By 28" of April:

(1) Lax-Friedrichs scheme, same as the previous problem, but 2D, Kelvin-Helmholtz instability. Use
any programming language and the results of your previous homework to solve numerically the

following:
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where the diffusion coefficients k;=kD;, k,=kD>, k;=kD3, k = A and D;, D,, Dj; are factors less than
t
1 introduced to reduce diffusivity of the solution.

Determine the time step Ar using Courant-Friedrichs-Lewy criterion Ar=C —— at each time step,
%

max

where C is the safety factor less than 1 (e.g. C=0.3). To calculate v,., sound speed c, = TP has to be
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taken into account, so v,.=max(|v|, ¢y) over the computational domain. Use the same as before equation
of state to close the system:
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where y=4/3. Set the physical domain size x,y=0..1, and periodic boundary conditions. As the initial
condition, use:

y<04+001-sin2rx): p=Lp=2.5v =0.5
04+001-sin(2rx)=y=0.6+0.01'sin(2wx): p=2;p=2.5;v_ =-0.5
¥y>0.6+001-sinQrx): p=1p=2.5v =05
As the scheme is quite diffusive, you will need to use high resolution (I used 256x256 in the pictures
below). Since the instability takes time to develop, you will need a few thousands of time steps. Try
reducing the diffusivity (I found that D;=D3=0.02, and D,=0.5 work very well).
Plot the evolution of the solution (density, velocity, internal energy, pressure) on time. Make a
movie, if you can. If the language you use allows, and you know how to do it, try estimating
computational time (in seconds) your computer needs for a single time step.
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