed prediction er-
rors, has a very short initialization period, and can
adapt quickly to non-stationary statistics. Adap-
ation is achieved by halving the binary frequency
counters whenever the total exceeds 255. Addi-
tionally, SMB is easily extended to larger pixel
depths as the number of model parameters to be
estimated only increases linearly with z. The loss
in coding efficiency due to the bit plane approach
is made up by its ability to adapt quickly.

7 Algorithm Summary

1. Compute the pv for each of the 9 sub-
predictors.

2. Form an order-6 MAP context for each sub-

predictor, and accordingly correct each pv to
!

pv'.

3. Form a prediction/coding context C' based on
the standard deviation of the 6 closest neigh-
bouring pixels.

4. For each of the 3 HBB child units in C, com-
pute the output pv’”’ using its 3 corrected sub-
predictors.
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5. Compute pv"”’ by feeding the child pv'’s into
the parent unit in context C.

6. Form another order-6 MAP context and cor-
rect pv'”’ to get pv"”.

7. Compute pe as the difference between pv"’

and the actual pixel.

Normalize pe to give pe’.

© oo

Encode pe’ using SMB context C.

10. Move to next pixel in the rain scan order.

8 Results

Tables 2 to 4 give results for the original 8 bpp
(bit per pixel) greyscale JPEG test set, another
larger set of well-known 8 bpp greyscale images?,
and a varied set of 12 bpp medical images.

The default parameters were used for CALIC?
and LOCO®*. For HBB, we used h = 32 for the
rain scan order, & = 0.98 for the predictor’s his-
tory fade factor, and the predictor update process
was biased to minimize the MAE, as described in
Section 4.2.

9 Discussion

The results show HBB to be very competitive with
CALIC, beating it on the majority of the images.
LOCO peforms worse than both CALIC and HBB
on all images, but this is to be expected as LOCO
has traded compression for faster throughput and
lower complexity.

For all the 8 bpp images, HBB is about 0.037
bpp better off on average. However, this comes
at a computational cost estimated at one order
of magnitude higher than CALIC, which in turn
is one order of magnitude more complex than
LOCO. The improvement is a higher 0.09 bpp for
the 12 bpp medical images, which vary from very
noisy (c00156, £005) to very smooth (ref12b-0,
skullq7-0).

The improvements can be attributed to differ-
ent features of HBB, depending on the images.
For the smooth 12 bpp images, it is probably due
to the improved scan ordering in conjunction with
the adaptive entropy coder. For the noisy 12 bpp
images, it is most likely the prediction stage which
ensures that the amount of noise introduced into
the predictors is minimized. One interesting re-
sult is the 0.13 bpp improvement on the barb im-
age. We attribute this to the “edge” unit picking

2Some of the 8 bit images were obtained using anony-
mous FTP from ftp://ipl.rpi.edu/pub/image/still/

3 Arithmetic coding CALIC executables were obtained
from ftp://ftp.csd.uwo.ca/pub/fromwu/v.arith/.

4The LOCO-I/JPEG-LS V.0.823X executables were ob-
tained from http://www.hpl.hp.com/loco/.

up on the strong 45° and 135° edges on the chair
combined with the scan order following the same
direction.

Preliminary experiments have shown that if the
average a vector (the blending weights) over the
whole image is computed, that the resulting pre-
dictor is very close to the bit-rate that a static
image-specific least-eniropy linear predictor [10]
would give. This could be used as cheap way
to compute near least-entropy predictors, or as
a better starting position for a traditional search.
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