
By 21th of April: 
 
(1) Lax-Friedrichs scheme. Implement full one-dimensional hydrodynamic solver and 
test it with the Sod shock tube. Use any programming language and the results of your 
previous homework to solve numerically the following system of one-dimensional 
equations with additional diffusive terms: 
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where the diffusion coefficient k is defined as k = Δx
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Determine the time step Δt 

using Courant-Friedrichs-Lewy criterion Δt =C Δx
vmax

 at each time step, where C is the 

safety factor less than 1 (e.g. C=0.4). To calculate vmax, sound speed cs =
γ p
ρ

 has to 

be taken into account, so vmax=max(|v|, cs) over the computational domain. 
Close the system of equations by connecting the gas pressure p and total energy 
density ε with the equation of state given by 
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Note that the momentum equation can (and should) be solved with respect to ρvx 
variable, so that momentum and velocity are connected by m=ρvx. 
 
Use γ=4/3. Use domain size x=0..1. As the initial condition, use Sod shock tube: 
 

x < 0.5 : ρ =1; p =1;vx = 0
x ≥ 0.5 : ρ = 0.125; p = 0.1;vx = 0  

 
Periodic boundary conditions can still be used, however, it is better to use constant 
derivative boundary conditions, so d/dx at the boundary cell is equal to d/dx at the 
nearest inner domain cell. The best would be to make a switch and be able to select 
the boundary condition type. 
Plot the evolution of the solution (density, 
velocity, internal energy, pressure) on time. 
Your solution should be numerically stable. 
After a number of timesteps, you should get a 
distinct shape with rarefaction wave, contact 
discontinuity and shock discontinuity (shown to 
the right). Note also, due to high diffusivity of 
the scheme, a large number of grid cells 
(N~1000) are beneficial to use. 


