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Abstract

The trend in modern image noise filtering algorithms
has been toward structure preservation by using only those
neighbouring pixels which are similar to the current pixel in
some way. In this paper we introduce a technique call FU-
ELS (Filtering Using Explicit Local Segmentation) which
explicitly segments the ����� region encompassing the cur-
rent pixel and filters using only those pixels from the same
segment. By exploiting mask overlap an effective mask size
of
��� ���
	��
� ��� ����	�� is obtained, as well as robustness

in regions which do not fit the image model. The algorithm
can be iterated, and our results show FUELS to outperform
existing algorithms both quantitatively and qualitatively.

1. Introduction

Noise filtering [1, 2] is the process of removing un-
wanted noise from an image and is often a preprocessing
stage in image analysis. Thus we desire a filter to preserve
any image structure such as edges and texture.

Traditional linear filters such as the box and Gaus-
sian [1] filters remove additive noise but indiscriminately
blur edges. Order statistics approaches such as the me-
dian [3] and weighted median [4] filters can preserve some
structures but fail on others. The trend in modern non-linear
filters has been towards “adaptive local neighbourhood se-
lection” [5]. That is, only neighbouring pixels similar to the
current pixel (using some measure) are used for filtering.
This philosophy germinated from techniques such as the
Sigma [6], � -Nearest Neighbour [7], and Selected Neigh-
bourhood Averaging [8] filters.

In Section 2 we describe the operation of our FUELS
algorithm and Section 3 will give a small numerical exam-
ple. Results are presented in Section 4 and conclusions and
future work are discussed in Section 5.

2. The FUELS Algorithm

Let us assume we are using an ����� ( � odd) mask
containing � � ��� pixels centered on the pixel � to be
filtered and that each pixel in the image has been corrupted
by i.i.d. additive noise. The FUELS algorithm consists of
four main steps.

2.1. Estimation of Noise Variance

This step is done once at the start of the process. Let the
“local variance” be the sample variance of a small �����
region. We can form an estimate �� �� of the “true” global
noise variance � �� as the average of as many local variances
as we can obtain from the image. The regions we use to
compute the local variances should not contain any edges,
as these will overestimate � �� .

To ensure this, we first roughly classify each pixel as ei-
ther being in a flat or edge region by using horizontal and
vertical � � � Sobel edge detector masks [1]. Only regions
with a centre pixel having a Sobel gradient magnitude less
than 16 were used in the variance estimation.

2.2. Local Segmentation

In typical images we have found that most small blocks
of pixels are simple in structure. The majority are flat or
planar, suggesting their � pixels probably belong to the
same segment. The rest are edge or texture regions hav-
ing a simple bimodal distribution of pixels (not necessarily
symmetric) which we can consider a two segment region.

To prevent blurring of edges we would like to average
only those pixels which are in the same segment as � . Let�! #"$"%"&�(' be the pixels in the local neighbourhood of � ,
and �*)  ,+ "$"%"-�*) '.+ be the same but in ascending order. We
must first decide whether to model this region as one or two
segments. FUELS uses a confidence interval approach such
that if the dynamic range / � �10 �2) '.+ �3�*)  -+ 0 of the block



is too large we treat it as two segments:46587�9&:%;=<>:$?A@B9 � C 	EDGF / ��HJI �� �� 5K@MLN:%OMP D 9-: (1)

If we conclude that the region consists of a single seg-
ment we can use all � pixels to compute a robust estimateQ of � . FUELS uses the sample mean which is a good esti-
mate in the presence of additive noise:

Q �SR� � 	�
'T UWV  �

U
(2)

Segmenting a small �X��� region of pixels is reasonably
simple. We expect a bimodal pixel histogram so a thresh-
olding approach is appropriate. The lossy image compres-
sion technique Block Truncation Coding [9] has a long re-
search history and is concerned with efficiently choosing a
good binarizing threshold Y .

We use the DRT algorithm [10] which divides the pixels
into two groups by setting YZ� ��� R�\[ � �#)  -+ [ � �]) '.+ �&^K_ .
Chan shows that this Y is almost always equivalent to using
the minimum mean squared error threshold.

If ` is the number of � U ’s with a value less than Y , then
the smoothed pixels estimates for the the “Low” and “High”
segments are:Q]a � 	` Tb�cedgf �

U Q]h � 	� � ` Tb cei f �
U

(3)

2.3. Combining Pixel Estimates

At each filtering step we are computing pixel estimates
(either Q , or one of Q2a*^�Q]h ) for every pixel within the �j�� mask surrounding � , not just � itself. The fact that the
masks overlap means that each pixel is actually included in� separate masks. We can improve our estimate of � by not
just using the estimate obtained when � was at the centre of
a mask, but by taking an average of all � estimates.

This has two main effects. Firstly, the mask is effectively
of size

�k� �l�m	��*� �k� �l�m	�� but without the extra computa-
tion and modelling otherwise required. Secondly, the filter
is more robust to erroneous estimates caused by outlier pix-
els or regions which were not well modelled by just one or
two segments.

2.4. Iteration

It is possible to iterate the FUELS algorithm by letting
the filtered output image become the input to the next itera-
tion. We have found that up to 2 or 3 iterations can improve
results for very noisy data ( �1n 	�o ). This has the effect
of increasing the effective size of the mask, which is bene-
ficial in large smooth areas. However the improvement in
RMSE is usually accompanied by some loss of structure
and a larger worst case error.

3. An Example

We give a numerical example of the FUELS algorithm
with � ��� on the 25 pixel region in Figure 1. We wish to
filter the centre pixel currently having value 13. We assume�� � � � . There are nine overlapping � � � blocks A–I in this
region also designated in Figure 1.

13 8 11 9 38

12 11 10 10 37

10 9 13 14 35

9 11 12 32 34

11 10 31 37 33

A B C

D E F

G H I

Figure 1. Example overlapping � � � blocks

Region p�q Segs rq t s!t s!u vw
A 5 1 10 - 10 - 10
B 6 1 10 - 10 - 10
C 29 2 19 22 11 36 11
D 4 1 10 - 10 - 10
E 23 2 13 18 11 32 11
F 27 2 21 22 11 34 11
G 22 2 12 18 10 31 10
H 28 2 18 21 11 33 11
I 25 2 26 24 13 33 13

Average estimate 11

Table 1. Example block calculations

Table 1 lists the calculations for the nine � � � blocks.
For this example all values have been rounded to integers,
but normally full precision is kept. We can see that the al-
gorithm has successfully segmented the pixels into the two
expected regions for each � � � block. The centre pixel�\� 	 � was covered by 9 blocks each giving an estimate ��
in the last column of Table 1. The final filtered pixel value
is the average of that column giving 11. This average was
not contaminated by the nearby pixels having values n � 	 .
In the next Section we apply this algorithm to a full image.

4. Results

For our experiments we used a ox	 � �yox	 � �3_ bit syn-
thetic image1 which consists of smooth planar regions and
edges of varying contrast, some of which are not modelled
particularly well by only one or two segments. The image

1ftp://ftp.cs.monash.edu.au/users/torsten/icpr98/shapes.pgm



was then corrupted with additive white Gaussian noise hav-
ing Q ��z and � � 	�I . In Table 2 we describe the terms
that are used to describe the filtering results in Table 3.

Term Description{ The side length of the square mask used|
Number of times the algorithm was iterated

RMSE Root mean squared error ( }#~ norm)
PSNR Peak signal to noise ratio (dB) �.���$�N�������Z�=�#�$���$� ~��
MAE Mean absolute error ( } � norm)
WCAE Worst case absolute error ( }#� norm)
FI Qualitative examination of the filtered image
RS Subjective exam. of residual structure: 1=good,5=bad
FUELS The algorithm described in this paper
Box Smoothing mask

��A���������M���$�����B�m�$�B�������
Gauss Smoothing mask

���� ����� � ��� � ���A� � �$� � �B���
Med Standard median filter [3]
WMed Weighted median filter [4] ( w occurs 3 times)
kNN � -Nearest Neighbour [7] ( ����� was best)
Sigma Lee’s sigma filter [6]

Table 2. Description of terms used in Table 3

Algo. { |
RM- PS- M- WC- FI RS
SE NR AE AE

FUELS 3 1 5.3 33.6 3.8 77 sharp 1
3 2 4.9 34.4 3.3 83 sharp 2
3 3 4.8 34.4 3.2 86 sharp 2

Box 3 1 7.6 30.5 5.2 126 blurry 3
3 2 7.2 31.0 4.5 124 blurry 4

Gauss 3 1 7.3 30.8 5.4 95 ok 3
3 2 7.1 31.2 4.7 117 blurry 4

Med 3 1 7.5 30.7 5.7 175 sharp 1
3 2 6.4 32.0 4.6 175 sharp 2
3 3 6.1 32.4 4.2 178 sharp 3
5 1 6.8 31.5 4.3 198 blurry 4

WMed 3 1 8.3 29.8 6.5 166 sharp 1
3 2 7.2 30.9 5.5 174 sharp 1

kNN 3 1 7.6 30.5 5.9 123 good 1
3 2 6.5 31.9 4.8 140 good 2
3 3 6.4 32.0 4.5 149 ok 2

Sigma 3 1 9.2 28.9 6.6 97 sharp 2
3 2 8.4 29.7 5.4 118 ok 3
5 1 8.0 30.1 5.6 111 ok 4
7 1 8.3 29.8 5.6 105 blurry 5

Table 3. Filtering results for shapes

5. Conclusions

The FUELS algorithm is the best performer on the
shapes image in terms of PSNR, being 2.0dB ahead of its
nearest rival, the median filter. It produced sharp output im-
ages with little structure present in the residual image, and
had the lowest WCAE of all the filters. The median filter

produced sharp outputs because it tends to alter rather than
blur image structure. The weighted median filter has better
structure preserving properties, but at the expense of not be-
ing able to clean smoother areas as effectively. As expected
the simple Box and Gauss filters blurred edges resulting in
large structure losses.

The algorithms closer to FUELS in methodology, such as
kNN and Sigma did reasonably well in terms of preserving
structure, but still blurred many edges. The reason for this is
that their edge-sensor component is fixed in some way over
the whole image, whereas FUELS adaptively segments each
local image block.

The performance of FUELS is somewhat dependent on
the estimate of the noise variance, especially on extremely
edgy images. The Sobel threshold of 16 could be lowered
to make the variance estimate more conservative. Currently,
FUELS averages the estimates ��  #"%"$" �� ' for the current
pixel. One could use a median operator instead to improve
robustness, especially in the presence of impulse noise. FU-
ELS can also be extended to larger mask sizes. We found� � o to work reasonably well, but the assumption that a
25 pixel block can be modelled using just 1 or 2 segments
begins to become less valid.
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