
By 28th of April: 
 
(1) Lax-Friedrichs scheme, same as the previous problem, but 2D, Kelvin-Helmholtz instability. Use 
any programming language and the results of your previous homework to solve numerically the 
following: 

∂ρ
∂t
+
∂
∂x
(ρvx )+

∂
∂y
(ρvy ) = k1

∂2ρ
∂x2

+
∂2ρ
∂y2

"

#
$

%

&
',

 
∂(ρvx )
∂t

+
∂
∂x
(ρvxvx + p)+

∂
∂y
(ρvxvy ) = k2

∂2

∂x2
(ρvx ),

 
∂(ρvy )
∂t

+
∂
∂x
(ρvxvy )+

∂
∂y
(ρvyvy + p) = k2

∂2

∂y2
(ρvy ),

 
∂ε
∂t
+
∂
∂x
(vx (p+ε))+

∂
∂y
(vy (p+ε)) = k3

∂2ε
∂x2

+
∂2ε
∂y2

"

#
$

%

&
',

 

where the diffusion coefficients k1=kD1, k2=kD2, k3=kD3, k =
Δx2

4Δt
,
 
and D1, D2, D3 are factors less than 

1 introduced to reduce diffusivity of the solution. 

Determine the time step Δt using Courant-Friedrichs-Lewy criterion Δt =C Δx
vmax

 at each time step, 

where C is the safety factor less than 1 (e.g. C=0.3). To calculate vmax, sound speed cs =
γ p
ρ

 has to be 

taken into account, so vmax=max(|v|, cs) over the computational domain. Use the same as before equation 
of state to close the system: 
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where γ=4/3. Set the physical domain size x,y=0..1, and periodic boundary conditions. As the initial 
condition, use: 

y < 0.4+ 0.01⋅sin(2π x) : ρ =1; p = 2.5;vx = 0.5
0.4+ 0.01⋅sin(2π x) ≥ y ≥ 0.6+ 0.01⋅sin(2π x) : ρ = 2; p = 2.5;vx = −0.5
y > 0.6+ 0.01⋅sin(2π x) : ρ =1; p = 2.5;vx = 0.5

 

As the scheme is quite diffusive, you will need to use high resolution (I used 256x256 in the pictures 
below). Since the instability takes time to develop, you will need a few thousands of time steps. Try 
reducing the diffusivity (I found that D1=D3=0.02, and D2=0.5 work very well). 

Plot the evolution of the solution (density, velocity, internal energy, pressure) on time. Make a 
movie, if you can. If the language you use allows, and you know how to do it, try estimating 
computational time (in seconds) your computer needs for a single time step.  

 

 


