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Introduction 

 

Competition tends to lower prices.  If you only work with one econometrics package, 

there is no competition.  Since all packages are different, they each do some things 

better than others, i.e., there are comparative advantages.  If two packages compete 

for your attention, the price you pay, in terms of your time spent doing research in the 

future, might be lowered if you invest some time now to learn more than one.  This is 

the principle that motivates the presentation of the ideas in ―The Basics of R and 

STATA: A Cookbook Approach.‖  If time permits, I might add in other programs, to 

knock the price down further, but the market price for this ―duopoly‖ is already 

considerably lower than for a ―monopoly‖.
2
 

 

While it is true that specialization makes you rich (which, would tend to nullify what I 

just said), unless you intend to acquire expert programming skills (in which case, it 

does make sense to specialize), there may be times when you have no time to figure 

out how to do one particular operation with one particular statistical package, and it 

looks good on a resume to have multiple statistical software packages listed anyway.  

If your knowledge is limited to one program, then you might have to do some things 

the hard way.  That can mean lots of time lost.  During my first year working at the 

World Bank, we routinely used to switch between STATA, SPSS, Excel and E-

Views, with occasional forays in S-Plus.  We were analysing household surveys, and 

the data sets were so large, and we had so many time constraints that switching was 

essential.  So, if you can use more than one program, you can choose the one with the 

lower cost in terms of time lost.  Hence, you face an ―inframarginal‖ trade-off as you 

can specialize in becoming an expert in R and hence computational statistics, or you 

could use that time to pursue other interests.  The choice is yours. 

 

I will begin by referring you to a working paper I wrote long ago, which is sort of a 

comment on Mankiw, Romer and Weil‘s (MRW‘s) (1992) Augmented Solow Model, 

available from 

 

http://www.gmu.edu/departments/economics/working/WPE_99/99_09.pdf   

 

Although I once submitted it for publication, I have no intention of ever publishing 

this paper, because it‘s much better suited as a teaching device about statistical 

visualization.  So it is useful here because it will make it easy to relate the ideas 

underlying my intent in writing that paper, and the approach and objectives that I 

hope to meet in teaching how to use R and STATA. 

 

The Augmented Solow Model is simple to understand.  If you know the Solow model, 

then just add in education, that‘s it.  Of course, the model is not the production 

function/phase-diagram version, but what‘s known as the ―log-linearization around 

the steady-state‖ version of the model.  In other words, you begin in the steady-state, 

and then pull back on your sling-shot to observe how the model lands back in the 

steady-state.  I think there are real data problems with MRW‘s paper, which I identify.    

The data I used in that paper were actually from the Journal of Applied Econometrics 

data archive homepage, specifically from the entry for Jonathan Temple‘s (1998) 

                                                 
2
 I have added in the output from an exercise in E-Views for presenting co-integration analysis, but 

since I do not have the authority to distribute the data, I‘ll only report the results, just to show you the 

process of doing co-integration analysis. 

http://www.gmu.edu/departments/economics/working/WPE_99/99_09.pdf
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paper in which he too also criticizes the Augmented Solow Model.  If you did not 

know, the Journal of Applied Econometrics requires all data used in papers they 

publish to be posted at http://qed.econ.queensu.ca/jae/.  Hence, it is a great source of 

data, if you can‘t seem to find any relevant data elsewhere. 

 

So, why does Temple write his paper, and why did I write the above-mentioned?  

What MRW do is apply a classical statistics methodology to test the model they 

propose.  Cleveland (1993) attributes the classical statistical paradigm to Fisher‘s 

(1958) book first published in 1925.  The classical statistics paradigm is: theorize 

first, and then test with data.  This is the approach taken by many economists.  Steve 

Levitt at Chicago (of Freak-o-nomics fame) seems to advocate a slightly different, 

less formalized approach, in which you put forth a theory, but don‘t look to test it 

directly, but instead do thorough statistical analysis of reduced form specifications to 

make sure the signs of the coefficients go the right way.  I like this approach more 

than the pure classical statistics approach, but you might also consider other 

paradigms of data analysis.   

 

John Tukey (1977) offers an alternative, which turns the classical statistical paradigm 

upside-down.  Instead of theorize first, and then test, you look at, or explore, the data 

and then see what kind of theory this might suggest.  This works well when you are 

doing research in a new field in which there is little theory, such as the human 

genome project.  In economics, there is a long tradition of economic theory, so rather 

than toss out the baby with the bathwater, in my personal work, I sometimes work 

with a hybrid.  I usually start with a really simple econometric model, and then 

explore it over time with data, sort of along the lines of Levitt‘s approach.  I‘m not 

suggesting you follow this approach.  In fact it may not appeal to many, and there 

may be no room to do this in many applications, but by exploring a simple statistical 

model, I admit my own limitations, so that I don‘t oversell my results.  Other closely 

related methods fall under non-parametric and robust statistics, and Tukey was a key 

contributor here as well. 

 

The reason for thinking about alternatives to the classical statistical paradigm is that it 

assumes you know lots.  If you read Mankiw, Romer, Weil (1992), you will get this 

impression.  In Temple‘s paper, among his criticisms is the fact that a few influential 

observations, including Greece, Portugal and Turkey, are driving the results.  In the 

paper I wrote, one thing I show is that most of Africa seems to have a different model 

than everyone else [and by the way, I think that‘s because of the institutions, moreseo 

than geography, and definitely not the culture].  Also, there is multi-collinearity 

between school enrollment and investment rates.  If your aim is to get fitted values for 

the dependent variable, then multi-collinearity is not a problem.  However, if you 

intend to explore the marginal impacts of the right-hand-side variables, good luck, as 

you won‘t be able to attribute how much individual explanatory power the collinear 

variables have.  I‘ll borrow from a table I once saw my econometrics professor, David 

Levy, use to distinguish between the three approaches 

 

Assume You Know Lots About Data  Assume You Know Little About Data 

Classical Statistics/Econometrics: MRW Robust Statistics: Temple 

      EDA:  the working paper 

 

http://qed.econ.queensu.ca/jae/
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If you keep this in the back of your mind always, you will understand why there are 

many reasons to be skeptical about modern applied econometrics.  There is another 

fascinating tid-bit of information about the origins of the classical statistics paradigm.  

Many of the founders (like Galton, Pearson) were unashamedly members of the 

Eugenics movement, in which highly educated, but perhaps not very street-wise, 

people sought to measure just how superior Europeans were to everyone else.  For 

more details to this story, you can see Vanity of the Philosopher written by Sandra 

Peart and my dissertation co-advisor David Levy, which is a fascinating follow up to 

Levy‘s two previous fascinating texts, How the Dismal Science Got Its Name, and The 

Economic Ideas of Ordinary People.  Even as the credibility of Eugenics died a long 

time ago, a remnant of that arrogance still remains in the classical statistical paradigm, 

and it is reminiscent of Adam Smith‘s (1981, Book I., Ch. II, Par. 24) observation 

 

The difference of natural talents in different men is, in reality, much less than 

we are aware of; and the very different genius which appears to distinguish 

men of different professions, when grown up to maturity, is not upon many 

occasions so much the cause, as the effect of the division of labour.  The 

difference between the most dissimilar characters, between a philosopher 

and a common street porter, for example, seems to arise not so much 

from nature, as from habit, custom, and education. When they came into 

the world, and for the first six or eight years of their existence, they were, 

perhaps, very much alike, and neither their parents nor play–fellows could 

perceive any remarkable difference. About that age, or soon after, they come 

to be employed in very different occupations. The difference of talents 

comes then to be taken notice of, and widens by degrees, till at last the 

vanity of the philosopher is willing to acknowledge scarce any 

resemblance.  But without the disposition to truck, barter, and exchange, 

every man must have procured to himself every necessary and conveniency of 

life which he wanted. All must have had the same duties to perform, and the 

same work to do, and there could have been no such difference of employment 

as could alone give occasion to any great difference of talents. 

 

I added the bold type to emphasize the point.  Put another way, everyone is important.  

So, if you keep that in mind as you do your research, you‘ll do well. 

 

Overall, you‘ll see that in fact R and STATA do many things very well, but I find R 

has a slight advantage in that it has been heavily influenced by statisticians.  I find 

statisticians have freed themselves from the assumption of normality and the central 

limit theorem, as well as moments-based estimation, much more-so than 

econometricians.  To do so is liberating. 

 

Why is this important?  I remember David Levy once saying in class, ―The world [of 

data] is messy.  Infinity lives there.‖  Infinity would not exist in a world where 

everything followed the normal distribution, but when does the data follow a normal 

distribution?  That‘s something you should always keep front and center in your mind 

as you do research, but be warned if you try to go the way of the statistician, you may 

face resistance when trying to publish your work in economics journals, so be 

prepared to bridge both worlds. 
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With this in mind, there are areas where STATA currently does things better (like 

ordered logit, generalized ordered logit).  For GARCH models, while STATA does a 

little better than R, you‘d probably be better off using something like E-Views, Ox
©
, 

or S-Plus‘s Finmetrics. 

 

How to Download R: The Program 

 

Since STATA is costly, if you don‘t have access to this software package, and do not 

have money to spend on software, do not despair.  The R open source statistical 

package can be downloaded free of charge from http://cran.r-project.org/, or 

http://cran.au.r-project.org/.  After you go to this web-site, you can simply look to  

the middle of the page that pops up, and you‘ll see a box, this particular version 

having been copied from the web-site in April 2006 (keep in mind it can change fairly 

frequently, as versions 2.3.1 and 2.4.0. came out in the following six months) 

Download and Install R 

Precompiled binary distributions of the base system and contributed packages, Windows and Mac 

users most likely want one of these versions of R:  

 Linux  

 MacOS X  

 Windows (95 and later)  

Source Code for all Platforms 

Windows and Mac users most likely want the precompiled binaries listed in the upper box, not the 

source code. The sources have to be compiled before you can use them. If you do not know what this 

means, you probably do not want to do it!  

 The latest release (2006-04-24): R-2.3.0.tar.gz (read what's new in the latest version).  

 Daily snapshots of current patched and development versions are available here. Please read 

about new features and bug fixes before filing corresponding feature requests or bug reports.  

 Source code of older versions of R is available here.  

 Contributed extension packages  

Questions About R 

 If you have questions about R like how to download and install the software, or what the 

license terms are, please read our answers to frequently asked questions before you send an 

email.  

 

Click on "Windows (95 and later)" in the Download and Install R section. This takes 

you to another page, where you see base and contrib.  Click on base and select "R-

2.3.0-win32.exe", or whatever is the latest version, to be saved to your desktop.  It's 

about 27 megs, so make sure you have room.  If you double-click on the icon, a 

language menu pops up [you can even choose Catalan or Sinhalese].  Once you pick 

the language, click yes to whatever Windows Installer asks.  It might be good to click 

on the boxes for the three help files so that when you do a help search in R, you can 

actually get a link to the internet.  Also, Rob Hyndman solved a mystery for me. 

http://cran.r-project.org/
http://cran.au.r-project.org/
bin/linux/
bin/macosx/
bin/windows/
src/base/R-2/R-2.3.0.tar.gz
src/base/NEWS
ftp://ftp.stat.math.ethz.ch/Software/R/
https://svn.r-project.org/R/trunk/NEWS
src/base/
src/contrib/PACKAGES.html
faqs.html
bin/windows/
bin/windows/
bin/windows/
bin/windows/
R-2.3.0-win32.exe
R-2.3.0-win32.exe
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For anyone working from a Monash-based computer, once you download the program 

and the icon is created, you should ―right click‖ on the icon and a menu pops up.  

Under Properties, and Target, you see something like 

 

"C:\Program Files\R\R-2.4.0\bin\Rgui.exe" 

 

After the second quote you should copy and paste the following line 

 

http_proxy=http://proxy.monash.edu.au/ http_proxy_user=ask 

 

Click okay.  If you choose this, you‘ll have to tell R your username and password 

when you update your packages.  This way you can update your R packages, which 

contain additional routines and estimators, periodically using the command 

update.packages(checkBuilt = TRUE).  Alternatively, paste the following, putting 

your username where it says username and password where it says password 

 

http_proxy=http://username:password@proxy.monash.edu.au:80/ 

 

How to Download R: The Packages 

 

Just as you can add to STATA‘s capabilities by downloading routines contributed by 

STATA users, which you can find through STATA‘s help menu, and which is linked 

to the web, R has an ever increasing list of what are called ―packages‖, contributed by 

R users.  Packages here should not to be confused with the term ―statistical software 

package‖ that I was using earlier.  To download these packages, there is a not-so- 

straightforward way, and a simple way.  The not-so-straightforward way is described 

in Grant Farnsworth‘s manuscript, but since I read that I noticed you can actually do 

this within R.  If you look at the top of your R interface, there are several menus, and 

one of them is called Packages.  First, you‘ll have to choose  

 

Packages 

Install package(s)… 

 

You‘ll either be asked for your username and password or you‘ll go straight through, 

depending on what you selected above.  Then you‘ll be asked for your location, and 

you can choose the one nearest you, like Australia (VIC).  Then, you‘ll see a menu of 

packages that you can choose from.  Once, you select it, it will remain in memory, 

and can periodically be updated using the update.packages(checkBuilt = TRUE) 

command that I mentioned above.   Once you download the package to your 

computer, you still have to load in the package to make it functional each time you 

run R, which you can select from the following menu 

 

Packages 

Load package… 

 

This will give you a list of packages that you can choose from, so select the one(s) of 

interest to you. 

 

 

 

http://username:password@proxy.monash.edu.au/
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How to Read in Data in R and STATA 

 

You can actually download the data I used in the working paper from the Journal of 

Applied Econometrics data archives homepage http://qed.econ.queensu.ca/jae/.  That 

will take you to the entire archive, so to get the right data file 

 

Step 1:  Click & save the ―temple.zip‖ file to whichever location you prefer from
3
 

 

http://qed.econ.queensu.ca/jae/1998-v13.4/temple/ 

 

Step 2:  Open up the zip file, and inside is a comma separated file called ―testsol.csv,‖ 

which is the data file that opens automatically in EXCEL if you double-click on the 

icon.  Notice, there‘s already a potential data problem, namely that the column 

heading above the country names is blank, so fill it in with a name ―country‖ or 

something else, and then save the file as a ―.csv‖ file once again, perhaps with a name 

like ―temple.csv‖.  I‘ve also saved it in the example below to an easy to remember 

location ―C:/temple.csv‖ [remember that R likes forward slashes, so it will NOT 

read the location if it is written as ―C:\temple.csv‖], but keep it wherever you prefer.
4
 

 

Step 3:  Open up R, go to the File menu and select New Script, into which you can 

save the commands so that you don‘t have to retype your work.  In that script file will 

go all the commands related to this exercise.  Similarly, in STATA, open what‘s 

called a ―do-file‖.  They work on the same principles: you keep your codes in a file, 

preferably with descriptions of what the commands do, and then you can 

automatically execute, and even re-execute later, the same commands. 

 

Step 4:  Choose a name for the object you want to create in R, [I call it ―mydata‖, but 

if you called it ―pumpkin‖ it would work too] to which you will assign, ―<–‖, the data 

file in comma-separated format, according to its exact location, followed by the 

command to treat the first row as the variable names, using the following command 

 

R Code: 
> mydata <- read.table("C:/temple.csv",header=T,sep=",") 

[hit enter or ―Run‖ icon]
5
 

                                                 
3
 There is also a ―readme‖ file, which contains a detailed description of what exactly is in that data file 

http://qed.econ.queensu.ca/jae/1998-v13.4/temple/readme.jt.txt 

What‘s great about Jonathan Temple‘s paper is that he has also written some S-Plus codes, which are in 

the ―temple.zip‖ file, but which I‘ve not tried in R.  If you‘re really interested in looking at the 

Jonathan Temple paper, he gives you many if not all of the ingredients to exactly replicate his paper, 

which by doing you will acquire a greater ability to do your own research in applied econometrics.  

Trust me on that! 
4
 By the way, if you want the exact address of the file and don‘t know what it is, first find the file in 

Windows Explorer, then highlight the file‘s icon, and right-click on the mouse, select properties and on 

the menu that pops up, the exact location can be found next to ―Location: ...‖.  This you can copy and 

then paste into the command line I have in Step 4. 
5
 The ―read.csv‖ function in R is best if you only have numeric data, but if you have different types of 

data, try the ―read.table‖ command in R, which gives you more options about reading in data, including 

whether or not the first row has variable names, using the ―header equals True‖ command, or ―header 

= T‖, and by telling R that the values are separated with a character called comma, or ‗sep=","‘ 

where the quotation marks around the comma means R thinks of the thing as a character.  Also, notice 

that all the variable names become capitalized, unlike in STATA, which are always lowercase, unless 

you yourself specify capital letters. 

http://qed.econ.queensu.ca/jae/
http://qed.econ.queensu.ca/jae/1998-v13.4/temple/
http://qed.econ.queensu.ca/jae/1998-v13.4/temple/readme.jt.txt
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STATA Translation: 
clear 

set mem 100m 

insheet using "C:\temple.csv", comma 

[hit enter or ―do-‖ icon]
6
 

 

The first line clears the memory, the second line sets the memory that STATA will 

use to 100 megabytes.  You probably won‘t require anything near that amount unless 

you start working with household surveys, but I did this just to be safe.  Now R can 

read in at least some ―foreign‖ data files, like STATA data files, so before you start, 

you might remember to type in the Load Package and select foreign.  If, after you 

imported the data into STATA, as you‘ll see shortly, you saved that STATA data file 

as ―C:\temple.dta‖, you could subsequently read it into R using the commands 

 
> mystatadata <- read.table("C:/temple.dta") 

 

Step 5:  Presuming there are no problems with the file format, R should have read in 

your dataset.  To verify, just type in mydata into the command prompt 

 

R Code: 
> mydata 

[hit enter or ―Run‖ icon] 

 

and you should see the entire dataset flash before your eyes, including the variable 

headings.  Alternatively, R also has a data editor that you can select from the Edit 

menu, as follows 

 

Edit 

 Data editor… 

 

From this you can see whether the data is numeric or character, and you can 

accordingly change the format from one to the other, as need be.  The STATA 

equivalent of this is
7
 

 
browse 

[hit enter or ―do-‖ icon] or 
edit 

[hit enter or ―do-‖ icon] 

 

Things look okay at first glance with the STATA data, BUT, you will see in the 

introductory section to regression analysis that there is a minor problem that can be 

corrected. 

 

 

 

 

                                                 
6
 Again, notice that R, unlike STATA and everyone else, uses forward slashes.  R is funny that way. 

Also note that in STATA, if you want to give specific variable names that differ from the ones in the 

dataset, or if the dataset has no variable names, you would list the names exactly as you want them, in 

between ―insheet‖ and ―using‖, i.e. ―insheet var1 var2 var3 using …‖ 
7
 STATA does have a command prompt, so to see your data, you can either do ―browse‖ or ―edit‖ or 

hit the respective icons at the top of the screen 



 

 8 

 

Simple Summary Statistics 

 

The first thing you might try is get an idea about sample statistics for variables.  In 

this case, what about the variable income growth (DY) 

 

R Code: 
> summary(mydata$DY) 

 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 

-1.1110  0.1317  0.4545  0.4489  0.7337  1.6590 16.0000 

 

To get a summary of all the data, just remove the $DY and type summary(mydata). 

 

STATA Translation: 
summarize dy 

[STATA recognizes underscored letters are sufficient to run the command] 
 

Variable Obs Mean  Std. Dev. Min  Max 

dy  105 .4489098 .4760209 -1.11122 1.659233 
 

If you just type summarize, without any variable names, like with R‘s summary(mydata) 

command, you will get results for each variable in the dataset.  Let‘s compare.  Well, 

STATA gives you more aspects of the distribution in the summary command.  

STATA summarizes location (i.e., the mean), and scale (i.e., standard deviation), as 

well as observations, and extreme statistics, while R focuses on the location statistics 

at various points along the distribution.  It also tells you how many missing values 

there are, in this case 16.  You will see they report almost identical means, max‘s and 

min‘s.  If you‘d like the standard deviation and other summary statistics in R, you can 

use simple commands.  The R Code for standard deviation is 

 
> sd(mydata$DY, na.rm=T) 

[1] 0.4760209 
 

You see that the standard deviations are the same.  You will also note that R does not 

like missing variables, so you have to tell it to compute the standard deviation in spite 

of the missing values, using the ―not available‖ option, na.rm 

 

na.rm = T[rue].  The default is na.rm = F[alse]. 

 

But, R is more powerful than STATA.  R will let you compute other location statistics 

very easily.  That is, you can compute any quantile, the mean, or a trimmed mean.  

Also, R will let you compute different estimates of scale, other than the simple 

standard deviation/variance, such as median absolute deviations (i.e., the median of 

all absolute values of the deviations from the median.  MAD is computed by first 

calculating the sample median, then for each value in the sample subtract the median 

from it, and the median among all those differences gives you an alternative to the 

standard deviation).  Let‘s try all of these.  For the median, simply type 

 
> median(mydata$DY, na.rm=T) 

[1] 0.454473 
 

The median absolute deviation in this case is very similar to the standard deviation 
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> mad(mydata$DY, na.rm=T) 

 

[1] 0.4475302 
 

What about other points of location in the distribution, the quantiles.  If I type in the 

the following command, I get the minimum (0%), maximum(100%), the 25
th

, 50
th

 (or 

median) and 75
th

 quantiles (Note: quantile is another way to say percentile)
8
 

 
> quantile(mydata$DY,probs=seq(0,1,0.25),na.rm=T) 

 

       0%       25%       50%       75%      100%  

-1.111220  0.131653  0.454473  0.733686  1.659233 

 

STATA will allow you to do this last step, simply by entering in the following 

command on the prompt, or by selecting on the menu of options 

 

Statistics 

 Summary, tables & reports 

  Tables 

   Table of summary statistics (tabstat) 

 

or type 
 

tabstat dy, statistics( min p25 p50 p75 p90 max ) columns(variables) 

 
stats dy 

   

min -1.11122 

p25  .131653 

p50  .454473 

p75  .733686 

p90  .966824 

max 1.659233 

 

Okay, so you can have plenty of fun with location statistics, so I won‘t dwell too 

much on them.  Let‘s move to regressions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
8
 Note, the probs=seq(0,1,0.25), option says in English: ―on a 0 to 1 interval compute every 25

th
 

percentile‖.  If you replace 0.25, with 0.2, you‘ll get the 0, 20
th

, 40
th

, 60
th

, 80
th

, and 100
th

 percentiles. 
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Simple Regressions, and a Digression on Data Entry Problems 

 

Okay, the data‘s in memory, so you can now just run regressions to your heart‘s 

content.  For instance, let‘s just say that I want to estimate the following regression 

model, a simple log-linear version of the Solow Model 

 

1)           iiii
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where the left-hand side variable is the log-differential of gross domestic product 

between 1960 and 1985, which measures how different is GDP in 1985 from 1960.  

The Solow model would predict that: 1) the cross-sectional average GDP growth rate 

can be positive 00  , or negative 00  , 2) there should be convergence, such that 

higher initial income should mean lower growth rates, i.e., 01  , 3) population 

growth has a negative effect on growth, 02  , but let me point out that there is a 

minor inconsistency here, because usually when you have a log-log specification, 

your coefficient can be interpreted here as a percentage change, or elasticity.  

However, the ni is already a population growth rate, so really, the coefficient should 

be interpreted as a percentage change in the population growth rate; the specification 

tells you something about acceleration in population growth, not population growth 

itself.  Finally, higher investment rates (i.e., Investment/GDP) should lead to higher 

growth, 03  .  Written this way, the basic Solow model says if you‘re either 

initially rich or have accelerating population growth, it‘s bad news for you (or as they 

say in the States ―it sucks to be you‖).  The only good news for Solow is if you invest 

lots.  Let‘s see if, at a first glance, Solow holds up, at least with this formulation. 

 

R code: 
> lm(DY~LGDP60+LNGD+LINV, data=mydata) 

 

Call: 

lm(formula = DY ~ LGDP60 + LNGD + LINV, data = mydata) 

 

Coefficients: 

(Intercept)       LGDP60         LNGD         LINV   

     2.0143      -0.1830      -0.4248       0.6932 

 

Or you could do the following to get more detail.  First create an object called ―myreg‖ 

and then use the summary command to get more detail.
9
 

 
> myreg <- lm(DY~LGDP60+LNGD+LINV,data=mydata) 

> summary(myreg) 

 

 

 

 

                                                 
9
 In R, you don‘t call a regression a regression, but rather a linear model, hence the acronym ―lm‖.  The 

first thing R asks is ―what is the formula you want me to run?‖  So, your ―dependent‖/left-hand-side 

variable is income growth, DY, tilde/squiggle ―~‖ separates that from the ―independent‖/right-hand 

side variables, and then since it‘s a linear model, you just put plusses in between the variables you 

would like estimated (I guess if you wanted to force a negative coefficient, you would just have a 

minus sign).  Notice that to the right of the equation is the option ―data=mydata‖. 
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Call: 

lm(formula = DY ~ LGDP60 + LNGD + LINV, data = mydata) 

Residuals: 

      Min        1Q    Median        3Q       Max  

-1.127428 -0.178513 -0.007347  0.188355  0.968636  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.01428    0.83695   2.407   0.0179 *   

LGDP60      -0.18296    0.04164  -4.394 2.75e-05 *** 

LNGD        -0.42477    0.26517  -1.602   0.1123     

LINV         0.69322    0.08368   8.284 5.23e-13 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 0.3583 on 101 degrees of freedom 

Multiple R-Squared: 0.4497,     Adjusted R-squared: 0.4333  

F-statistic: 27.51 on 3 and 101 DF,  p-value: 4.368e-13 

 

STATA translation: 
regress dy lgdp60 lngd linv 

 
Source   SS  df MS  Number of obs = 105 

       F(  3,   101) = 27.51 

Model   10.5969361 3 3.53231204 Prob > F = 0.0000 

Residual 12.9690372 101  .128406309 R-squared = 0.4497 

Adj R-squared = 0.4333 

Total 23.5659733   104  .226595897 Root MSE = .35834 

 

dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

lgdp60 -.1829637 .0416373 -4.39 0.000 -.265561   -.1003664 

lngd -.4247712 .2651737 -1.60 0.112 -.9508046   .1012621 

linv  .6932226 .0836818  8.28 0.000  .5272205   .8592247 

_cons 2.014278 .8369527  2.41 0.018  .3539886  3.674567 

 

Notice the coefficients and standard errors in R and STATA are the same; that‘s good 

to know.  So, the intercept, suggests that on average between 1960 and 1985, holding 

everything else constant, log income doubled, since 2.0142780  .  Next, notice that 

there seems to be a sort of convergence, since -.18296371   is negative.  Next, 

there‘s the doom-and-gloom story of the acceleration of population growth, 

-.42477122  .  Finally, there‘s the Solow good news, .69322263  .  In sum 

 

1. on average growth was positive, when other factors equal zero 

2. there is convergence, since a percentage increase in initial income implies 

almost two-tenths of a percent lower growth rate 

3. Malthus might have smiled to see the more than fourth-tenths of one 

percentage decrease in growth due to a percentage increase in population 

growth, and 

4. Solow is happy because he would say, ―see, I told you, a one percent 

increase in investment/GDP implies almost seven-tenths of one percent 

higher growth 

 

Well, okay.  At first glance, it appears almost like a Malthusian story, so with a smile, 

we can gladly conclude that it‘s almost completely wrong.  It‘s time to look for 

something else.  Mankiw, Romer and Weil say ―wait a minute, there‘s something 

missing here: you forgot how much you liked school.‖  They want to add the average 

years of completed schooling to the regression 
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As with investment, MRW think that 04  .  Since the variable is already in the 

dataset, I create a new object ―myaugreg‖ into which I will dump the new regression 

formula that requires just an additional term in R, +LSCH, and then presto-change-o 

 
> myaugreg <- lm(DY~LGDP60+LNGD+LINV+LSCH,data=mydata) 

> summary(myaugreg) 

 

Call: 

lm(formula = DY ~ LGDP60 + LNGD + LINV + LSCH, data = mydata) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.96074 -0.18731  0.00183  0.19687  0.92485  

 

Coefficients: 

            Estimate Std. Error t value  Pr(>|t|)     

(Intercept)  3.11285    0.85045   3.660  0.000406 *** 

LGDP60      -0.29732    0.04997  -5.950  4.07e-08 *** 

LNGD        -0.50668    0.25232  -2.008  0.047362 *   

LINV         0.55286    0.08770   6.304  8.12e-09 *** 

LSCH         0.21645    0.05928   3.651  0.000419 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 0.3388 on 99 degrees of freedom 

Multiple R-Squared: 0.516,      Adjusted R-squared: 0.4964  

F-statistic: 26.38 on 4 and 99 DF,  p-value: 6.696e-15 

 

I‘ll get to STATA, but let me interpret the changes first, and later confirm if STATA 

gives me the same thing.  Note the sample falls from 105 to 104 because one country 

(looks like Guinea) has no education data.  So now, on average log income tripled 

during that period, the convergence rate is higher, the elasticity of population growth 

is stronger, the effect of investment is weaker than before, and average years of 

schooling do have a positive effect on growth.  At first glance, Malthus, Solow, and 

MRW would be happy (if you read Temple‘s paper or the working paper I wrote, and 

you‘ll see how to make Malthus, Solow, and MRW unhappy).  Now let‘s try to run 

the regression in STATA.  When I run 

 
regress dy lgdp60 lngd linv lsch 

 

no observations 
 

unlike before, I don‘t get table of output.  That‘s funny.  So, the first thing I do is type 

in the ―browse‖ or ―edit‖ command in STATA to look at the data.  What I notice is 

that when STATA imported the file, which is not a problem with R, that some of the 

cells were interpreted as blank character cells, when in fact they should have been 

filled with a period representing a missing value.  So at this point R laughs at STATA: 

―haha, you can‘t even read in the data correctly‖.  So, we‘ll have to coax STATA into 

seeing things properly.  Automatically, you can interpret STATA as saying ―I‘m 

reading this variable as a character/string variable, so if you don‘t agree, help me out.‖  

As proof, simply type the command
10

 

 

                                                 
10

 Again the underline on ―des‖ implies that to use the command you only need the first three letters. 
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describe 

 

country str15 %15s 

mrwno  byte %8.0g MRWNO 

nsam  byte %8.0g NSAM 

isam  byte %8.0g ISAM 

osam  byte %8.0g OSAM 

africa  byte %8.0g AFRICA 

latinca byte %8.0g LATINCA 

eastasia byte %8.0g EASTASIA 

indust  byte %8.0g INDUST 

gdp60  long %12.0g GDP60 

gdp85  int %8.0g GDP85 

gdpg  float %9.0g GDPG 

popn  float %9.0g POPN 

inv  float %9.0g INV 

school  float %9.0g SCHOOL 

lngd  float %9.0g LNGD 

linv  float %9.0g LINV 

lsch  str8 %9s LSCH 

lgdp60  float %9.0g LGDP60 

lgdp85  str8 %9s LGDP85 

dy  float %9.0g DY 
 

Look at the two lines that I have highlighted with bold print, the line for ―lsch‖, 

natural log of schooling, and also the line for ―lgdp85‖, natural log of GDP in 1985.  

The two middle columns suggest that the variables are being read as eight-character 

string variables (str8).  So, the first thing you might try is to fill in those missing 

values in STATA, by hand, by opening up the editor.  I do so, and as I‘m doing this, 

STATA is spitting out in it‘s own language what I just did to the data, hence when I 

close the data editor, you‘ll notice the following commands on the screen 
 

- replace lsch = "." in 16 

- replace lgdp85 = "." in 14 

- replace lgdp85 = "." in 36 

- replace lgdp85 = "." in 44 

- replace lgdp85 = "." in 45 

- replace lgdp85 = "." in 66 

- replace lsch = "." in 66 

- replace lsch = "." in 68 

- replace lsch = "." in 72 

- replace lgdp85 = "." in 72 

- replace lgdp85 = "." in 78 

- replace lgdp85 = "." in 81 

- replace lgdp85 = "." in 82 

- replace lgdp85 = "." in 91 

- replace lgdp85 = "." in 111 

- replace lgdp85 = "." in 114 

- replace lgdp85 = "." in 118 

 

You could use these codes again, by copying and pasting them into a do-file, AS 

LONG AS you do not change the order of the data.  However, STATA won‘t accept 

these codes as is, so if you are using a do-file, you could copy and paste these codes 

into the do file, and then type ―crtl‖ + ―h‖, and paste ―- ‖ in the ―find‖ command, and 

leave the ―replace‖ space empty.  When you hit enter, it will remove all of the ―- ‖ 

and replace it with nothing, saving you lot‘s of trouble.   This might seem like overkill 

for a few lines, but wait until you have to do this 200 times, or more.  Ouch!  Using 

―crtl + h‖ in this way will produce the following codes which you can reuse in 

STATA anytime 
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replace lsch = "." in 16 

replace lgdp85 = "." in 14 

replace lgdp85 = "." in 36 

replace lgdp85 = "." in 44 

replace lgdp85 = "." in 45 

replace lgdp85 = "." in 66 

replace lsch = "." in 66 

replace lsch = "." in 68 

replace lsch = "." in 72 

replace lgdp85 = "." in 72 

replace lgdp85 = "." in 78 

replace lgdp85 = "." in 81 

replace lgdp85 = "." in 82 

replace lgdp85 = "." in 91 

replace lgdp85 = "." in 111 

replace lgdp85 = "." in 114 

replace lgdp85 = "." in 118 

 

After I did this, I still can‘t seem to read in the data properly.  So, let me try 

something else.  Hmm, maybe I can simply recreate the variables from Temple‘s file 

(but I‘ll temporarily rename the ones I‘ll drop so that I can double-check.) 

 
rename lsch lsch2 

rename lgdp85 lgdp852 

generate lsch=ln(school) 

generate lgdp85=ln(gdp85) 

 

I think I have what looks right.  So, then I try to run the regression again 

 
regress dy lgdp60 lngd linv lsch 

 
Source   SS  df MS  Number of obs = 104 

       F(  4,    99) = 26.38 

Model   12.1132343 4 3.02830858 Prob > F = 0.0000 

Residual 11.364106 99 .11478895 R-squared = 0.5160 

       Adj R-squared = 0.4964 

Total  23.4773403 103 .227935343 Root MSE = .33881 

 

dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

lgdp60 -.2973202 .0499732 -5.95 0.000  -.396478  -.1981625 

lngd -.5066783 .2523226 -2.01 0.047 -1.007341  -.0060155 

linv  .5528552 .0877002  6.30 0.000   .378839   .7268714 

lsch  .2164498 .0592838  3.65 0.000   .0988179  .3340817 

_cons 2.116063 .7930588  2.67 0.009   .542462  3.689663 

 

Now comparing with what we got in R, everything looks right, EXCEPT the 

intercept.  So, then I look back at the data, using ―browse‖ or ―edit‖, [actually I did 

this first, and you should do this first too] and you notice that the lsch and lsch2 are 

NOT the same.  You can verify by typing in the STATA command prompt 

 
edit country school lsch lsch2 lgdp85 lgdp852 

 

Since STATA is still not reading in lsch2 as numeric, we can‘t just ask STATA why 

they‘re not the same.  The first things that come to mind to fix this are: 1) copy the 

two series into EXCEL, and 2) look at what R has listed.  I‘ll show you the latter, but 

get used to using EXCEL to check your data because it‘s usually quicker.  Since we 

know that mydata$LSCH in R is supposed to be the natural log of some variable, the 

way to transform the data back to its supposed original form is to compute the 
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exponential of the natural log.  So, to transform back R‘s version of mydata$LSCH use 

the following command 

 
> exp(mydata$LSCH) 

 

What you see is that exp(mydata$LSCH)looks like mydata$SCHOOL but divided by 100. 

So it looks like Temple does this because it‘s school enrolment rates.  Now we can go 

back to STATA and first drop the last version of lsch and recreate it using the 

following commands 

 
drop lsch 

generate lsch=ln(school/100) 
 

Having done that we simply rerun the codes again in STATA, and you get 

 
reg dy lgdp60 lngd linv lsch 

 
Source  SS  df MS  Number of obs = 104 

        F(  4,    99) = 26.38 

Model  12.1132343 4 3.02830857 Prob > F = 0.0000 

Residual 11.3641061 99 .11478895 R-squared = 0.5160 

        Adj R-squared = 0.4964 

Total  23.4773403 103 .227935343 Root MSE = .33881 

 

dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

lgdp60 -.2973202 .0499732 -5.95 0.000  -.396478  -.1981625 

lngd -.5066783 .2523226 -2.01 0.047 -1.007341  -.0060155 

linv  .5528552 .0877002  6.30 0.000   .378839   .7268714 

lsch  .2164498 .0592838  3.65 0.000   .0988179  .3340817 

_cons 3.112851 .8504456  3.66 0.000  1.425382  4.800319 

 

Now, it looks just like R.  So, you can drop the two old variables 

 
drop lsch2 lgdp852 
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Replicating Other Peoples’ Work 

 

So, in case you weren‘t aware, there‘s a real problem in economics research: you 

often can‘t replicate other peoples‘ work.  The ―irreproducibility‖ of economics 

research was first documented in a 1986 article in the American Economic Review, 

based on a project funded by the Journal of Money, Credit and Banking (see Dewald, 

et al. (1986)). 

 

In one of the econometrics classes I took as a graduate student, one of the assignments 

was to replicate a paper, in line with the Dewald, et al. (1986) study.  My results were 

close in some cases, but not in others.  By replication, I mean: can you read the paper, 

follow their steps to estimation, presuming you are able to get the data they used 

(sometimes people give you the run-around at this stage), and can you get the same 

results that they get?  A perfect example of one the problems in applied research is 

when you see in the data citations ―taken from various sources,‖ or something to that 

effect.  So be diligent in avoiding that and other ambiguities, whether you intended 

them or not. 

 

In the newspapers, you will sometimes read of one controlled laboratory experiment 

in the hard sciences being replicated (or not) by people in another laboratory.  I even 

heard one prominent economist whine that another prominent economist‘s 

experimental work could not be replicated, and that the data were not freely available.  

That‘s why I encourage you to distribute freely any codes you may develop on your 

own, as well as the data (unless it‘s confidential, or perhaps proprietary) to anyone 

who asks.  As long as you‘re not trying to prove that demand curves don‘t slope 

downward, welcome the opportunity to discover errors in your own work in your 

search for truth.  Often the only way knowledge advances is because someone was 

bold enough to try something new and different, and trial and the discovery of error is 

part of that process.  My dissertation advisor, Joe Reid, used to say that the way to do 

research is to combine technique with a minimum amount of creativity.  The 

creativity was his explanation for the success of the ―Chicago School‖ in having so 

many Nobel Laureates.  I‘m convinced. 

 

So, in this case, I‘ll try to replicate some of the regressions in Mankiw, Romer, and 

Weil (1992).  Specifically, I‘ll try to replicate the coefficients reported in Table IV on 

page 426.  First, notice that R and STATA are producing basically the same results.  

Second, notice that the smaller the sample size the greater the difference between the 

results in the MRW paper and what is reported here.
11

  In this case, I would not 

attribute it to any intended deceit.  The most likely explanation is the fact that the 

paper appears in print in 1992, and computers have come a long way since then (the 

internet probably wasn‘t even available to the public when they did the actual 

estimation!).  So this is more-or-less reproducible.  Still, reproducible should be taken 

literally: either it is or it is not. 

 

 

 

 

                                                 
11

 The three samples as described on page 413 are the 98 countries in which oil is not a dominant 

sector, the 75 countries whose data quality is judged to be above the unsatisfactory grade of ―D‖ by 

Summers & Heston (1988), and the sample of OECD countries. 
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The Non-Oil Sample 

 

R Code: 

 
> myregnsam <- lm(DY~LGDP60+LNGD+LINV,data=subset(mydata,mydata$NSAM == 1)) 

> summary(myregnsam) 

 
Call: 

lm(formula = DY ~ LGDP60 + LNGD + LINV, data = subset(mydata,  

    mydata$NSAM == 1)) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-1.07648 -0.15215  0.01185  0.19595  0.96056  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.91937    0.83368   2.302  0.02353 *   

LGDP60      -0.14090    0.05202  -2.709  0.00803 **  

LNGD        -0.30235    0.30439  -0.993  0.32311     

LINV         0.64724    0.08670   7.465 4.16e-11 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 0.3507 on 94 degrees of freedom 

Multiple R-Squared: 0.4019,     Adjusted R-squared: 0.3828  

F-statistic: 21.05 on 3 and 94 DF,  p-value: 1.622e-10 

 

STATA Translation: 

 
regress dy lgdp60 lngd linv if nsam==1 

 
Source  SS  df MS  Number of obs = 98 

       F(  3,    94) = 21.05 

Model  7.76763568 3 2.58921189 Prob > F = 0.0000 

Residual 11.5611668 94 .122991136 R-squared = 0.4019 

       Adj R-squared = 0.3828 

Total  19.3288025 97 .199266005 Root MSE = .3507 

 
dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

 

lgdp60 -.1409009 .0520183 -2.71 0.008 -.2441845  -.0376173 

lngd -.3023473 .3043856 -0.99 0.323 -.9067121   .3020174 

linv  .6472379 .0866999  7.47 0.000  .4750932   .8193827 

_cons 1.919375 .8336781  2.30 0.024  .2640873  3.574662 
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The Intermediate Sample 

 

R Code: 

 
> myregisam <- lm(DY~LGDP60+LNGD+LINV,data=subset(mydata,mydata$ISAM == 1)) 

> summary(myregisam) 

 
Call: 

lm(formula = DY ~ LGDP60 + LNGD + LINV, data = subset(mydata,  

    mydata$ISAM == 1)) 

 

Residuals: 

       Min         1Q     Median         3Q        Max  

-1.176e+00 -1.733e-01  6.905e-05  1.467e-01  9.347e-01  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.24967    0.85473   2.632 0.010406 *   

LGDP60      -0.22783    0.05725  -3.980 0.000165 *** 

LNGD        -0.45746    0.30743  -1.488 0.141177     

LINV         0.64587    0.10392   6.215 3.11e-08 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

  

Residual standard error: 0.3258 on 71 degrees of freedom 

Multiple R-Squared: 0.3788,     Adjusted R-squared: 0.3526  

F-statistic: 14.43 on 3 and 71 DF,  p-value: 1.950e-07 

 

STATA translation: 

 
regress dy lgdp60 lngd linv if isam==1 

 
Source  SS  df MS  Number of obs = 75 

       F(  3,    71) = 14.43 

Model  4.59631642 3 1.53210547 Prob > F = 0.0000 

Residual 7.53685483 71 .106152885 R-squared = 0.3788 

       Adj R-squared = 0.3526 

Total  12.1331713 74 .163961774 Root MSE = .32581 

 
dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

lgdp60 -.2278295 .0572506 -3.98 0.000  -.3419838  -.1136751 

lngd -.4574575 .3074298 -1.49 0.141 -1.070455    .1555401 

linv  .6458655 .1039176  6.22 0.000   .4386598   .8530713 

_cons 2.249667 .854728  2.63 0.010   .5453879  3.953947 
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The OECD Sample 

R Code: 

 
> myregosam <- lm(DY~LGDP60+LNGD+LINV,data=subset(mydata,mydata$OSAM == 1)) 

> summary(myregosam) 

 

Call: 

lm(formula = DY ~ LGDP60 + LNGD + LINV, data = subset(mydata,  

    mydata$OSAM == 1)) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.18289 -0.11598 -0.03232  0.06111  0.36293  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.14032    1.18069   1.813   0.0866 .   

LGDP60      -0.34991    0.06574  -5.322 4.65e-05 *** 

LNGD        -0.76626    0.34524  -2.220   0.0395 *   

LINV         0.39010    0.17612   2.215   0.0399 *   

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 0.1529 on 18 degrees of freedom 

Multiple R-Squared: 0.6767,     Adjusted R-squared: 0.6228  

F-statistic: 12.56 on 3 and 18 DF,  p-value: 0.0001145 

 

STATA translation: 

 
regress dy lgdp60 lngd linv if osam==1 

 
Source  SS  df MS  Number of obs = 22 

F(  3,    18) = 12.56 

Model  .880514816 3 .293504939 Prob > F = 0.0001 

Residual .420714816 18 .023373045 R-squared = 0.6767 

       Adj R-squared = 0.6228 

Total  1.30122963 21 .061963316 Root MSE = .15288 

 
dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

lgdp60 -.3499109 .0657429 -5.32 0.000  -.4880315   -.2117903 

lngd -.7662572 .3452362 -2.22 0.040 -1.491572    -.0409428 

linv  .3900988 .1761202  2.21 0.040   .020084     .7601137 

_cons 2.14032 1.180692  1.81 0.087  -.3402218   4.620861 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 20 

 

Basic Statistical Graphics 

 

I think R is better than STATA for statistical graphics, simply because creators of R 

based the grammar, and hence the program‘s capabilities of expression, on S-Plus, 

and S-Plus is by far the best package for statistical graphics I‘ve seen.  Although, 

statisticians may even have preferences for programs I‘m not aware of.  However, 

STATA has come a long way since version 7.0.  STATA, in my opinion is now 

second best for graphics.  You‘ll see below that sometimes I find STATA‘s graphics 

seem less accurate than R‘s, but the story is more or less the same.  If you work with 

STATA version 8 or 9, you will see that everything is now menu driven, which is 

great, because you can do your first graph simply by fiddling with the menu options, 

and then if you need to replicate it in the future, you can ―copy‖ + ―paste‖ the 

commands in a do-file for future reference that STATA spits out on the screen each 

time you submit a request to create a graph. 

 

Okay, so let‘s return to estimating equation 2), the Augmented Solow model around 

the steady-state.  One of the first things you should do is to look at the residuals from 

the Augmented Solow Model OLS regression.  You might think of doing a 

historgram, perhaps overlaid with a normal density plot.  This can be done in R, but 

again, it requires lots of knowledge about how to give R the exact details it wants to 

do exactly what you want it to do.  To compare, look below at the lines of code 

required to do this plot, versus what is required in STATA.  Although R keeps the 

augmented Solow Model regression output in it‘s memory, I will reproduce it so that 

you won‘t have to flip back to remind yourself of the command, so that you can create 

the residuals as follows 

 

R Code: 
> myaugreg <- lm(DY~LGDP60+LNGD+LINV+LSCH,data=mydata) 

> augsolres <- myaugreg$residuals 

 

A historgram for these residuals with a Normal density plot laid over it is produced in 

Figure 1 below.  The first line creates a histogram with 20 bins, the second line 

creates, the object over which the normal density line will be created, the third line 

creates the normal density object based on the new.x specified in the second line, with 

the min , and the final line plots it.  I got this from the S-Plus 2000 manual (see p. 

473), just to tell you how similar R and S-Plus are. 
 

> hist(augsolres,br=20,freq = FALSE, col='light blue') 

> new.x <- seq(min(augsolres), max(augsolres), length=length(augsolres)) 

> new.dens <- dnorm(new.x, mean = mean(augsolres), sd=sd(augsolres)) 

> lines(new.x, new.dens) 
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Figure 1. Histogram and Normal Density Plot of Augmented Solow Model OLS 

Residuals in R 

 
 

You can change the color, but I chose North Carolina Blue, i.e., ‗light blue‘.  In 

STATA, they do everything for you, so the commands are simpler, but you also have 

less control over the plots.  In STATA, however, its memory is almost as short as the 

last command you ran.  So, unless you just estimated the regression, to create the 

residuals, you will have to re-estimate the regression, and then create the residuals 

 

STATA Translation: 
reg dy lgdp60 lngd linv lsch 

predict augsolres, res 

 

This will create a new variable in your dataset called augsolres.  You create a 

histogram with 20 bins and a normal density plot using 
 

histogram augsolres, bin(20) normal 

 

You‘ll notice that the process of assigning observations to bins for each bar in the 

histogram seems to differ between R and STATA, hence the histograms look slightly 

different in the center of the distribution. 
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Figure 2. Histogram and Normal Density Plot of Augmented Solow Model OLS 

Residuals in STATA 
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Having done the plots, now comes the warning.  If you want to look at the distribution 

of something, or compare it with a theoretical distribution, DON‘T use the histogram 

with a normal density plot.  I quote from the R help menu for the histogram 

command
12

 

 
## Comparing data with a model distribution should be done with qqplot()! 

     qqplot(x, qchisq(ppoints(x), df = 4)); abline(0,1, col = 2, lty = 2) 

 

## if you really insist on using hist() ... : 

     x <- rchisq(100, df = 4) 

     hist(x, freq = FALSE, ylim = c(0, 0.2)) 

     curve(dchisq(x, df = 4), col = 2, lty = 2, lwd = 2, add = TRUE) 

 

I actually tried that suggestion before I found the S-Plus commands above, but it 

didn‘t seem to work when I replaced the Chi-squared with the normal.  So, since a 

histogram with normal density plot is such a BAD idea, forget about that and consider 

a better way to compare two univariate distributions using quantiles (quantile being 

another word for percentile).  The logic behind this is that the data are first sorted 

from largest to smallest.  You then assign a ranking to that data point, and for each of 

the i points in the sample, a probability point is computed as follows 

 

3)    
am

ai
pi
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12

 In fact, I tried this command in R but after replacing rchisq and dchisq with rnorm and dnorm, it 

didn‘t work.  So, I then went looking to see if I couldn‘t find the proper way to do this in R in the S-

Plus 2000 manual, and I found something that works.  So that‘s a hint that you have an even greater 

number of references to check beyond just the R documentation. 
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where i is the point, a is a parameter that is used in plotting, and m is the sample size.  

The logic of what it does to the sample is not obvious right away, so an example can 

help.  First draw a unit normal random variable (i.e., it has mean zero, standard 

deviation equal to one).  Before that, set the seed so that you can reproduce this result 

as often as you‘d like, and then draw the pseudo-random sample 

 
> set.seed(91) 

> rs <- rnorm(15) 

> cbind(sort(rs)) 

 

 [1,] -0.96037627 

 [2,] -0.90704826 

 [3,] -0.85393422 

 [4,] -0.85348024 

 [5,] -0.66227141 

 [6,] -0.31626267 

 [7,] -0.11384293 

 [8,] -0.04062524 

 [9,]  0.02152212 

[10,]  0.04456292 

[11,]  0.21770639 

[12,]  0.51552953 

[13,]  1.84387598 

[14,]  2.03309294 

[15,]  2.47094468 

 

I used cbind() in front of sort() to display the output as a column and show you the 

ranks in brackets.  Now, this is my random sample, and the numbers in brackets 

would be the i‘s in equation 3).  If you have a small sample, less than or equal to 10, 

then you should use a = 0.375, but we have 15, so a = 0.5.  If you plug these values 

into equation 3), you get the probability points of the empirical distribution using 

 

4) 
  15

5.0

5.021

5.0 







i

m

i
pi

 

 

If you plug in the ranks from 1 to 15 into equation 3), you get what‘s reported in the 

second column below [try it out: (1-0.5)/15, (2-0.5)/15, … (15-0.5)/15] 
 

> cbind("Random Sample"=sort(rs),"Percentiles"=ppoints(rs)) 

      Random Sample Percentiles 

 [1,]   -0.96037627  0.03333333 

 [2,]   -0.90704826  0.10000000 

 [3,]   -0.85393422  0.16666667 

 [4,]   -0.85348024  0.23333333 

 [5,]   -0.66227141  0.30000000 

 [6,]   -0.31626267  0.36666667 

 [7,]   -0.11384293  0.43333333 

 [8,]   -0.04062524  0.50000000 

 [9,]    0.02152212  0.56666667 

[10,]    0.04456292  0.63333333 

[11,]    0.21770639  0.70000000 

[12,]    0.51552953  0.76666667 

[13,]    1.84387598  0.83333333 

[14,]    2.03309294  0.90000000 

[15,]    2.47094468  0.96666667 

 

Verify for yourself, that, minus the labels, the quantile-quantile normal plot with a 

reference line that has an intercept equal to the mean of the sample, and a slope equal 

to the standard deviation of the sample can be reproduced with the following codes 
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> plot(qnorm(ppoints(15),mean=mean(rs),sd=sd(rs)),sort(rs)) 

> abline(0,1) 

 

and that this is equivalent to the ―canned‖ command 

 
> qqnorm(rs) 

> abline(mean(rs),sd(rs)) 

 

[However, I have to tell you that I‘m not sure why it is equivalent to the line with an 

intercept equal to zero and slope equal to one].  Note that there is usually a qqnorm 

reference line called qqline.  I believe S-Plus, R‘s commercial software older brother, 

uses a command equivalent to abline(mean(rs),sd(rs)), but the R command, qqline, 

adds a reference line that goes through the first and third quartiles (i.e., the 25
th

 and 

75
th

 percentiles).  So, in R, just use their ―canned‖ commands, which are good enough 

 
> qqnorm(rs) 

> qqline(rs) 

 

With a basic understanding of how quantiles and qq-plots work, you can apply it to 

the residuals from the Augmented Solow Model, to produce Figure 3 

 
> qqnorm(augsolres) 

> qqline(augsolres) 

 

On the left, if the dots are below (above) the line, then the data is heavier (lighter) 

tailed on the left-side of the distribution, and on the right, if the dots are above 

(below) the line, then the data is heavier (lighter) tailed on the right side of the 

distribution.  Later I‘ll add in text in the R plot as a reminder of what‘s heavy-tailed 

and light-tailed in a qq-plot. 
 

The STATA command ―qnorm‖, produces Figure 4:
13

 

 
qnorm augsolres 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
13

 The ―qnorm‖ command is confusing, and some statisticians might scream in outrage if they saw this.  

S-Plus makes a distinction between a quantile-normal plot, called ―qnorm‖ and a quantile-quantile 

normal distribution plot, called ―qqnorm‖ as we just saw.  The latter is just what we have just done, 

while the former, is just a plot of the probability points for the normal distribution.  You will see the 

former in many older applied statistics papers, like Fama (1965).  The reason why you no longer see 

them is that like the histogram, they are harder to read when making a comparison between two 

distributions (i.e., it is easier to compare something against a straight line than a curved line; quantile-

quantile normal plots make our life easy). 
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Figure 3. R Quantile-Quantile Normal Plot: Augmented Solow Model OLS Residuals  

 
Figure 4. STATA Quantile-Quantile Normal Plot: Augmented Solow Model OLS 
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Slightly Fancier Graphs with More Control Over Graph Options 

 

Now I can demonstrate how R trumps STATA.  It gives you way more control over 

your environment (the cost is acquiring the ability to think like a programmer).  This 

extends beyond graphics too, but for now here‘s an illustration.  I‘d like to change the 

default titles, and labels, and also add text to the plot.  R will let me add text, STATA 

will not (although STATA allows you to label points).  Running the following gives 

 

R Code: 
> qqnorm(augsolres,main="Normal Q-Q Plot",xlab="Normal 

Quantiles",ylab="Residual Quantiles") 

> qqline(augsolres) 

> text(-1.5,-0.8,"Fat-Tailed") 

> text(-2,-0.3,"Light-Tailed") 

> text(2,0.3,"Light-Tailed") 

> text(1.7,0.85,"Fat-Tailed") 

 

Figure 5. Quantile-Quantile Normal Plot of Augmented Solow Model OLS Residuals 

in R with Custom Axis Labels, Title and Text Overlaid on Plot 

 
 

The last four lines I put in to help remind you when the data is heavy-tailed and when 

it‘s light-tailed.  Through trial and error, I figured out the proper location for the text.  

In STATA, sometimes you‘re left guessing if you forget what it does, because the 

help files don‘t help here. The STATA command without the reminder about which 

points are light- and heavy-tailed is 

 

STATA Translation: 
qnorm augsolres, ytitle("Residual Quantiles") xtitle("Normal Quantiles") 

title("Normal Q-Q Plot") 
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Figure 6. Quantile-Quantile Normal Plot of Augmented Solow Model OLS Residuals 

in STATA, with Custom Axis Labels, Title but without Text Overlaid on Plot 
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More Advanced Graphics 

 

Okay, so if you look again at the ―Visualizing Growth‖ working paper, you‘ll notice 

that I wrote some codes in the appendix for S-Plus, and I can, with minor alterations 

apply them in R, to generate the graphs.  The first thing to do is to download and 

install the lattice package, which is R‘s equivalent of S-Plus‘s Trellis graphics 

environment.  To do this, as I alluded to earlier, R first wants you to select from the 

package menu 

 

Packages 

 Install package(s)… 

  lattice 

 

Then you can load the lattice package by going back to the menu as selecting 

 

Packages 

 Load package… 

  lattice 

 

First, consider the scatterplot matrix.  It is like visual representation of what a 

regression does, except that it does not remove the partial effects of what would be the 

independent variables.  You could remove the partial effects by hand though, by 

estimating the residuals from regressions among the independent variables. 
 

> mydata <- read.table("C:/temple.csv",header=T,sep=",") 

> mymatrix <- 

cbind(mydata$DY,mydata$LGDP60,mydata$LNGD,mydata$LINV,mydata$LSCH) 

> splom(~mymatrix, varnames = c("DY","LGDP60","LNGD", "LINV","LSCH")) 
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Figure 7. Scatterplot Matrix of Basic Solow Model in R 

 

 

The way to read the scatterplot matrix is to look at each scatterplot within the matrix 

individually.  Once you focus on an individual panel, the way to read the axes is as 

follows.  To know what label to use for the horizontal axis, simply look up or down 

the column to find the label, while for the vertical axis, simply look left or right to 

find the label. 

 

Spotting the Multicollinearity 

 

If you look at the panels for what I have until now been referring to as independent 

variables LGDP60, LNGD, LINV, LSCH, you see that there are correlations between 

LINV and LSCH, and also for LGDP60 and LINV and LGDP60 and LSCH.  That 

will make it difficult to interpret the marginal impact of those variables. 
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The STATA equivalent can be generated as follows 
 

drop lsch 

generate LSCH=ln(school/100) 

graph matrix dy lgdp60 lngd linv LSCH 

 

I added the line drop lsch, and capitalized the variable name, because when I run the 

scatterplot matrix the other variables appears capitalized, while lsch appears in 

lowercase.  Notice that the labels are read from top left to bottom right in STATA, 

whereas in R the labels go from bottom left to top right. 

 

Figure 8. Scatterplot Matrix of Basic Solow Model in STATA 
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I can make a slightly fancier version of this scatterplot matrix in R with more text.  I 

can also select certain points within the graph as follows.  You could do this in 

STATA, but only panel by panel, using the overlaid plot command.  I‘ll drop the 

schooling variable so that the text fits nicely in the boxes. 

 
> solowmatrix <- cbind(mydata$DY,mydata$LGDP60,mydata$LNGD,mydata$LINV) 

> splom( ~ solowmatrix, varnames = c("Per Capita\n\Real GDP\n\Growth","Log 

of\n\Real Per\n\GDP in 1960","Log of\n\(n+g+d)","Log\n\Investment\n\Share"), 

panel = function(x, y){ 

i <- c(2,3,5,6,8,9,12,14:24,27:33,35,37,38,40,41,42,46,47,49,58,97) 

j <- c(1,4,7,10,11,13,25,26,34,36,39,43:45,48,50:57,59:96,98:121) 

panel.splom(x[i],y[i], pch = 16, cex = 0.7, col = 1) 

panel.splom(x[j],y[j], pch = 16, cex = 0.4, col = 2) 

},sub=list("Points In Black: Angola, Benin, Burkina Faso, CAR, Chad, 

Ethiopia, Gambia, Ghana, Ivory Coast, Kenya, Lesotho, Liberia, Madagascar, 

Malawi, Mali, Mauritania, 

Mozambique, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, Somalia, Sudan, 

Tanzania, Togo, Uganda, Zaire, Zambia, Bangladesh, Burma, India, Nepal, 

Haiti",cex=0.5)) 

 

Figure 9. Scatterplot Matrix of Basic Solow Model in R with Certain Points Selected 
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Visualizing Heteroskedasticity 

 

Cleveland (1993) discusses one technique that can be used to visualize 

heteroskedasticity in cross-sectional data.  In this case, the heteroskedasticity is 

visualized simply by adding a loess (short for ―local estimation‖) regression line to a 

scatterplot of the myreg residuals against the fitted values of myreg that were estimated 

at the beginning.  This is not to be confused with lowess, which STATA has, which is 

the predecessor and stands for locally-weighted estimation, which I believe was also 

created by Cleveland.  I can‘t remember why, but I think loess is better than lowess, 

but STATA users don‘t seem to know of this yet, at least not as I was writing this. 

 
> xyplot(sqrt(abs(residuals(myaugreg))) ~ fitted.values(myaugreg), panel = 

function(x, y) 

{panel.xyplot(x, y, pch = 16, cex = 0.7, col = 1) 

panel.loess(x, y, span = 1, degree = 2, family = 'symmetric') 

}, aspect = 1,xlab="Fitted Values of Regression",ylab="Residuals of  

Regression") 

 

If there were no heteroskedasticity the loess line would be flat.  Instead we see 

curvature, i.e., there is heteroskedasticity in the cross section of data. 

 

Figure 10. Residual-Fit Plot 
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Quantile Regressions Part I:  Mean (OLS) vs. Median (LAD) Regressions 

 

The regressions estimated previously applied the method of ordinary least squares 

(OLS), proposed by Gauss, when he was about 18 years old (see Wikipedia).  That is, 

you choose the parameter values that minimize the sum of squared residuals.  You can 

see appendix 1 for a formulation of the problem.  However, in the history of statistics, 

there is a regression estimator that predates the method of least squares.  Koenker 

(2006) cites a reference pointing to Boscovich as the originator of the median 

regression that predates OLS.  This estimator chooses parameters that minimize the 

sum of absolute errors.  Here again, a formal presentation of this is found in appendix 

1.  If you know the difference between the mean and median, you also know the 

difference between OLS and the median regression: they‘re multi-variate extensions 

of the simple location statistics.  STATA has a routine for quantile regressions, and 

the median regression is the default (I‘ll get to the other quantiles later, but for now 

just think of median vs. mean).  R does not have a canned package, so now STATA 

laughs at R, saying ―haha, you don‘t even have quantile regressions‖.  To which R 

responds, ―Not so fast, you can just download the routine written by Roger Koenker, 

the co-creator of regression quantiles, himself!‖  Now since you‘ve already seen how 

to load the lattice package, try same thing but this time go to the Packages menu and 

under Install Packages(s) select quantreg from the R web-site.  Then you go back to 

the Packages menus and under Load package select quantreg again.  With this done, 

replace the lm() command with rq(), which produces the following 

 

R Code: 
> myqreg <- rq(DY~LGDP60+LNGD+LINV,data=mydata) 

> summary.rq(myqreg) 

 

Call: rq(formula = DY ~ LGDP60 + LNGD + LINV, data = mydata) 

tau: [1] 0.5 

Coefficients: 

            coefficients lower bd upper bd 

(Intercept)  1.85431      1.06070  3.18443 

LGDP60      -0.20447     -0.25420 -0.09781 

LNGD        -0.57574     -0.83916 -0.12555 

LINV         0.73441      0.54269  0.93355 

 

STATA translation: 
 

qreg dy lgdp60 lngd linv 

 

Median regression    Number of obs = 105 

  Raw sum of deviations 39.07244 (about .45447299) 

  Min sum of deviations 27.83085  Pseudo R2 = 0.2877 

dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

        

lgdp60 -.2044671 .0535138 -3.82 0.000  -.3106242 -.0983101 

lngd -.5757396 .3311618 -1.74 0.085 -1.232675   .0811963 

linv  .7344133 .1047563  7.01 0.000   .5266049  .9422216 

_cons 1.85431 1.041517  1.78 0.078  -.2117789 3.920399 

 

Now we can compare the average and median regressions.  The intercept for the 

average is higher (2.01428 vs. 1.85431).  However, I once asked Gilbert Bassett about 

the intercept and I believe he said that in quantile regressions it does not have a 

straightforward interpretation.  So, perhaps they are not comparable here.  

Convergence for the average is a bit weaker as growth rates are just a bit less sensitive 

to initial income (-0.18296 vs. -0.20447), population growth has a weaker effect on 



 

 34 

 

growth for the average relative to the median (-0.42477 vs. -0.57574), investment has 

a slightly smaller marginal effect than at the median (0.69322 vs. 0.73441).  That‘s for 

the basic Solow model.  You‘ll also notice that R doesn‘t produce standard errors for 

quantile regressions.  A former World Bank colleague who learned econometrics from 

Roger Koenker told me he doesn‘t believe in the usual goodness of fit measures in 

classical statics, such as standard errors, or R-squared, for quantile regressions, 

because he also doesn‘t believe in the Central Limit Theorem.  I don‘t mean that he 

has disproven it, but if you read the first page of the Koenker and Bassett 

Econometrica article, they quote the Statistician Cramer recalling Poincare‘s aphorism 

 

… everyone believes in the [Gaussian] law of errors, the experimenters 

because they think it is a mathematical theorem, the mathematicians because 

they think it is an experimental fact. 

 

You could still replace experimenters with ―many applied econometricians‖ and 

mathematicians with ―many econometric theorists.‖  The lesson is, don‘t be in awe of 

the Central Limit Theorem; it is limited in its usefulness.  So, what about the 

Augmented Solow model for the median? 

 

R Code: 
> myaugqreg <- rq(DY~LGDP60+LNGD+LINV+LSCH,data=mydata) 

> summary.rq(myaugqreg) 

 
Call: rq(formula = DY ~ LGDP60 + LNGD + LINV + LSCH, data = mydata) 

tau: [1] 0.5 

Coefficients: 

            coefficients lower bd upper bd 

(Intercept)  2.60694      2.02883  3.33940 

LGDP60      -0.30527     -0.37056 -0.24153 

LNGD        -0.68896     -0.91396 -0.54166 

LINV         0.56529      0.44944  0.74418 

LSCH         0.17994      0.09593  0.28354 

 

STATA translation: 
qreg dy lgdp60 lngd linv lsch 

 

Median regression     Number of obs = 104 

  Raw sum of deviations 38.77058 (about .45447299) 

  Min sum of deviations 25.65635   Pseudo R2 = 0.3383 

dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

lgdp60 -.3052676 .0406877 -7.50 0.000  -.3860008 -.2245343 

lngd -.6889622 .2171608 -3.17 0.002 -1.119856  -.258068 

linv  .5652871 .0787763  7.18 0.000   .408978   .7215963 

lsch  .179945 .0510167  3.53 0.001   .0787167  .2811732 

_cons 2.606932 .7782992  3.35 0.001  1.062618  4.151247 

 

When you add in education, the intercept for the average is higher (3.11285 vs. 

2.60694), convergence for the average is a bit weaker as growth rates are less 

sensitive to initial income (-0.29732 vs. -0.30527), population growth has a weaker 

effect on growth for the average relative to the median (-0.50668 vs. -0.68896), 

investment has a smaller marginal effect than at the median (0.55286 vs. 0.56529), 

and schooling is associated with slightly higher growth rates (0.21645 vs. 0.17994).  I 

hope you got something out of the basics of data manipulation and regression. 
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Quantile Regressions Part II:  What About Regressions for Non-Central 

Locations 

 

In the language of statistics, the mean and median are univariate measures of location.  

They are also measures of central tendency for the typical observation (the average 

and middle, respectively).  Likewise, OLS and the median regression are multivariate 

measures of location, and likewise, they provide estimates of central tendency.  If you 

read most journal articles they focus on central tendency too.  Often, but not always, 

the most interesting questions in economics have nothing at all to do with central 

tendency.  Here are some examples:  1) compensation packages for executives within 

a corporation [think Bill Gates vs. the middle-level managers], 2) caloric intake or 

consumption levels for really impoverished people, 3) really large exchange rates 

devaluations, 4) really high or low test scores, 5) peaks and troughs of business 

cycles.  There are many other examples. 

 

The point is, as you‘re doing your research it‘s a good idea to ask yourself if what you 

are looking to analyse is a typical phenomenon, or an extreme event.  If it‘s a typical 

phenomenon, then it‘s okay to use means and medians, and their multi-variate 

brothers, OLS and median regressions.  On the other hand, if you are dealing with 

extreme events, it‘s a good idea to know a little something about quantile regressions. 

 

As we saw earlier, you can look at non-central locations of the univariate distribution 

in R using the quantile() function, or in STATA by asking for various percentiles in 

the tabstat command (recall quantile is another way to say percentile).  Well, we can 

also do the same thing in multivariate settings, with quantile regressions. 

 

We already compared the mean and median regressions.  Now let‘s look at the 

regressions for the 25
th

 and 75
th

 percentiles (the 10
th

 and 90
th

 are also commonly 

reported, but you might also consider trying something as amazing as Koenker‘s 

analysis of Engel‘s data over the entire range of percentiles, reported in his Vignette). 

 

First let‘s consider the 25
th

 percentile.  This can answer the question, how does the 

25
th

 percentile country GDP growth rate vary with increases in the ―exogenous 

variables‖ (remember, unlike the average reported by OLS this may represent an 

actual observation)?  Comparing with the median, for slower growth (25
th

 percentile) 

countries, we see that the intercept is lower (1.60514 vs. 2.60694), convergence is 

weaker in the sense that growth rates are less sensitive to initial income (-0.24688 vs. 

-0.30527), population growth has an even stronger association with lower growth      

(-0.82764 vs. -0.68896), investment has a lower marginal effect than at the median 

(0.49098 vs. 0.56529), but schooling is more strongly associated with growth 

(0.23418 vs. 0.17994).  To run this command, try the following R and STATA codes. 

 

R Code: 
> myaugq25reg <- rq(DY~LGDP60+LNGD+LINV+LSCH,tau=0.25,data=mydata) 

> summary.rq(myaugq25reg) 
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Call: rq(formula=DY~LGDP60+LNGD+LINV+LSCH,tau=0.25,data=mydata) 

tau: [1] 0.25 

Coefficients: 

            coefficients lower bd upper bd 

(Intercept)  1.60514     -0.33042  3.71041 

LGDP60      -0.24688     -0.39319 -0.18849 

LNGD        -0.82764     -1.43023 -0.27781 

LINV         0.49098      0.24756  0.71308 

LSCH         0.23418      0.04809  0.36995 

 

STATA Translation: 
qreg dy lgdp60 lngd linv lsch, q(0.25) 

 

[Reported Iterations Omitted] 

 

.25 Quantile regression                            Number of obs = 104 

  Raw sum of deviations 30.98486 (about .13145199) 

  Min sum of deviations 21.47646                   Pseudo R2 = 0.3069 

dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

lgdp60 -.2468809  .0764857 -3.23 0.002  -.3986452  -.0951166 

lngd -.8276225  .3447963 -2.40 0.018 -1.511773   -.1434719 

linv  .4909817  .161306  3.04 0.003   .1709156   .8110479 

lsch  .2341849  .108606  2.16 0.033   .018687    .4496827 

_cons 1.6052  1.298624  1.24 0.219  -.9715513  4.181951 

 

Now how about the the 75
th

 percentile?  This can answer the question, how does the 

75
th

 percentile country GDP growth rate vary with increases in the ―exogenous 

variables?‖  The story is almost the opposite.  Comparing with the median, for higher 

growth (75
th

 percentile) countries, we see that the intercept is higher (4.81039 vs. 

2.60694), convergence is stronger as growth rates are more sensitive to initial income 

(-0.42394 vs. -0.30527), the association between income and population growth and 

is almost halved (-0.39788 vs. -0.68896), investment has a slightly stronger marginal 

effect than at the median (0.58262 vs. 0.56529), but this time schooling is also more 

strongly associated with growth (0.26671 vs. 0.17994). 

 

R Code: 
> myaugq75reg <- rq(DY~LGDP60+LNGD+LINV+LSCH,tau=0.75,data = mydata) 

> summary.rq(myaugq75reg) 

 

Call: rq(formula=DY~LGDP60+LNGD+LINV+LSCH,tau=0.75,data = mydata) 

tau: [1] 0.75 

Coefficients: 

            coefficients lower bd upper bd 

(Intercept)  4.81039      4.17548  6.10656 

LGDP60      -0.42394     -0.43502 -0.25899 

LNGD        -0.39788     -0.50518  0.18528 

LINV         0.58262      0.39199  0.83023 

LSCH         0.26671      0.08699  0.34739 
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STATA Translation: 
qreg dy lgdp60 lngd linv lsch, q(0.75) 

 

[Reported Iterations Omitted] 

 

.75 Quantile regression                            Number of obs = 104 

  Raw sum of deviations 30.13928 (about .73368597) 

  Min sum of deviations 20.31923                   Pseudo R2 = 0.3258 

 

dy Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

lgdp60 -.4239411  .0641093 -6.61 0.000  -.551148   -.2967343 

lngd -.3978789  .3409185 -1.17 0.246 -1.074335    .2785775 

linv  .5826213  .1219667  4.78 0.000   .3406128   .8246298 

lsch  .2667149  .0771809  3.46 0.001   .1135711   .4198586 

_cons 4.810404 1.085709  4.43 0.000  2.656122   6.964685 

 

Quantile Regressions are Robust to Heteroskedasticity 

 

There‘s another really good reason to use quantile regressions.  Koenker and Bassett 

(1982) propose a test for heteroskedasticity based on regression quantiles.  The basic 

idea is simple: if the slope coefficients are identical across quantiles, then the errors 

are homoskedastic, otherwise, there is heteroskedasticity.  Unlike OLS, 

heteroskedasticity is not a problem for regression quantiles.  By quickly eyeballing 

the median, 25
th

 and 75
th

 percentile coefficients you see that they‘re not equal.  This 

result confirms what you saw in Figure 10., with the non-parametric visualization 

check for heteroskedasticity.  The point is, though, that it‘s there, and Mankiw, Romer 

and Weil don‘t look for it.  The other point is that you can gladly forget about 

Breusch-Pagan-Godfrey, until the referee tells you that they want to see it. 
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Resampling 

 

The idea behind resampling is to ―create‖ more data from an existing sample of data 

to get at problems of efficiency.  You might have a small sample of data, and would 

like to get a sense of whether an estimator is biased and efficient.  There are two 

workhorses in resampling, the older Jackknife method proposed by Richard Von 

Mises but named by John Tukey, and the newer Bootstrapping method, proposed by 

Efron.  With a Jackknife suppose you have a sample of N observations.  Now imagine 

that instead of applying your estimator to the sample of size N, you create N sub-

samples without replacement of size N-1 (by sampling without replacement, I mean 

―once you choose it, you lose it,‖ in the sense that it if you pull it out of the bag and 

look at it, you do not then put it back in the bag to be chosen again).  In other words, 

for our sample of 105 countries, a Jackknife would involve creating 105 different sub-

samples of 104 countries, each with a different country removed.  If your estimator is 

a linear regression, then each time you estimate the regression on the sub-sample of 

104 observations, you collect the regressions coefficients, and when you have done 

this 105 times, you can compute the sample averages and standard deviations of the 

coefficients and compare them with what you get after applying OLS to the entire 

sample.  In a worst case, you might be able to do a Jackknife by hand if the sample is 

not too large.  I don‘t have much experience with the Jackknife, so if I find someone‘s 

codes to Jackknife regression coefficients, I‘ll show you how to do this.  With modern 

computational power, there is another possibility. 

 

Unlike the Jackknife, Bootstrapping involves generating samples with replacement.  

Sampling with replacement means you pull it out of the bag, look at it and keep it in 

memory, and put it right back in the bag so that it might be chosen again.  If the 

sample is of size N, then you might create X new samples of size N, but some of the 

observations may be repeated, since it is sampled with replacement.  In the Solow 

model example, then you might create X = 1000 or 10,000 new samples of size 105, 

but each sample may contain the same observation a few times (i.e., the investment, 

schooling rate, or GDP growth rate for Germany or Zimbabwe has the potential to 

appear a few times in each sample, while others may not appear).  In this way, 

Bootstrapping gives you the possibility of creating a much larger dataset to explore 

the effectiveness of the model, relative to the Jackknife.  Also, it is worth mentioning 

that there are non-parametric and parametric bootstraps.  I will apply non-parametric 

bootstrapping to the Solow regression from above in R.  The idea with the Non-

Parametric Bootstrap is to estimate with coefficients of the model but from the 

resampled data.  I‘ll get to the Parametric Bootstrapping later and it is relatively 

straightforward to run your own Parametric Bootstrap codes. 

 

The following lines of code can be summarized as follows.  The first block sets up the 

Non-Parametric Bootstrap.  The second block does the actual bootstrapping of 

regression coefficients.  The third block computes the standard errors of the 

coefficients.  The last two blocks of code are more cosmetic in nature.  The fourth 

block reports a table of the OLS, Bootstrap coefficients, and their standard errors, and 

the fifth block reports in a table the standard errors from the original OLS model and 

the bootstrap standard errors.
14

 

                                                 
14

 I wrote these codes by combining R codes for bootstrapping from two different sources.  The first is 

from http://zoonek2.free.fr/UNIX/48_R/16.html#13, and the second is from 

http://www.stat.psu.edu/~dhunter/R/2006test.html. 

http://zoonek2.free.fr/UNIX/48_R/16.html#13
http://www.stat.psu.edu/~dhunter/R/2006test.html
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A Nonparametric Bootstrap 

 

Setting up the Bootstrap 

 

[In a nutshell: you estimate the original model, save the coefficients that will be used 

for comparison using the fitted values, and you also save the residuals, and create the 

matrix of the right-hand side using the model.matrix command] 

 
> mydata <- read.table("C:/temple.csv",header=T,sep=",") 

> mod1 <- lm(DY~LGDP60+LNGD+LINV,data=mydata) 

> mod1coefs <- coef(mod1) 

> fit <- fitted(mod1) 

> e <- residuals(mod1) 

> X <- model.matrix(mod1) 

 

The Actual Bootstrap 

 

[In a nutshell: you use the s <- sample command to get a grouped-sample of the 

values for LGDP60, LNGD, LINV for 105 countries.  Since it is sampling with 

replacement, in each of the 1000 samples, Germany, or Zimbabwe may appear more 

than once.  The variable DY is ―simulated‖ in that you take an actual resampled error, 

and combine that with the original fitted values, and then you re-estimate the 

regression (minus the intercept, since the intercept is already in the model matrix X)] 
 

> mod2 <- NULL 

> for (i in 1:1000) 

{ 

 s <- sample(length(X[,1]),replace=T) 

 y <- fit + e[s] 

mod2 <- rbind(mod2, lm(y~-1+X)$coef) 

} 

 

You can compute the standard errors by computing the covariance matrix of the 

model coefficients, and taking the square root of the diagonal components 
 

> cov(mod2) 

> se <- sqrt(diag(cov(mod2))) 

 

To bring all the information together, I then run the codes below (the table is not as 

nice as something STATA would give you) 

 
> OLS <- c(mod1coefs[1],mod1coefs[2],mod1coefs[3],mod1coefs[4]) 

> BootStrap <- c(mean(mod2[,1]),mean(mod2[,2]),mean(mod2[,3]), 

mean(mod2[,4])) 

> Bias <- c(mean(mod2[,1])-mod1coefs[1],mean(mod2[,2])-mod1coefs[2], 

mean(mod2[,3])-mod1coefs[3],mean(mod2[,4])-mod1coefs[4]) 

> table <- cbind(OLS,BootStrap,Bias) 

 

                   OLS  BootStrap          Bias 

(Intercept)  2.0142775  2.0109613 -0.0033162486 

LGDP60      -0.1829637 -0.1833834 -0.0004196922 

LNGD        -0.4247713 -0.4294536 -0.0046822769 

LINV         0.6932226  0.6958266  0.0026039566 
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> coefsum <- coef(summary(mod1)) 

> OLSSE <- c(coefsum[1,2],coefsum[2,2],coefsum[3,2],coefsum[4,2]) 

> tableSE <- data.frame(OLSSE,BootSE=se,row.names=c("Intercept","LGDP60", 

"LINV","LSCH")) 

 
               OLSSE    BootSE 

Intercept 0.83695283 1.1749340 

LGDP60    0.04163735 0.0559561 

LINV      0.26517377 0.3890783 

LSCH      0.08368177 0.1113108 

 

STATA Translation: 

 
clear 

set mem 100m 

insheet using "C:\temple.csv", comma 

drop lsch 

generate lsch=ln(school/100) 

regress dy lgdp60 lngd linv lsch 

bs "regress dy lgdp60 lngd linv" "_b[_c] _b[lgdp60] _b[lngd] _b[linv]", 

reps(1000) 

[this is the old version of STATA‘s regression coefficient bootstrapping 

command] 

 
bootstrap _b, reps(1000) bca: regress dy lgdp60 lngd linv estat bootstrap, 

all 

[this is the new version of STATA‘s regression coefficient bootstrapping 

command, and it gives you the following output, which is similar to what the 

old command does] 
 

    Observed Bootstrap 

  Coef.  Bias  Std. Err. 

lgdp60  -.1829637  .0069137 .0452954 

lngd  -.42477123  .0340677 .23587004 

linv   .69322258 -.0086114 .09962956 

_cons  2.0142776  .0207707 .83168788 

 

A Parametric Bootstrap 

 

In the Parametric Bootstrap, the idea is that you fix the coefficients and see how the 

estimator performs.  This is often applied when you want to see how well an estimator 

does relative to others, for different types of error distributions (like fat-tailed or 

potentially skewed distributions [I‘ll note that I have yet to see anyone do 

Bootstrapping for skewed distributions though]) and perhaps sample sizes.  An 

example of a Parametric Bootstrap is produced below, in which OLS is compared to 

the median regression.  What makes it parametric is that, as you will see, I assume 

that I know that the true regression has a slope of 2, and an intercept equal to zero.  I 

assume that the independent variable follows a discrete time random walk with a drift 

of 4.2%, and a volatility parameter of 12.5%.  The structure of the codes was inspired 

by some S-Plus codes I found on Eric Zivot‘s web-page for his financial econometrics 

teachings.  To get my dependent variable, I then combine this independent variable 

with a t-3 random error term, in a regression of the form: trial.indret = a + 

b*trial.mktret + trial.res, with a = 0 and b = 2.  I randomly draw samples of size 

250, and run the simulation 10,000 times.  Vectors are first created to be filled with 

the estimates from each loop (the rep(0, … creates a vector of length 10,000 that is 

then filled with estimates).  You should hopefully have the quantile regression 

package installed from earlier, but you may need to Load the quantreg package again 
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> Rw <- 0.04287973 

> sigmaw <- 0.1245768 

> sample <- 250 

> n.trial <- 10000 

> alphaols <- rep(0,n.trial) 

> betaols <- rep(0,n.trial) 

> alphalad <- rep(0,n.trial) 

> betalad <- rep(0,n.trial) 

> set.seed(200) 

> a <- 0 

> b <- 2 

> for (trial in 1:n.trial) { 

trial.mktret <- Rw+sigmaw*rnorm(sample,mean=0,sd=1) 

trial.res <- rt(sample,df=3) 

trial.indret <- (a + b*trial.mktret + trial.res) 

trial.ols <- lm(trial.indret~trial.mktret) 

tmpols <- coef(trial.ols) 

alphaols[trial] <- tmpols[1] 

betaols[trial] <- tmpols[2] 

trial.lad <- rq(trial.indret~trial.mktret) 

tmplad <- coef(trial.lad) 

alphalad[trial] <- tmplad[1] 

betalad[trial] <- tmplad[2] 

} 

 

To see how OLS compares with the median regression, for this model, consider first 

the means of the coefficients for the alpha (intercept) and beta (slope) 
 

> c("mean ols alpha"=mean(alphaols),"mean lad alpha"=mean(alphalad),"mean 

ols beta"=mean(betaols),"mean lad beta"=mean(betalad)) 

 

mean ols alpha mean lad alpha  mean ols beta  mean lad beta  

  0.0009543169   0.0012759275   1.9979784349   2.0010737045 

 

The values are quite close.  To see how close from the truth, we can calculate the bias 

as the difference from the true values (a = 0, b = 2) 
 

> c("ols alpha bias"=(mean(alphaols)-a),"lad alpha bias"=(mean(alphalad)-

a),"ols beta bias"=(mean(betaols)-b),"lad beta bias"=(mean(betalad)-b)) 

 

ols alpha bias lad alpha bias  ols beta bias  lad beta bias  

  0.0009543169   0.0012759275  -0.0020215651   0.0010737045 

 

If a bootstrap average is unbiased, it will be zero out to two decimal places.  So both 

regression methods give unbiased coefficients when the error term is sampled from a 

t-3 distribution, which is quite heavy tailed.  We can also look at the efficiency. 
 

> c("stdev ols alpha"=sd(alphaols),"stdev lad alpha"=sd(alphalad),"stdev ols 

beta"=sd(betaols),"stdev lad beta"=sd(betalad)) 

 

 stdev ols alpha stdev lad alpha  stdev ols beta  stdev lad beta  

      0.11572855      0.09123227      0.88464982      0.69998224 

 

What you see is that when the errors are sampled from a t-3 distribution, which is 

much heavier-tailed than the normal distribution, the median regression is more 

efficient than OLS, due to the smaller standard errors for the intercept (0.09123227 vs. 

0.1157286) and the slope (0.6999822 vs. 0.8846498).  Put another way, it‘s a more 

informative summary. 
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Merging Data Files 

 

As a pretext to discussing panel data analysis, I‘ll begin by discussing the act of 

merging two data files, which may seem a trivial task, but it can quickly become 

complicated, especially when working with panel data.  The larger the data file, and 

the more complex the structure of the data, the trickier it becomes to see what you are 

doing, unless you happen to think like a computer.  STATA is quite good for 

managing large data files, and is quite useful at letting you know what it just did.  R is 

also good, but, if you take a look at Grant Farnsworth‘s Econometrics with R handout, 

you apparently have to know how R uses memory to read in large data files. 

 

First, I‘ll go through the process of merging two cross-sectional data files.  In this 

simple example, assume that you wanted to add to the data file ―mydata‖, another file 

that has as a random disturbance for each country (I don‘t know when you‘d ever do 

this, but assume it was a variable you wanted).  Also, assume the variable with the 

country names was called ―countryname‖ in the second file, whereas in ―mydata,‖ 

recall that the corresponding variable was simply called ―country.‖  For the purpose of 

demonstrating how to merge I‘ll first create this new data set called ―myrandom‖.
15

 

 
> myrandom <- 

data.frame("countryname"=mydata$country,"Random"=rnorm(121,0,1)) 

 

Having created this data object, how would I add it to the main file?  The answer is 

with the following command 

 
> mynewdata <- merge(mydata,myrandom,by.x="country",by.y="countryname") 

 

What this does is to tell R to create a new data object called ―mynewdata,‖ which 

merges the file/dataframe called ―myrandom‖ into the file called ―mydata‖.  The options 

―by.x="country"‖ and ―by.y="countryname"‖ tell R that you want to assign any 

observation associated with a particular country in myrandom$countryname to the same 

country listed under the variable country in mydata$country. 

 

As easy as that looked, STATA‘s equivalent looks much more complicated.  First, 

off, remember that STATA, unlike R, can only keep one data set in memory, so while 

I could create this new data set almost without thinking in R (just one line of code), I 

need several lines to do the same thing in STATA.  Also, STATA will not merge two 

datasets if the variable(s) that you are using to assign values in the merging file into 

the masterfile do not have the same name.  So, here is the STATA equivalent of the 

operation I just did for R.  I‘ll first describe it in words, and then below, you‘ll see the 

codes to tell STATA exactly how to do all the steps I‘m about to describe. 

 

First I clear the memory, then I tell STATA how much memory to use (which is 

necessary when handling large datasets).  This is followed by a request to import the 

―temple.csv‖ file, which is a comma separated file.  I‘ll now save this file, using the 

name mydata.  By the way, the replace option after the save command is useful if 

you are going to run these codes repeatedly, meaning you‘ll have to overwrite the 

                                                 
15

 This command creates a data object called a ―dataframe‖, which can combine both character and 

numeric data.  This I need in order to merge with ―mydata‖, since it too combines character and 

numeric data. 
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files, each time you open up STATA using the do-file.  If you leave out that option, 

STATA will stop running, and complain each time your run the command that the file 

already exists.  Now you can create the myrandom dataset first by keeping only the 

variable named country using the keep command.  Then after creating a random 

sample of data, using the invnormal command (and here‘s another area where R is 

way better than STATA: random number generation), you save that data set.  Note, 

unlike R, the variables that you are using to merge must have the same name in the 

two STATA datasets, otherwise, it will NOT merge, saying ―I don‘t know where that 

variable is.‖  Now you can merge myrandom into mydata.  The first thing you‘ll 

typically have to do is to sort the data using the sort country command.  Note, we 

didn‘t have to sort in R, because it figured it all out by itself [though I don‘t know 

how accurate it is].  Then after you merge country using … you can ask STATA what 

it just did with the command tab _merge, because STATA automatically creates a 

variable called _merge each time you merge two data files.  This command is a 

shortened form of tabulate, and it will give you an idea of how many observations 

were common to both files, and how many observations were unique to each of the 

two files.  There are three possibilities: if you see a 1, that means it was only found in 

the master file, if you see a 2, that means that the observation was only found in the 

merging file, and if you see a 3, that means the observation was common to both files.  

In this case, you see only 3‘s.  Note that you will have to drop this variable if you plan 

to merge in other data too, because STATA will not rename the variable _merge for 

you.  Also, there are times when the information contained in the variable _merge can 

be used as a dummy variable.  So you should always ask yourself does that variable 

having meaning in my analysis, in which case, you should just rename it and not drop 

it.  Finally, you can save this new file called mynewdata.dta.  So, the process was 

more complicated, but you seem to be able to do a number of things with this. 

 
clear 

set mem 100m 

insheet using "C:\temple.csv", comma 

save "C:\mydata.dta", replace 

keep country 

gen random=invnormal(uniform()) 

sort country 

save "C:\myrandom.dta", replace 

clear 

use "C:\mydata.dta" 

sort country 

merge country using "C:\myrandom.dta" 

tab _merge 

drop _merge 

sort country 

save "C:\mynewdata.dta", replace 

 

Note the tab _merge command will give you something like this 

 
_merge  Freq.  Percent Cum. 

3  121  100.00  100.00 

Total  121  100.00 
 

Now, this is a really simple merge operation.  You‘re only merging by one variable, 

whose content is common to both data files.  However, if you work with panel data, 

you may often have two or three layers that you would have to account for before you 

can merge.   So, I‘ll show you how to generalize it for situations when you have to 

merge panel data files for R and STATA (it‘s not hard, just a bit tricky, since the more 
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complex the file, the greater is the likelihood for making mistakes).  Imagine you have 

two panel data sets named panelmaster and panelmerging with observations for cities 

within countries over time.  The two files have common names country, city and 

year.  The first thing to do is make sure you sort BOTH files, on country first, then 

city and then year.  Also, I‘ll assume this is an unbalanced panel, so you don‘t have 

observations for all cities, or countries in each year.  So it might look like 

 
county  city  year othervariables … 

Afghanistan Kabul  1961 

Afghanistan Khandahar 1961 

Afghanistan Kabul  1962 

Afghanistan Khandahar 1962 

… 

Afghanistan Khandahar 2003 

Afghanistan Kabul  2004 

Belguim Brussels 1973 

Belguim Brussels 1974 

Belguim Ghent  1974 

… 

Belguim Brussels 2000 

Belguim Ghent  2000 

… 

Zimbabwe Harare  1965 

Zimbabwe Harare  1966 

… 

Zimbabwe Harare  2002 

 

In R, you can merge a file called panelmerging into a file called panelmaster.  The 

two files have three variables in common, but in this case the one pair of merging 

variables have different names.  The character variables with the names of the 

countries are called, respectively, countryname and country, and for the cities, it is 

city in one and cities in the other.  This simply requires the following line of code 

 
> merge(panelmaster,panelmerging,by.x=c("countryname","city"), 

by.y=c("country","cities")) 

 

R merges country into countryname first, and then cities into city, which is the 

reason why you see the order in by.x and by.y written as such.  Note STATA, by 

default, sorts in ascending order.  Once you sort, then you can do the merge.  Recall 

the names of the merging variables must be the same, so the STATA equivalent is 

 
clear 

set mem 100m 

use "C:\panelmaster.dta" 

sort country city year 

merge country city using "C:\panelmerging.dta" 

tab _merge 

drop _merge 

sort country city year 

save "C:\newpanel.dta", replace 

 

Here again, the tab _merge command will be extremely useful, and it will help you 

find out if there‘s a problem with the merge.  While this may seem a trivial operation, 

I learned on the job, and it probably took me about three or four weeks to get used to 

doing this with large household surveys.  So, it‘s better that you see this now rather 

than later.  In addition to household surveys, the management of high-frequency asset 

price data sets is another context in which it could be useful to know how to manage 

so-called k-large datasets, and merge operations might be crucial here too. 
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Dummy Variables and Panel Regression 

 

A Digression on Creating Dummy Variables from Categories in STATA 

 

You saw one way to use dummy variables in the section on replicating empirical 

work, when I estimated regressions, if a particular variable was equal to 1 (the other 

observations not included in the estimation were associated with that variable 

equaling zero).  However, in that exercise, there was no attempt to extract quantitative 

information based on those variables.  R is pretty flexible when it comes to dummy 

variables: you can use the variable(s) as a factor, or in numeric format.  Here are two 

character variables, which are examples of factors 

 

hhhead region 

female  Africa 

male  Australia 

male  Asia 

female  Asia 

…  … 

male  Europe 

female  South America 

female  North America 

 

Alternatively, while this information could have been stored in two character 

variables, the same information could also be have been expressed in numeric format 

as a series of columns with ones and zeros 

 

dFEM dAFR dASA dAUS dEUR dNAM dSAM  

1 1 0 0 0 0 0 

0 0 0 1 0 0 0 

0 0 1 0 0 0 0 

1 0 1 0 0 0 0 

… 

0 0 0 0 1 0 0 

1 0 0 0 0 0 1 

1 0 0 0 0 1 0 

 

So the first row, could be interpreted as female & Africa, the second row as male & 

Australia, the third row as male & Asia, etc.  As long as you input all of this 

information into R‘s memory, it will interpret the two variations as equivalent.  For 

instance, if you are running a regression of household consumption (hhcon) against a 

bunch of variables, including sex of the household head (hhhead), region in which 

they reside (region), if you have the data written as in the first case, or (dFEM, dAFR, 

dAUS, dASA, dEUR, dNAM, and dSAM), in the second case, and other variables, you 

would get the same results whether you ran 

 
lm(hhcon~hhhead+region+othervars,data=mycondata) 

 

or 

 
lm(hhcon~dFEM+dAFR+dAUS+dASA+dEUR+dNAM+dSAM+othervars,data=mycondata) 
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because R will automatically and internally create the numeric dummy variable dFEM 

since female is alphabetically first in the example above, from the character variable 

hhhead, and dAFR, dASA, dAUS, dEUR, dNAM, and dSAM from the character variable 

region.  STATA will not.  So, if your STATA dataset has the variables in character 

format, you must turn them all into numeric format.  To do this, it‘s quite simple 

 
tab hhhead, gen(d) 

rename d1 dFEM 

drop d2 

 

The first line tabulates the different kinds of categories, and the ―, gen(d)‖ portion of 

the command creates dummy variables, that begin with d.  Since there are two 

categories, it creates two dummy variables, d1 and d2.  I wrote the second line because 

when STATA runs the first line, it sorts the character variable alphabetically, in this 

case, female is before male, so d1 takes a 1 for every female observation, and zero 

otherwise, and d2 takes a 1 for every male observation and zero otherwise.  I then 

rename d1 as dFEM.  For the other, multiple-category variable, region, it will create six 

dummy variables d1, d2, d3, d4, d5 and d6, which I will rename 

 
tab region, gen(d) 

rename d1 dAFR 

rename d2 dASA 

rename d3 dAUS 

rename d4 dEUR 

rename d5 dNAM 

rename d6 dSAM 

 

The STATA equivalent of the R dummy-variable regression command above is 

 
reg hhcon dFEM dAFR dAUS dASA dEUR dNAM dSAM othervars 

 

Basic Panel Regressions: Fixed Effects Estimation 

 

Panel datasets, as I showed earlier in the discussion about merging, usually combine 

both cross-section and time dimensions.  I‘ll not get into too much detail, because I‘m 

no expert on the subject, and there are better references out there than what I can offer 

you (there is an excellent introduction by Hun Myoung Park that you can get from: 

http://www.indiana.edu/~statmath/stat/all/panel/panel.pdf).  But I will show you how 

to work with a data set in both R and STATA.  Find the web-site for benchmark data 

sets used to test the efficacy of estimators: http://www.stanford.edu/~clint/bench/.  

The Grunfeld dataset is found by doing ―ctrl‖+―f‖ on ―grunfeld.xls‖, or by going to 

http://www.stanford.edu/~clint/bench/grunfeld.xls and downloading this file to your 

favorite location.  Open up the data file and you‘ll see it has five variables, labeled 

FIRM, YEAR, I, F, and K.  SAVE THIS FILE as a comma-separated file, so that it‘s 

in the same format as the temple.csv file.  The first variable is the cross-sectional 

indicator, and the second is (obviously) the time series operator, and the [annoyingly] 

unlabeled variables and firm names can actually be found in Bond and DeWit (1960) 

on pages 27-28.  I is millions of dollars of real investment, F is millions of dollars of 

the previous year‘s firm value (number of equity shares issued by the firm times the 

price, plus year end total outstanding firm debt), and K is millions of dollars of the 

firm‘s plant equipment minus depreciation from the previous year.  Given this dataset, 

a natural issue to explain is firm current investment behaviour, as a function of lagged 

firm value and plant equipment. 

http://www.indiana.edu/~statmath/stat/all/panel/panel.pdf
http://www.stanford.edu/~clint/bench/
http://www.stanford.edu/~clint/bench/grunfeld.xls
http://www.stanford.edu/~clint/bench/grunfeld.xls
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As before, load the panel data as follows 

  
> mypanel <- read.table("C:/grunfeld.csv",header=T,sep=",") 

 

Least Squares Dummy Variables (LSDV) 

 

Now, suppose you wish to estimate a fixed-effects regression across the firms, where 

firm one is the benchmark.  The Least Square Dummy Variable (LSDV) equation is 

 

3)  ittfirmfirmt KFddI    12111010220   

 

I will show you one way to do this in R, since R is not picky about whether your data 

is expressed as a factor or as a dummy variable, and then three equivalent ways to do 

this in STATA, since STATA can be picky.  In the first case, to demonstrate that R 

can turn factors into dummy variables, you can run the following commands 

 
> xtfereg <- lm(I~factor(FIRM)+F+K,data=mypanel) 

> sumfe <- summary(xtfereg) 

> fecoef <- sumfe$coefficients 

> fesigma <- sumfe$sigma 

> sumfe 

Call: 

lm(formula = I ~ factor(FIRM) + F + K, data = mypanel) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-184.0086  -17.6432    0.5634   19.1922  250.7097  

Coefficients: 

                 Estimate Std. Error t value Pr(>|t|)     

(Intercept)     -70.29672   49.70796  -1.414    0.159     

factor(FIRM)2   172.20253   31.16126   5.526 1.08e-07 *** 

factor(FIRM)3  -165.27512   31.77556  -5.201 5.14e-07 *** 

factor(FIRM)4    42.48742   43.90988   0.968    0.334     

factor(FIRM)5   -44.32010   50.49226  -0.878    0.381     

factor(FIRM)6    47.13542   46.81068   1.007    0.315     

factor(FIRM)7     3.74324   50.56493   0.074    0.941     

factor(FIRM)8    12.75106   44.05263   0.289    0.773     

factor(FIRM)9   -16.92555   48.45327  -0.349    0.727     

factor(FIRM)10   63.72887   50.33023   1.266    0.207     

F                 0.11012    0.01186   9.288  < 2e-16 *** 

K                 0.31007    0.01735  17.867  < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 52.77 on 188 degrees of freedom 

Multiple R-Squared: 0.9441,     Adjusted R-squared: 0.9408  

F-statistic: 288.5 on 11 and 188 DF,  p-value: < 2.2e-16 

 

Now, what about an interpretation?  The intercept has an awkward interpretation, in 

this application, because it suggests that firms with no prior value, or capital stock, 

disinvest.  In this case, Firm 1 is the benchmark.  This means any dummy variable 

coefficient, representing a particular firm, tells you whether that firm on average 

invests more or less than the benchmark (Firm 1).  So if the benchmark average is -70, 

then Firm 2 on average invests, -70 million + 172 million ≈ 102 million, if Firm 2 had 

no value or capital stock, etc.  Also, the coefficients for F and K tell you that on 

average, a one million dollar increase in firm value is associated with a 110,120 USD 

(think 11% of one million dollars) increase in investment, while a one million dollar 

increase in firm capital is associated with a 310,070 USD increase (think 31% of one 
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million dollars) in investment.  You will see that this is exactly the same output as the 

STATA xi: reg, or interaction expansion, applied to the regression command.  As 

before, use the insheet command to read in the data, and when you use the xi: reg 

command, you must specify which variable, in this case firm, is to be used to create 

dummy variables, using i.firm . 

 
insheet using "C:\grunfeld.csv", comma 

xi: reg i f k i.firm 

 

Source  SS  df MS  Number of obs = 200 

        F( 11,   188) = 288.50 

Model  8836465.8 11 803315.073 Prob > F = 0.0000 

Residual 523478.114 188 2784.45805 R-squared = 0.9441 

       Adj R-squared = 0.9408 

Total  9359943.92 199 47034.8941 Root MSE = 52.768 

 

i Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

f     .1101238   .0118567  9.29 0.000     .0867345   .1335131 

k     .3100653   .0173545 17.87 0.000      .2758308   .3442999 

_Ifirm_2  172.2025 31.16126  5.53 0.000  110.7319   233.6732 

_Ifirm_3 -165.2751 31.77556 -5.20 0.000 -227.9576  -102.5927 

_Ifirm_4   42.4874 43.90987  0.97 0.334  -44.13197  129.1068 

_Ifirm_5  -44.32013 50.49225 -0.88 0.381 -143.9243    55.28406 

_Ifirm_6   47.13539 46.81068  1.01 0.315  -45.20629  139.4771 

_Ifirm_7    3.743212 50.56493  0.07 0.941  -96.00433  103.4908 

_Ifirm_8   12.75103 44.05263  0.29 0.773  -74.14994   99.652 

_Ifirm_9  -16.92558 48.45326 -0.35 0.727 -112.5075    78.65636 

_Ifirm_10   63.72884 50.33023  1.27 0.207  -35.55572  163.0134 

_cons   -70.29669 49.70796 -1.41 0.159 -168.3537    27.76035 

 

An alternative way to do the exact same thing in STATA is to first generate dummy 

variables for each of the firms, using the tab firm, gen(d) command.  Leaving out 

the first firm as the benchmark case, the command with the firm dummy variables 

produces the exact same output 

 
tab firm, gen(d) 

reg i f k d2 d3 d4 d5 d6 d7 d8 d9 d10 

 

Source  SS  df MS  Number of obs = 200 

       F( 11,   188) = 288.50 

Model  8836465.8 11 803315.073 Prob > F = 0.0000 

Residual 523478.114 188 2784.45805 R-squared = 0.9441 

       Adj R-squared = 0.9408 

Total  9359943.92 199 47034.8941 Root MSE = 52.768 

 
i Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

f     .1101238   .0118567  9.29 0.000     .0867345   .1335131 

k     .3100653   .0173545 17.87 0.000     .2758308   .3442999 

d2  172.2025 31.16126  5.53 0.000  110.7319   233.6732 

d3 -165.2751 31.77556 -5.20 0.000 -227.9576  -102.5927 

d4   42.4874 43.90987  0.97 0.334  -44.13197  129.1068 

d5  -44.32013 50.49225 -0.88 0.381 -143.9243    55.28406 

d6   47.13539 46.81068  1.01 0.315  -45.20629  139.4771 

d7    3.743212 50.56493  0.07 0.941  -96.00433  103.4908 

d8   12.75103 44.05263  0.29 0.773  -74.14994   99.652 

d9  -16.92558 48.45326 -0.35 0.727 -112.5075    78.65636 

d10   63.72884 50.33023  1.27 0.207  -35.55572  163.0134 

_cons  -70.29669 49.70796 -1.41 0.159 -168.3537    27.76035 

 

 



 

 49 

 

Deviations-From-Mean Estimator 

 

The second block of STATA codes for the LSDV approach is good if you have a few 

firms and you would like the option to change the benchmark firm.  For instance, if 

for some reason you wish to make firm 7 the benchmark, you can take out d7 and put 

in d1 and run the following command: reg i d1 d2 d3 d4 d5 d6 d8 d9 d10 f k.  

However, as the number of different factors increases, this can create problems as the 

estimators then become inconsistent (see the Park handout and references therein).  In 

this case, there is a better way to do this, simply by demeaning each of the variables.  

In this case, I‘m going to compute the difference for each firm across the firm-specific 

mean over time for each variable, but in some applications you might be interested in 

taking the difference between the variable and the cross-sectional average in each 

time period.  The demeaned version that I am referring to is 

 

4)      ititiitiiit KKFFII    1,21,10  

 

I‘ll first show you how to do this in STATA and then use it to show you how to do the 

same thing in R.  STATA has a command to run this deviations-from-mean version.  

Before you run this, however, you must first tell STATA that you are working with 

time series data, using the tsset command.  I looked in the help for tsset, and the last 

line has the generic command for a panel dataset tsset panelid yearvar, yearly, 

where panelid is like factor, in this case the firm, so 

 
tsset firm year, yearly 

xtreg i f k, fe 

 

Fixed-effects (within) regression            Number of obs = 200 

Group variable (i): firm                     Number of groups = 10 

 

R-sq:  within  = 0.7668                      Obs per group: min = 20 

       between = 0.8194                      avg = 20.0 

       overall = 0.8060                      max = 20 

F(2,188) = 309.01 

corr(u_i, Xb)  = -0.1517                     Prob > F = 0.0000 

 
i Coef. Std. Err. t P>t [95% Conf. Interval] 

       

f    .1101238   .0118567   9.29 0.000    .0867345    .133513 

k    .3100653   .0173545  17.87 0.000    .2758308    .344299 

_cons -58.74393 12.45369 -4.72 0.000 -83.31086 -34.177 

 
sigma_u 85.732501 

sigma_e 52.767964 

rho .72525012 (fraction of variance due to u_i) 

 

F test that all u_i=0: F(9,188) = 49.18 Prob > F = 0.0000 

 

STATA has a nice and neat table format for this regression.  This is great if you‘d like 

to tell an average story.  However, you may wish to try something related to non-

central tendency (i.e., quantiles).  In this case it will help to know a little about how to 

program, so that you can change the estimator.  You can see the link to figure out how 

to demean the variables.  It‘s not difficult, and you can refer to 

http://www.wws.princeton.edu/wwac/stata/more/fixed.html for more panel tricks in 

STATA.  You can simply type 

 

http://www.wws.princeton.edu/wwac/stata/more/fixed.html
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sort firm year 

by firm: egen meani = mean(i) 

by firm: egen meanf = mean(f) 

by firm: egen meank = mean(k) 

gen demeani = i - meani 

gen demeanf = f - meanf 

gen demeank = k - meank 

reg demeani demeanf demeank 

 

Source  SS  df MS  Number of obs = 200 

        F(  2,   197) = 323.81 

Model  1720874.1 2 860437.05 Prob > F = 0.0000 

Residual 523478.127 197 2657.24938 R-squared = 0.7668 

        Adj R-squared = 0.7644 

Total  2244352.23 199 11278.1519 Root MSE = 51.549 

 

demeani Coef.    Std. Err.  t P>t [95% Conf. Interval] 

       

demeanf  .1101238  .0115827  9.51 0.000   .0872818   .1329658 

demeank  .3100653  .0169534 18.29 0.000   .2766318   .3434989 

_cons  1.93e-08  3.64503  0.00 1.000 -7.188288   7.188288 

 

You will notice that the coefficients are the same, however, the standard errors are 

biased downward.  You can correct them by multiplying them by the square root of 

the degrees of freedom,    VNNTVNT  , where N is the number of firms 

(10), T is the number of time periods (20 years), and V is the number of right-hand 

side variables (2, NOT including the intercept).  I‘ll show you how to do the same 

thing in R and how to adjust the standard errors.  The first trick is to demean the 

variables as Farnsworth (2006) shows 

 
> g <- mypanel 

> for (i in unique(mypanel$FIRM)){ 

Timemean <- mean(mypanel[mypanel$FIRM==i,]) 

g$I[mypanel$FIRM==i] <- mypanel$I[mypanel$FIRM==i]-timemean["I"] 

g$F[mypanel$FIRM==i] <- mypanel$F[mypanel$FIRM==i]-timemean["F"] 

g$K[mypanel$FIRM==i] <- mypanel$K[mypanel$FIRM==i]-timemean["K"] 

} 

 

Now run the regression and create a summary 
 

> xtferegdemean <- lm(I~F+K,data=g) 

> sumfedemean <- summary(xtferegdemean) 

 

Call: 

lm(formula = I ~ F + K, data = g) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-184.0086  -17.6432    0.5634   19.1922  250.7097  

 

Coefficients: 

             Estimate Std. Error  t value Pr(>|t|)     

(Intercept) 6.221e-15  3.645e+00 1.71e-15        1     

F           1.101e-01  1.158e-02    9.508   <2e-16 *** 

K           3.101e-01  1.695e-02   18.289   <2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

  

Residual standard error: 51.55 on 197 degrees of freedom 

Multiple R-Squared: 0.7668,     Adjusted R-squared: 0.7644  

F-statistic: 323.8 on 2 and 197 DF,  p-value: < 2.2e-16 
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To correct the standard errors, as I mentioned above, you multiply the standard error 

by    VNNTVNT  .  For the NT, I just use the length of the data set 

(length(mypanel$FIRM), which is 200 observations.  For N, I use the 

max(mypanel$FIRM) since I know that that is a number, and the maximum value will 

represent the same thing as the total number of different firms.  I haven‘t figured out a 

generic way to tell R how many independent variables to use, so for V, I just subtract 

2 from the terms in the numerator and denominator, since I know that‘s how many 

right-hand side variables I have. 
 

> fedemeancoef <- coef(sumfedemean) 

> sevar1 <- fedemeancoef[2,2]*sqrt((length(mypanel$FIRM)-

2)/(length(mypanel$FIRM)-max(mypanel$FIRM)-2)) 

> sevar2 <- fedemeancoef[3,2]*sqrt((length(mypanel$FIRM)-

2)/(length(mypanel$FIRM)-max(mypanel$FIRM)-2)) 

 

I can then create a small table of the coefficients and the corrected standard errors, 

and below that the corrected standard error of regression using the following 
 

> Coefficients <- c(F=fedemeancoef[2,1],K=fedemeancoef[3,1]) 

> S.E. <- c(sevar1,sevar2) 

> SSR <- deviance(xtferegdemean) 

> sigma <- sqrt(SSR/(length(mypanel$FIRM)-2)) 

> sigmacorrect <- sqrt(SSR/(length(mypanel$FIRM)-max(mypanel$FIRM)-2)) 

> table <- cbind(Coefficients,S.E.) 

 

  Coefficients       S.E. 

F    0.1101238 0.01188675 

K    0.3100653 0.01739849 

 

> tablesigma <- cbind(sigma,sigmacorrect) 

 

        sigma sigmacorrect 

[1,] 51.41818     52.76797 

 

If you take a look at the STATA output for the xtreg from above, you will see that the 

standard errors are now the same, and the sigmacorrect here is the same as the  

sigma_e that is also reported in STATA‘s xtreg table. 

 

Basic Panel Regressions: Random Effects Estimation 

 

In most applications, fixed effects are probably what you‘re interested in estimating.  

Pushkar Maitra has pointed out to me that in empirical work related to experimental 

economics, random effects make more sense because you are presuming your subjects 

are a random sample from a larger population, and hence you have to take that into 

account.  Another reason to think about random effects is that there might be 

something specific to the subject under study that affects the dependent and at least 

some of the independent variables.  In this application, perhaps organizational form or 

firm governance might affect the capital stock and/or firm value, in addition to the 

firm‘s investment decisions.  To capture this, you would add a firm-specific, but time-

invariant, random shock, iu , so that the problem becomes 

 

5)       itiitiitiiit uKKFFII    1,21,10  

 

To estimate this in R, you must Install and then Load the linear and nonlinear mixed 

effects model, or nlme, package. 
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Once the package is installed, the model can be estimated as follows.  First, the 

argument random=~1 indicates that random effect is only in the intercept, and | FIRM 

specifies the factor 

 

R Code: 

 
> xtrereg <- lme(I~F+K,data=mypanel,random=~1| FIRM) 

> sumre <- summary(xtrereg) 

 

Linear mixed-effects model fit by REML 

 Data: mypanel  

       AIC      BIC    logLik 

  2205.851 2222.267 -1097.926 

 

Random effects: 

 Formula: ~1 | FIRM 

        (Intercept) Residual 

StdDev:    85.83119 52.73922 

 

Fixed effects: I ~ F + K  

                Value Std.Error  DF   t-value p-value 

(Intercept) -57.86442 29.377757 188 -1.969668  0.0503 

F             0.10979  0.010527 188 10.429581  0.0000 

K             0.30819  0.017171 188 17.947893  0.0000 

 Correlation:  

  (Intr) F      

F -0.328        

K -0.019 -0.368 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-3.43192891 -0.34984287  0.02104578  0.35919156  4.81447454  

 

Number of Observations: 200 

Number of Groups: 10 

 

STATA Translation: 
 

xtreg i f k, re 

 

Random-effects GLS regression Number of obs = 200 

Group variable (i): firm Number of groups = 10 

 

R-sq:  within = 0.7668 Obs per group: min = 20 

between = 0.8196 avg = 20.0 

overall = 0.8061 max = 20 

 

Random effects u_i ~ Gaussian Wald chi2(2) = 657.67 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

 
i Coef.  Std. Err. z P>z [95% Conf. Interval] 

       

f    .1097811   .0104927 10.46 0.000     .0892159   .1303464 

k    .308113   .0171805 17.93 0.000     .2744399   .3417861 

_cons -57.83441 28.89893 -2.00 0.045 -114.4753 -1.193537 

 

You‘ll see that the coefficients and standard errors produced by R and STATA are not 

the same, but they are close.  One hint as to why this might be the case is that R uses a 

Maximum Likelihood method to solve this (I peaked at the help for lme), while if you 

look at the top line of the STATA output, the estimator used is (Feasible) Generalized 

Least Squares (GLS).  So, you can‘t expect the output to be identical.  With that in 

mind, how about applying the Hausman test? 
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Conducting the Hausman Test 

 

In STATA it‘s really easy to apply the Hausman specification test to help you decide 

whether you should use fixed or random effects.  However, recall that STATA‘s 

memory is just about as short as the last thing you told it to do.  So, to run the 

Hausman test, you actually need to re-run the fixed-effects regression command, then 

you should store the information about the estimation in something called fixed     

(est store fixed), then you estimate the analogous random-effects regression model, 

and finally, you can apply the Hausman test to the object you called fixed 

 
xtreg i f k, fe 

est store fixed 

xtreg i f k, re 

hausman fixed 

 

(b)  (B)  (b-B)  sqrt(diag(V_b-V_B)) 

Fixed  .  Difference S.E. 

f .1101238 .1097811 .0003427 .0055213 

k .3100653 .308113 .0019524 .0024516 

 
 b = consistent under Ho and Ha; obtained from xtreg 

 B = inconsistent under Ha, efficient under Ho; obtained from xtreg 

 

Test: Ho: difference in coefficients not systematic 

chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B) 

   = 2.33 

Prob>chi2 = 0.3119 
 

Since the model has two right-hand-side variables the theoretical Chi-Square value 

can be obtained by looking up a Chi-Square table for values associated with two 

degrees of freedom.  STATA computes a test statistic is 2.33, which lies between the 

value associated with the 50% level of significance (1.38629) and the 90% level of 

significance (4.60517).  This is much lower than the value associated with the 95% 

significance level (7.81473).  In fact, STATA computes the exact p-value of 0.3119, 

and you‘d probably want it to be about 0.05 or lower in most cases.  So, you cannot 

reject the null hypothesis that the difference in the coefficients is not systematic, i.e., 

fixed effects and random effects produce more or less the same thing.  Put another 

way, you can get away with using random effects.  That said, Baltagi (2001) notes 

that it is a mistake to stop with just the Hausman test as there are other tests described 

in the book that should be considered too.  Also, in your own work, ask yourself 

intuitively if your data is a random sample (random-effect) from a larger population 

or are you actually interested in just those subjects (fixed-effect).  Also, ask yourself if 

there might be omitted variables that might affect both the dependent and at least one 

independent variable. 

 

Can the same thing be done in R?  Well, R does not have this test built in, but here is 

how to construct the test in R.  The test statistic is often expressed in matrix form, 

which, unless you have a natural tendency to think in terms of the Matrix, can be 

awkward.  So, I‘ll stop take a brief detour to explain the test statistic.  You‘ll often see 

the test statistic written something like 
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where j is the number of variables, excluding dummy variables and the intercept, ’ is 

the transpose, the –1 refers to the inverse of the matrix, the fe and re subscripts refer 

to fixed effects and random effects, respectively.  So, the statistic m is just the test 

statistic, a number obtained from potentially many operations.  First, I‘ll show you 

what this would look like in this example 
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where the subscripts F and K represent the coefficients for firm value and capital 

stock, respectively.  You can verify for yourself what these components actually look 

like below.  The terms 
fe

bb KF
V ,  and 

re

bb KF
V ,  are the diagonal components of the fixed 

effects and random effects estimators‘ respective covariance matrix, and 
fe

bb KF
V , , 

re

bb KF
V ,  

are the off-diagonal components of the fixed effects and random effects estimator‘s 

covariance matrix.  To compute this, first run the Least Squares Dummy Variable 

model, and save the coefficients, and do the same for the corresponding random 

effects model. 

 
> xtfereg <- lm(I~factor(FIRM)+F+K,data=mypanel) 

> sumfe <- summary(xtfereg) 

> fecoef <- sumfe$coefficients 

> fecov <- vcov(xtfereg) 

 

                   Estimate  Std. Error     t value     Pr(>|t|) 

(Intercept)     -70.2967175 49.70795884 -1.41419441 1.589588e-01 

factor(FIRM)2   172.2025312 31.16125808  5.52617390 1.080747e-07 

factor(FIRM)3  -165.2751236 31.77556202 -5.20132810 5.142745e-07 

factor(FIRM)4    42.4874229 43.90987577  0.96760517 3.344847e-01 

factor(FIRM)5   -44.3200953 50.49225679 -0.87776024 3.811942e-01 

factor(FIRM)6    47.1354223 46.81068479  1.00693725 3.152592e-01 

factor(FIRM)7     3.7432439 50.56492909  0.07402846 9.410664e-01 

factor(FIRM)8    12.7510602 44.05262731  0.28945062 7.725555e-01 

factor(FIRM)9   -16.9255550 48.45326669 -0.34931711 7.272422e-01 

factor(FIRM)10   63.7288739 50.33023205  1.26621459 2.070030e-01 

F                 0.1101238  0.01185669  9.28790117 3.921108e-17 

K                 0.3100653  0.01735450 17.86656439 2.220007e-42 

 

> xtrereg <- lme(I~F+K,data=mypanel,random=~1| FIRM) 

> sumre <- summary(xtrereg) 

> recoef <- sumre$tTable 

> recov <- vcov(xtrereg) 

 

                    Value   Std.Error  DF   t-value      p-value 

  (Intercept) -57.8644245 29.37775735 188 -1.969668 5.034528e-02 

  F             0.1097897  0.01052676 188 10.429581 2.192183e-20 

  K             0.3081881  0.01717127 188 17.947893 1.293819e-42 

 

Having estimated the fixed and random effects models, it is now time to construct the 

Hausman test statistic.  The R code is meant to get the numbers needed to fill in 
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equation 7).  So, I have to collect rows 11 and 12 of the xtfereg coefficients and then 

rows and columns 11 and 12 of the xtfereg covariance matrix.  I then collect the 

fixed effects coefficients and covariance matrix generated by the Maximum 

Likelihood (MLE) random effects estimator.
16

 

 
> bfe <- coef(xtfereg)[11:12] 

> Vfe <- vcov(xtfereg)[11:12,11:12] 

> bre <- fixef(xtrereg)[-1] 

> Vre <- summary(xtrereg)$varFix[-1,-1]  # or you could type 

> Vre <- vcov(xtrereg)[-1,-1] 

 

Once I have extracted that information from the regressions I can then begin to build 

the Hausman test statistic in equation 7).  First I have to compute the difference 

between the random and fixed effects coefficients for F and K, as well as the 

transpose of that.  Then I have to compute the difference between the analogous 

components of the covariance matrix for the fixed and random effects.  Then I can 

compute the statistic by inverting the difference between the two covariance matrices 

and then pre- and post-multiplying it by the difference in the coefficients, where the 

percent signs surrounding the star, %*%, tells R to do a matrix multiplication, instead of 

a simple multiplication, and the solve() command computes the inverse of the matrix 

 
> bdifft <- bre-bfe 

> bdiff <- t(bre-bfe) 

> Vdiff <- (Vfe-Vre) 

> m <- bdiff%*%solve(Vdiff)%*%bdifft 

> pvalue <- 1 – pchisq(m,df=2) 

> Hausmantable <- c("Hausman"=m,"P-Value"=pvalue) 

> Hausmantable 

 

  Hausman   P-Value  

1.7916645 0.4082677 

 

You see that this Hausman test statistic, generated by a MLE method is slightly lower 

than the one STATA computes using the GLS esimator.  However, in each case you 

can‘t reject the null hypothesis that the fixed and random effects output are 

systematically different.  In other words, they produce essentially the same thing, and 

you can get away with using random effects.  But again, perhaps a better way is to ask 

if the application you are considering is an analysis of a random sample, or if the 

subjects are of particular interest. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
16

 After doing a search on ―nlme random effects hausman‖ I found two web-sites that confirmed what I 

was doing was correct: http://jackman.stanford.edu/classes/350C/hausman.r 

http://research.bus.wisc.edu/jfrees/Book/BookAnalysisR/Chap7AnalysisR.txt. 

http://jackman.stanford.edu/classes/350C/hausman.r
http://research.bus.wisc.edu/jfrees/Book/BookAnalysisR/Chap7AnalysisR.txt
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Seemingly Unrelated 

 

Another useful estimator you might consider is: Zellner‘s (1961) Seemingly Unrelated 

(or SUR).  SUR allows you to have different right-hand side variables, and the slopes 

and intercepts might differ across equations, hence you can capture different 

elasticities.  For instance, your system of equations might look like this, where the y‘s, 

x‘s are time series vectors, the b‘s are coefficients and the e‘s are vectors of errors 
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In general you might estimate the following 
 

9)  

































































4

3

2

1

43434242414140

33333232313130

23232222212120

13131212111110

4

3

2

1

e

e

e

e

xbxbxbb

xbxbxbb

xbxbxbb

xbxbxbb

y

y

y

y

 

 

With SUR you now have the cross-equation correlation between errors to think about 
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and this is where the seemingly unrelated comes from, since you only see the actual 

relationship through the errors.  Also, the b‘s will be functions of the regression 

standard errors.  To estimate this in R, first Install and then Load the systemfit 

package, and then run the following codes 
 

R Code: 
> mypanel <- read.table("C:/grunfeld.csv",header=T,sep=",") 

> model <- I ~ F + K  

> SUR <- systemfitClassic("SUR",model,"FIRM","YEAR",data= 

mypanel,rcovformula=0) 

> summary(SUR) 

 

This first matrix is the starting values of the error covariance matrix so that… 
 

 1 2 3 4 5 6 7 8 9 10 

1  7160.3 -1967.0 607.5 -282.8 -217.5  73.9  371.9  126.2  146.3 -21.7 

2 -1967.0  7904.7 978.5  367.8  162.8 241.7 -211.8  511.5  208.2  62.4 

3   607.5   978.5 660.8  -21.4   -3.4  88.2   -4.1  176.4   89.3  14.4 

4  -282.8   367.8 -21.4  149.9    5.8  18.4  -12.9   13.3    7.2   1.4 

5  -217.5   162.8  -3.4    5.8   69.8  13.2   10.6    0.3  -10.0   1.0 

6    73.9   241.7  88.2   18.4   13.2  55.5    8.7   36.3  -10.8   2.9 

7   371.9  -211.8  -4.1  -12.9   10.6   8.7   75.4   11.3   13.9  -1.9 

8   126.2   511.5 176.4   13.3    0.3  36.3   11.3   88.7   41.4   5.4 

9   146.3   208.2  89.3    7.2  -10.0 -10.8   13.9   41.4   70.4   2.2 

10  -21.7    62.4  14.4    1.4    1.0   2.9   -1.9    5.4    2.2   1.0 
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you can can get to the final error covariance matrix… 
 

1 2 3 4 5 6 7 8 9 10 

1  7227.2 -2226.6  583.8 -320.8 -222.4  61.5  405.3  135.7 157.3 -35.8 

2 -2226.6  7980.8 1282.4  418.9  213.3 312.7 -228.0  609.1 248.1  69.9 

3   583.8  1282.4  707.5    3.7   -4.4  96.6   -8.9  204.1 103.7  16.2 

4  -320.8   418.9    3.7  154.0   15.5  22.7  -15.8   16.8  10.5   2.8 

5  -222.4   213.3   -4.4   15.5   71.7  19.2    9.8    6.3  -9.7   1.5 

6    61.5   312.7   96.6   22.7   19.2  58.4    7.4   41.1  -8.9   3.6 

7   405.3  -228.0   -8.9  -15.8    9.8   7.4   76.4   11.8  14.5  -2.5 

8   135.7   609.1  204.1   16.8    6.3  41.1   11.8   96.8  45.9   6.1 

9   157.3   248.1  103.7   10.5   -9.7  -8.9   14.5   45.9  72.5   1.9 

10  -35.8    69.9   16.2    2.8    1.5   3.6   -2.5    6.1   1.9   1.1 

 

This third matrix is the error correlation matrix… 
 

 1 2 3 4 5 6 7 8 9 10 

1   1      -0.29    0.26 -0.30  -0.31  0.09   0.55  0.16    0.22  -0.41 

2  -0.29    1  0.54  0.38   0.28  0.46  -0.29  0.69    0.33   0.76 

3   0.26    0.54 1     0.01  -0.02  0.48  -0.04  0.78    0.46   0.59 

4  -0.30    0.38 0.01  1      0.15  0.24  -0.15  0.14    0.10   0.22 

5  -0.31    0.28   -0.02  0.15   1     0.30   0.13  0.08   -0.13   0.18 

6   0.09    0.46    0.48  0.24   0.30  1      0.11  0.55   -0.14   0.45 

7   0.55   -0.29   -0.04 -0.15   0.13  0.11   1     0.14    0.19  -0.28 

8   0.16    0.69    0.78  0.14   0.08  0.55   0.14  1       0.55   0.61 

9   0.22    0.33    0.46  0.10  -0.13 -0.14   0.19  0.55    1      0.22 

10 -0.41    0.76    0.59  0.22   0.18  0.45  -0.28  0.61    0.22   1 

 

Now you can get to the output, and you will notice that across the ten equations, the 

intercepts and slopes are different, as are the coefficient and regression standard 

errors.  Finally, you may notice that the first equation is quite different from the 

others, at least from the perspective of the intercept.  This may be because firm 1 is an 

―outlier‖, but unlike fixed effects, the damage here is contained within that equation. 
 

The determinant of the residual covariance matrix: 2.07996e+19 

OLS R-squared value of the system: 0.853443 

McElroy's R-squared value for the system: 0.884686 

 

SUR estimates for '1' (equation 1) 

Model Formula: I.1 ~ F.1 + K.1 

               Estimate Std. Error   t value Pr(>|t|)     

(Intercept) -135.606136  72.293585  -1.87577 0.077967   . 

F.1            0.113814   0.016746  6.796643    3e-06 *** 

K.1            0.386124   0.029738 12.984106        0 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 92.209217 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 144543.176447 MSE: 8502.539791 Root MSE: 92.209217  

Multiple R-Squared: 0.92062 Adjusted R-Squared: 0.911281  

 

SUR estimates for '2' (equation 2) 

Model Formula: I.2 ~ F.2 + K.2 

              Estimate Std. Error   t value Pr(>|t|)     

(Intercept) -10.905983   82.50626 -0.132184 0.896391     

F.2           0.162766   0.040113   4.05772 0.000818 *** 

K.2           0.340626   0.101623  3.351877 0.003782  ** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 96.898023 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 159616.855029 MSE: 9389.226766 Root MSE: 96.898023  

Multiple R-Squared: 0.465763 Adjusted R-Squared: 0.402911  
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SUR estimates for '3' (equation 3) 

Model Formula: I.3 ~ F.3 + K.3 

              Estimate Std. Error   t value Pr(>|t|)     

(Intercept) -15.895901  20.730655 -0.766782 0.453728     

F.3           0.034963   0.009346  3.740922 0.001627  ** 

K.3            0.12573   0.020424  6.155995  1.1e-05 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 28.850037 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 14149.519082 MSE: 832.324652 Root MSE: 28.850037  

Multiple R-Squared: 0.684505 Adjusted R-Squared: 0.647388  

 

SUR estimates for '4' (equation 4) 

Model Formula: I.4 ~ F.4 + K.4 

            Estimate Std. Error   t value Pr(>|t|)     

(Intercept) 1.804327  11.002599  0.163991 0.871672     

F.4         0.067844   0.015981   4.24524 0.000546 *** 

K.4         0.307553   0.025363 12.126172        0 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 13.46178 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 3080.731697 MSE: 181.219512 Root MSE: 13.46178  

Multiple R-Squared: 0.911177 Adjusted R-Squared: 0.900727  

 

SUR estimates for '5' (equation 5) 

Model Formula: I.5 ~ F.5 + K.5 

            Estimate Std. Error  t value Pr(>|t|)     

(Intercept) 26.46736   6.065146 4.363845 0.000423 *** 

F.5         0.127447   0.045832 2.780763 0.012813   * 

K.5         0.011987    0.01792 0.668912 0.512534     

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 9.181756 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 1433.178947 MSE: 84.304644 Root MSE: 9.181756  

Multiple R-Squared: 0.672092 Adjusted R-Squared: 0.633515  

 

SUR estimates for '6' (equation 6) 

Model Formula: I.6 ~ F.6 + K.6 

             Estimate Std. Error  t value Pr(>|t|)     

(Intercept) -6.193451   3.439334 -1.80077 0.089506   . 

F.6          0.133311   0.017792  7.49289    1e-06 *** 

K.6          0.054005   0.059739 0.904023 0.378616     

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 8.287174 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 1167.513224 MSE: 68.677248 Root MSE: 8.287174  

Multiple R-Squared: 0.949687 Adjusted R-Squared: 0.943767  
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SUR estimates for '7' (equation 7) 

Model Formula: I.7 ~ F.7 + K.7 

             Estimate Std. Error   t value Pr(>|t|)     

(Intercept) -9.770131   8.763981 -1.114805 0.280447     

F.7          0.113465   0.045716  2.481938 0.023811   * 

K.7           0.12818   0.014621   8.76692        0 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 9.479343 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 1527.585138 MSE: 89.857949 Root MSE: 9.479343  

Multiple R-Squared: 0.760335 Adjusted R-Squared: 0.732139  

 

SUR estimates for '8' (equation 8) 

Model Formula: I.8 ~ F.8 + K.8 

            Estimate Std. Error  t value Pr(>|t|)     

(Intercept) 3.149097   5.056158 0.622824 0.541666     

F.8         0.053701   0.008265 6.497604    5e-06 *** 

K.8         0.043362   0.034586 1.253753   0.2269     

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 10.670396 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 1935.574958 MSE: 113.85735 Root MSE: 10.670396  

Multiple R-Squared: 0.72105 Adjusted R-Squared: 0.688232  

 

SUR estimates for '9' (equation 9) 

Model Formula: I.9 ~ F.9 + K.9 

             Estimate Std. Error   t value Pr(>|t|)    

(Intercept) -3.156864    7.29719 -0.432614 0.670734    

F.9          0.076595   0.021057  3.637549 0.002036 ** 

K.9          0.065425    0.02195  2.980576 0.008395 ** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 9.237338 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 1450.583062 MSE: 85.328415 Root MSE: 9.237338  

Multiple R-Squared: 0.655242 Adjusted R-Squared: 0.614682  

 

SUR estimates for '10' (equation 10) 

Model Formula: I.10 ~ F.10 + K.10 

             Estimate Std. Error   t value Pr(>|t|)     

(Intercept)   1.98935   1.177681  1.689209 0.109434     

F.10        -0.016129   0.015746 -1.024321  0.32004     

K.10         0.376847   0.057306  6.576083    5e-06 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 1.117089 on 17 degrees of freedom 

Number of observations: 20 Degrees of Freedom: 17  

SSR: 21.214088 MSE: 1.247888 Root MSE: 1.117089  

Multiple R-Squared: 0.622001 Adjusted R-Squared: 0.577531 

 

STATA Translation: 
clear 

insheet using "C:\grunfeld.csv", comma 

browse 

reshape wide i f k, i(year) j(firm) 

sureg (i1 f1 k1) (i2 f2 k2) (i3 f3 k3) (i4 f4 k4) (i5 f5 k5) (i6 f6 k6) (i7 

f7 k7) (i8 f8 k8) (i9 f9 k9) (i10 f10 k10) 

 

This last line actually gives you the same output as R.  I‘ll not report it, but instead 

will show you STATA output corrected for the sample size, since there are a couple 
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of options for you to choose to adjust for small samples.  I‘ll get to the small sample 

code and output shortly, but first take note of the third line that begins with the 

command reshape.  You may ask youself why is that line necessary, and why did I 

put browse in front of it?  The reason is that I‘d like for you to take note that the data 

is stacked as follows 

 
firm year i f k 

1 1935  … 

…  

1 1954  … 

2 1935  … 

…  

2 1954  … 

… 

10 1935  … 

…  

10 1954  … 

 

STATA can‘t run SUR on data arranged like that.  I don‘t know why exactly, but to 

run the estimation, I have to ―unstack‖ the data.  It will still be stacked but only in the 

time dimension, as the firm-specific data will be rearranged parallel-wise using 

 
reshape wide i f k, i(year) j(firm) 

 

which actually transforms the data so that it comes out looking like this 

 

        for firm 1        for firm 2         for firm 10 
   year i1 f1 k1 i2 f2 k2 … i10 f10 k10 

1935       … 

…  

1954       … 

 

What it does is take the variable firm, and makes firm-specific subscripts for the 

variables i, f, and k.  Formatted this way, you can run sureg in STATA, but with 20 

observations per firm, I‘d add on the small sample option ―, dfk‖, which adjusts the 

standard errors for the sample size (think small sample, less information, hence 

slightly larger standard errors), as well as ―corr‖ to get the correlation matrix 

 
sureg (i1 f1 k1) (i2 f2 k2) (i3 f3 k3) (i4 f4 k4) (i5 f5 k5) (i6 f6 k6) (i7 

f7 k7) (i8 f8 k8) (i9 f9 k9) (i10 f10 k10), dfk corr 

 

Seemingly unrelated regression 

Equation Obs Parms RMSE "R-sq" chi2 P 

i1 20 2 85.01269 0.9206 242.20 0.0000 

i2 20 2 89.33556 0.4658 27.85 0.0000 

i3 20 2 26.59842 0.6845 44.01 0.0000 

i4 20 2 12.41115 0.9112 177.48 0.0000 

i5 20 2 8.465161 0.6721 32.51 0.0000 

i6 20 2 7.640396 0.9497 380.77 0.0000 

i7 20 2 8.739524 0.7603 68.09 0.0000 

i8 20 2 9.837619 0.7210 65.50 0.0000 

i9 20 2 8.516405 0.6552 34.68 0.0000 

i10 20 2 1.029905 0.6220 37.30 0.0000 
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 Coef.  Std. Err. z P>z [95% Conf. Interval] 

  

f1     .1138135   .0181631  6.27 0.000     .0782145    .149413 

k1     .3861235   .0322556 11.97 0.000     .3229038    .449343 

_cons -135.6061 78.4134 -1.73 0.084 -289.2935  18.08134 

   

f2     .1627658   .0435082  3.74 0.000     .0774912    .248040 

k2     .3406261   .1102251  3.09 0.002     .1245889    .556663 

_cons  -10.90599 89.4906 -0.12 0.903 -186.3043 164.4924 

        

f3     .0349626   .0101371  3.45 0.001     .0150942    .054831 

k3     .1257302   .022153  5.68 0.000     .0823112    .169149 

_cons  -15.8959 22.48555 -0.71 0.480  -59.96677  28.17497 

        

f4     .0678437   .017334  3.91 0.000     .0338698    .101818 

k4     .3075528   .0275097 11.18 0.000     .2536347    .361471 

_cons    1.804334 11.93399  0.15 0.880  -21.58586  25.19453 

        

f5     .1274473   .0497115  2.56 0.010     .0300145    .224880 

k5     .0119871   .0194373  0.62 0.537    -.0261094    .050084 

_cons   26.46736  6.578575  4.02 0.000   13.57359  39.36113 

        

f6     .133311   .0192977  6.91 0.000     .0954879    .171134 

k6     .054005   .0647958  0.83 0.405    -.0729922    .181003 

_cons   -6.193452  3.730481 -1.66 0.097  -13.50506   1.118157 

        

f7     .1134649   .0495862  2.29 0.022     .0162776    .210652 

k7     .1281802   .0158586  8.08 0.000     .097098    .159263 

_cons   -9.770128  9.505873 -1.03 0.304  -28.4013   8.861041 

        

f8     .0537015   .0089644  5.99 0.000     .0361315    .071272 

k8     .0433622   .0375137  1.16 0.248    -.0301633    .116888 

_cons    3.149101  5.484173  0.57 0.566   -7.59968  13.89788 

        

f9     .0765949   .0228392  3.35 0.001     .0318308    .121359 

k9     .0654245   .0238084  2.75 0.006     .0187608    .112088 

_cons   -3.156863  7.914914 -0.40 0.690  -18.66981  12.35608 

        

f10    -.0161291   .017079 -0.94 0.345    -.0496034    .017345 

k10     .3768475   .0621568  6.06 0.000     .2550223    .498673 

_cons    1.98935  1.277374  1.56 0.119    -.5142579   4.492958 

 
Correlation matrix of residuals: 

 

     i1      i2     i3     i4     i5     i6     i7     i8     i9    i10 

 i1   1 

 i2  -0.26   1 

 i3   0.28   0.43   1 

 i4  -0.27   0.34  -0.07   1 

 i5  -0.31   0.22  -0.02   0.06   1 

 i6   0.12   0.36   0.46   0.20   0.21   1 

 i7   0.51  -0.27  -0.02  -0.12   0.15   0.13   1 

 i8   0.16   0.61   0.73   0.12   0.00   0.52   0.14   1 

 i9   0.21   0.28   0.41   0.07  -0.14  -0.17   0.19   0.52   1 

i10  -0.26   0.70   0.56   0.11   0.12   0.39  -0.22   0.57   0.26   1 

 

Observe that across firms there are different coefficients and levels of significance.  

Compare this with the earlier result from random and fixed effects, without 

interaction effects.  The intercepts range from –135 (firm 1) to over 26 (firm 5).  The 

range of marginal impact of an additional million dollars in firm value is from –0.016 

(firm 10) to over 0.16 (firm 2), compared with 0.11 that you saw for random and fixed 

effects without interaction.  Finally, the marginal impacts from an additional million 

dollars in capital range from just over 0.01 (firm 5) to 0.38 (firm 1), instead of the 

basic random and fixed effects 0.31. 
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Dichotomous Limited Dependent Variable Techniques:  Logit 

 

Sometimes your dependent variable might be a dichotomous dummy variable, as 

when you want to estimate the probability or odds of something happening, given 

your data.  If it‘s a continuous distribution you want, you can use the probit technique 

that estimates a (normal cumulative) probability distribution function.  If you‘d like to 

estimate the odds of one thing happening, estimate a log odds, or logit regression.  

While logit and probit are generally consistent, logit results are easier to interpret.  As 

a useless example, assume you have data on initial income, the population growth 

(MRW‘s n + g + d variable), investment and schooling.  Try predicting the probability 

that the country is African.  Here, I am less interested in the exact coefficients, which 

is good because of the multi-collinearity.  To estimate the odds that, given the right 

hand side variables, the country in African ( 1id ) or not ( 0id ), the model is 
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Since mydata is already in memory, type 

 

R Code: 
> logitreg <- glm(AFRICA~LGDP60+LNGD+LINV+LSCH,data=mydata, 

family=binomial(link="logit")) 

> logitsum <- summary(logitreg) 

> prob <- logitreg$fitted.values 

 

The last line computes the probability.  Having just said not to pay attention to the 

estimated marginal impacts, I‘ll now tell you how you would interpret them if there 

was no multi-collinearity.  The parameters for the right hand side variables measure 

the marginal impact on the log odds that the country is African.  A positive (negative) 

coefficient means the marginal impact of an increase in the right hand side variable 

increases (decreases) the likelihood that the dependant variable equals one.  Still the 

coefficients reported in the table below do not have a straightforward interpretation. 
 

> logitsum 
 

Call: 

glm(formula = AFRICA ~ LGDP60 + LNGD + LINV + LSCH, family = 

binomial(link = "logit"), data = mydata) 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-1.97541  -0.27410  -0.05734   0.27205   2.47848   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  18.9360    10.7434   1.763 0.077973 .   

LGDP60       -2.1271     0.8146  -2.611 0.009023 **  

LNGD          4.0143     2.9493   1.361 0.173475     

LINV          2.1131     0.9310   2.270 0.023225 *   

LSCH         -3.1544     0.8409  -3.751 0.000176 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 141.809  on 109  degrees of freedom 

Residual deviance:  54.507  on 105  degrees of freedom 

AIC: 64.507 

 

Number of Fisher Scoring iterations: 7 
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For a more straightforward interpretation of the coefficients, apply the exponential 

transformation in R by typing the following simple command, minus the intercept, 

since its interpretation is not intuitive 

 
> oddratios <- exp(coef(logitreg)[-1]) # the [-1] removes the intercept 

 

     LGDP60        LNGD        LINV        LSCH  

 0.11918160 55.38439655  8.27421721  0.04266532 

 

The following STATA document http://www.ats.ucla.edu/stat/stata/library/sg124.pdf 

gives you lots of details about interpreting limited dependant variable regression 

output.  Using information from the table above, a unit increase in initial income 

reduces the odds of the country being African by 88.02%, or [0.11918 – 1]∙100%. An 

acceleration of population growth increases the odds that the country is African by 

over 5400%, or [55 – 1]∙100% (while it seems outrageous, it just means, definitely yes 

populations were accelerating across Africa).  A unit increase in the investment share 

increases the odds that the country is African by 727%, or [8.27 – 1]∙100%.  On the 

other hand, a unit increase in schooling rates decreases by 95%, or [0.0427 – 1]∙100%, 

reflecting low schooling rates across Africa.  STATA produces the same output. 

 

STATA Translation: 
clear 

set mem 100m 

insheet using "C:\temple.csv", comma 

drop lsch 

generate LSCH=ln(school/100) 

logit africa lgdp60 lngd linv LSCH 

 

[Reported Iterations Omitted] 

 

Logistic regression    Number of obs = 110 

LR chi2(4) = 87.30 

Prob > chi2 = 0.0000 

Log likelihood = -27.253642  Pseudo R2 = 0.6156 

 
Africa Coef.  Std. Err. z P>z [95% Conf. Interval] 

       

lgdp60 -2.12711   .8146113 -2.61 0.009 -3.723718  -.5305007 

lngd  4.014294  2.94924  1.36 0.173 -1.766109  9.794697 

linv  2.113147   .9310173  2.27 0.023   .2883867  3.937908 

lsch -3.154368   .8409443 -3.75 0.000 -4.802589 -1.506148 

_cons 18.93607 10.7434  1.76 0.078 -2.120607 39.99274 

 

or instead of using the canned logit command, you could do pretty much the same 

thing as what R did, using STATA‘s generalized linear model or glm function, 

specifying the ―family‖ being a binomial distribution, and the link being logit 

 

 

 

 

 

 

 

 

 

 
 

http://www.ats.ucla.edu/stat/stata/library/sg124.pdf
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glm africa lgdp60 lngd linv lsch, family(binomial) link(logit) 

 

[Reported Iterations Omitted] 

 

Generalized linear models   No. of obs = 110 

Optimization     : ML   Residual df = 105 

Scale parameter = 1 

Deviance = 54.50728474   (1/df) Deviance = .519117 

Pearson  = 65.20591106   (1/df) Pearson  = .6210087 

 

Variance function: V(u) = u*(1-u)  [Bernoulli] 

Link function    : g(u) = ln(u/(1-u)) [Logit] 

 

AIC = .5864299 

Log likelihood = -27.25364237  BIC = -439.0432 

 

africa Coef.  Std. Err. z P>z [95% Conf. Interval] 

       

lgdp60 -2.127109   .8146169 -2.61 0.009 -3.723728  -.5304889 

lngd  4.014292  2.949256  1.36 0.173 -1.766143  9.794726 

linv  2.113147   .9310195  2.27 0.023   .2883822  3.937912 

lsch -3.154367   .8409486 -3.75 0.000 -4.802596 -1.506139 

_cons 18.93606 10.74346  1.76 0.078 -2.120738 39.99285 

 

To get the odds ratios in STATA, just add the ―, or‖ option at the end of the line 

 
logit africa lgdp60 lngd linv lsch, or 

 
Iteration 0:   log likelihood = -70.904606 

Iteration 1:   log likelihood = -35.725849 

Iteration 2:   log likelihood = -29.496707 

Iteration 3:   log likelihood = -27.622049 

Iteration 4:   log likelihood = -27.271906 

Iteration 5:   log likelihood = -27.253704 

Iteration 6:   log likelihood = -27.253642 

 

Logistic regression    Number of obs = 110 

LR chi2(4) = 87.30 

Prob > chi2 = 0.0000 

Log likelihood = -27.253642  Pseudo R2 = 0.6156 

 
africa Odds Ratio Std. Err. z P>z [95% Conf. Interval] 

       

lgdp60   .1191813    .0970864 -2.61 0.009  .024144      .5883 

lngd 55.38418 163.3412  1.36 0.173  .170997 17938.37 

linv  8.274241   7.703461  2.27 0.023 1.334273    51.3111 

lsch   .0426653    .0358792 -3.75 0.000  .0082085      .2218 

 

In STATA to compute the estimated country-specific probability that it is African, 

type 

 
predict prob, pr 
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More Complicated Limited Dependent Variable Techniques:  Ordered Logit 

 

Finally, I have seen an area where STATA probably does better than R:  ordered logit.  

STATA is also the only program that I am aware of that has generalized ordered logit.  

That‘s probably because there are many more STATA users than R users of these 

estimators, so the odds of observing a well-tested function are much higher.  So, if 

you think your research may take you down this avenue, you might consider as part of 

the process of writing your dissertation writing an R function/package as well as a 

writeup in LaTex, which you would submit to the CRAN website.  The ordered logit 

estimator makes it possible to estimate the odds of a limited dependent variable that 

can take on more than two possible values, where the values are ordered.  Generalized 

ordered logit relaxes the assumption that the marginal effects are the same across 

thresholds, so it‘s sort of, but not exactly, like running quantile regressions but for 

limited dependent variables (i.e., ordered logit would be like OLS , while generalized 

ordered logit would be like quantile regressions).  In other contexts, your multiple 

outcome limited dependent variable might be unordered, for instance, if you‘re trying 

to explain the odds of a red, green, blue, orange, or yellow ball being drawn from an 

urn, where colors have no preference.  In an economic context, you might use this if 

you are estimating a utility function over several goods, specifically by identifying the 

utility maximum.  In such cases, you might use the multinomial logit technique, 

which is a multivariate extension of the multinomial distribution.  There are plenty of 

other limited dependent variable techniques to consider as well, depending on your 

application.  Here I‘ll focus on ordered outcomes.  For instance, perhaps you have 

different levels of quality ranging from A (being the highest) to D (being the lowest), 

and you want to explain the variation in quality.  In this case the underlying variable, 

the qualitatitive score, is what‘s called a latent variable.  That means it does not 

necessarily represent the truth, but it is a proxy for it.  Alternatively, the ordered 

outcome may not be latent, but an actual count, such as number of time a person visits 

the doctor.  Here you may use ordered probit or logit, but to be consistent with the 

previous section, consider ordered logit. 

 

Ordered Logit Regression 

 

The ordered logit regression technique used here is the most basic extension of the 

logit estimator for cases in which there is more than two possible values of the 

dependent variable, and when the order matters.  As an example, consider the fact that 

the quality of a country‘s national income data may be related to the country‘s 

performance; i.e., due to capacity constraints, the poorer the country, the poorer the 

quality of its data.  The quality of the country‘s data is taken from the Penn World 

Table http://pwt.econ.upenn.edu/Documentation/append61.pdf, and the table of 

numbers is provided in the appendix 4.  Without a formal theory to test such a 

hypothesis, let‘s try first to to identify the association between the quality grade 

assigned to the data, and some of the right hand side variables used by Mankiw, 

Romer and Weil (1993).  For instance, replacing the left-hand side variable in 

equation 2), a country‘s GDP growth between 1960 and 1985, with a country‘s 

national income data quality, and also dropping the investment variable, to get 
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This equation will make it possible to explore whether countries with higher initial 

income, faster population growth, or higher schooling rates increase the odds of 

having better quality data.  Consider a generic graph for four outcomes 

 

Figure 11.  The Distribution of a Hypothetical Ordered Limited Dependent Variable 

 

         ******* |  

         *  |******| 

         *  |  |******|   

         *  |  |   |  p(g=D) = p(g ≤ c1) 

         *  |  |   |*******| p(g=C) = p(c1 < g ≤ c2) 

         *   g=D |   g=C  |   g=B   |  g=A     | p(g=B) = p(c2 < g ≤ c3) 

         *   |    |            |      | p(g=A) = p(g > c3) 

------------------ -------------------------------- 

            c1          c2                c3 

 

In Figure 11, c1, c2 and c3 each tell you when you‘ve reached the boundary between 

two thresholds.  In Appendix 3 you‘ll see a slightly more formal presentation of the 

cut points in the discussion of ordered and generalized ordered logit.  To estimate 

equation 11) in R, you first have to Load the MASS package, which is already in R‘s 

memory, but it needs to be activated.  So you run 

 

R Code: 
> mydata <- read.table("C:/temple.csv",header=T,sep=",") 

> gradedata <- read.table("C:/templegr.csv",header=T,sep=",") 

> mynewgradedata <- merge(mydata,gradedata,by.x="country", by.y="country") 

> mynewgradedata$grade <- 

ordered(mynewgradedata$grade,levels=c("D","C","B","A")) 

> ologitreg <- polr(factor(graden)~LGDP60+LNGD+LSCH,data= 

mynewgradedata,method="logistic") 

 

Call: 

polr(formula = factor(graden) ~ LGDP60 + LNGD + LSCH, data = 

mynewgradedata, method = "logistic") 

 

Coefficients: 

    LGDP60       LNGD       LSCH  

 1.0712738 -4.4471456  0.6058889  

 

Intercepts: 

     1|2      2|3      3|4  

15.83211 19.56957 20.63841  

 

Residual Deviance: 199.7299  

AIC: 211.7299  

 

Unfortunately, R in this case cannot seem to produce a summary as there seems to be 

a problem with convergence of the Hessian matrix, which is the matrix of second 

partial derivatives for the information matrix for this maximum likelihood estimator. 

 
> summary(ologitreg) 

 
Re-fitting to get Hessian 

Error in optim(start, fmin, gmin, method = "BFGS", hessian = Hess, ...) :  

        initial value in 'vmmin' is not finite 

 

I can still get the right coefficients by running 
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> ologitoddratios <- exp(coef(ologitreg)) 

 

    LGDP60       LNGD       LSCH  

2.91909541 0.01171195 1.83288077 

 

I‘ll interpret the coefficients later when we get to STATA since it reports the same 

coefficients. 

 

STATA Translation: 
clear 

set mem 100m 

insheet using "C:\templegr.csv", comma 

sort country 

save "C:\gradedata.dta", replace 

clear 

insheet using "C:\temple.csv", comma 

sort country 

save "C:\mydata.dta", replace 

sort country 

merge country using "C:\gradedata.dta" 

tab _merge 

drop if _merge==1 

drop _merge 

sort country 

tab grade, gen(d) 

gen gradea = d1*4 

gen gradeb = d2*3 

gen gradec = d3*2 

gen graded = d4 

egen graden = rsum(gradea gradeb gradec graded) 

drop d1-graded 

drop lsch 

generate lsch=ln(school/100) 

save "C:\mymergegradedata.dta", replace 

ologit graden lgdp60 lngd lsch 

 

[Reported Iterations Omitted] 

 

Ordered logistic regression Number of obs = 111 

   LR chi2(3) = 59.58 

   Prob > chi2 = 0.0000 

Log likelihood = -99.864954 Pseudo R2 = 0.2298 

 

graden   Coef. Std. Err. z P>z [95% Conf. Interval] 

       

lgdp60 1.071284 .3116099 3.44 0.001 .4605401 1.682028 

lngd -4.44718 1.352637 -3.29 0.001 -7.098299 -1.79606 

lsch .6058809 .3306531 1.83 0.067 -.0421873 1.253949 

 

/cut1 15.8323 4.689003   6.642025 25.02258 

/cut2 19.56977 4.810637   10.1411 28.99845 

/cut3 20.63861 4.902334   11.03021 30.24701 
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ologit graden lgdp60 lngd lsch, or 

 

[Reported Iterations Omitted] 

 

Ordered logistic regression Number of obs = 111 

   LR chi2(3) = 59.58 

   Prob > chi2 = 0.0000 

Log likelihood = -99.864954 Pseudo R2 = 0.2298 

 

graden   Coef. Std. Err. z P>z [95% Conf. Interval] 

       

lgdp60 2.919126 .9096284 3.44 0.001 1.58493 5.37645 

lngd  .0117116 .0158415 -3.29 0.001  .0008265  .1659514 

lsch 1.832866 .6060428 1.83 0.067  .9586902 3.504154 

  

/cut1 15.8323 4.689003 6.642025 25.02258 

/cut2 19.56977 4.810637 10.1411 28.99845 

/cut3 20.63861 4.902334 11.03021 30.24701 

 

The cut points just tell you when you‘ve reached the next highest threshold, so /cut1 

is where you reach the threshold between zero and one, /cut2 is the threshold between 

one and two, etc.  Here, a one percent increase in initial income is associated with a 

192% (or [2.92 – 1]∙100%) increase in the odds that a country has better quality data.  

A one percent increase in population growth rate is associated with almost a 99% (or 

[0.012 – 1]∙100%) decline in the odds that the country‘s data is given a higher grade.  

Finally, a percentage increase in average years of schooling is associated with an 83% 

(or [1.83 – 1]∙100%) increase in the odds that the country‘s data is rated higher 

 

Generalized Ordered Logit Regression 

 

Compared to the previous result, now consider the possibility that the sensitivity of a 

country‘s data quality may vary across thresholds.  For instance, if tax revenues are 

low in poorer countries, officials may not be able to divert sufficient resources to 

collect better data, and this will be reflected in the poorer grade.  Fu (1998) has 

written a program to measure such differences across thresholds, and Williams (2006) 

has generalized this.  Do a search from all sources in STATA for ologit.  This will 

give a number of entries.  From that list you will see the following 
 

gologit from http://fmwww.bc.edu/RePEc/bocode/g 

    'GOLOGIT': module to estimate generalized ordered logit models / The 

    gologit command estimates regression models for ordinal / dependent 

    variables. The actual values taken on by the dependent / variable are 

    irrelevant except that larger values are assumed to / correspond to 

 

gologit2 from http://fmwww.bc.edu/RePEc/bocode/g 

    'GOLOGIT2': module to estimate generalized logistic regression models 

    for ordinal dependent variables / gologit2 estimates generalized ordered 

    logit models for ordinal / dependent variables. A major strength of 

    gologit2 is that it can / also estimate three special cases of the 

    generalized model: 

 

You can download both.  When you click on either one, you will see click here to 

install to the right.  This will download the necessary commands to your computer 

(presuming you have admininstrative rights).  The command to run Fu‘s gologit is 
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gologit graden lgdp60 lngd lsch, or 

 
[Reported Iterations Omitted] 

 
Generalized Ordered Logit Estimates Number of obs = 111 

Model chi2(9) = 82.65 

Prob > chi2 = 0.0000 

Log Likelihood = -88.3304128  Pseudo R2 = 0.3187 

       

graden 

 Odds Ratio Std. Err. z P>z [95% Conf. Interval] 

       

mleq1  

lgdp60 1.077246 .4635424 0.17 0.863  .4634894  2.503742 

lngd 1.224681 2.041523 0.12 0.903  .046675 32.13377 

lsch 2.315016 .9092796 2.14 0.033 1.072071  4.999015

       

mleq2  

lgdp60 3.750871 1.596502  3.11 0.002 1.628662  8.6384 

lngd  .002687 .0044603 -3.57 0.000  .0001038   .0695413 

lsch 5.881634 5.273871  1.98 0.048 1.014503 34.0991

       

mleq3  

lgdp60 8.808661 7.313714  2.62 0.009 1.730488 44.83852 

lngd  .0068789  .0178907 -1.91 0.056  .000042  1.125476 

lsch 4.147469 5.457869  1.08 0.280  .3145163 54.69192 

 

How about an interpretation?  Well again, it‘s kind of like the ordered limited 

dependent variable version of quantile regressions in that you get a different slope 

coefficient for different thresholds, as I suggested earlier.  In this sense we see that 

there is variation across thresholds.  First, consider that mleq1, mleq2, and mleq3 

reflect the probability of moving from grade D to C, D or C to B, and D, C or B to A, 

respectively.  So for instance, a one percent increase in initial income (lgdp60) is 

hardly makes a difference in moving from the D to C threshold (only 7%).  However, 

the odds increase by 275% in moving from D or C to B, and 780% in moving from D, 

C, or B to A.  Next, while the odds of moving from D to C, increases slightly 

(although it‘s statistically insignificant) for a one percent increase in the population 

growth rate, the odds of a country having higher data quality drop sharply (over 99%) 

at the higher thresholds.  Finally, higher schooling rates always seem to be associated 

with higher data quality, although there is significant variability of the results at the 

highest threshold (the move from D, C, or B to A). 
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Basic Time Series 

 

A time dimension in the data was already introduced in the section on panel data, but 

time series analysis is a entire area of specialization in and of itself.  Pfaff (2006) has 

written an excellent book on Times Series in R, which has inspired me in my choice 

of what to discuss here.  I‘ll do some basic unit root tests and test for co-integration in 

R, ARMA-GARCH and R/S statistic for long range dependence.  As far as data sets, 

I‘ll begin with the Johansen and Juselius‘s dataset, which I got from  

http://www.stanford.edu/~clint/bench/finnish.xls.  However, once again, the data has 

no labels, so you can go to Johansen‘s web-site where he labels the data: 

http://www.math.ku.dk/~sjo/data/finnish_data.html.  Johansen and Juselius (1991) try 

to estimate the cointegrating relationships in money demand for Finland from summer 

1958 through fall 1984.  They have 106 quarters of observations.  I‘ll first show you 

how to how to prepare a time series object in R (as well as in STATA) and then how 

to conduct the Augmented Dickey-Fuller (ADF) test.  While in your own work you 

should probably run the Phillips-Perron test, and consider any more recent tests, 

including the ones discussed by Pfaff (2006), the process is similar, so in the interest 

of space I‘ll just discuss the ADF test.  Later, I‘ll report on an E-Views exercise I 

once wrote up as a teaching device to give you another example of how to do the 

cointegration analysis in practice. 

 

Dickey-Fuller Tests 

 

Typically, you start with an equation like  

 

12) it

L

l

ltiltiit pptp   
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2,1,210  

 

which characterizes a regression between changes in the variable p against a constant, 

a time trend, one lagged value of p, and L lags of the change in the variable p.  The 

objective of the test is to determine if there is serial correlation in the residuals.  The 

first thing you‘d like to test is whether 02   is zero or not.  If it‘s statistically 

significantly different from zero you can reject the null that there‘s a unit root, and 

stop there.  If the absolute value of the ADF test is greater than the absolute vale of 

the 1% critical value, then the hypothesis of non-stationarity is rejected, and the 

integrated series can be included in the co-integration analysis.  However, you might 

simply have a random walk with a constant mean and no time trend.  Then, you want 

to test the joint hypothesis that 021   .  Finally, you might have a pure random 

walk in which there is no trend and the constant is zero, in which case you test 

whether 0210   .  By taking first differences, stationarity is restored in the 

sense that the ADF tests values are now lower than the theoretical values at the five 

percent level.  To run this test in R, you‘ll first have to Install and then Load the urca 

package. 

 

In more recent versions of the urca package you can actually select the ―optimal‖ 

number of lags to include in the regression by using one of three selection criteria.  

Here the the BIC, or ―Bayes Information Criterion,‖ is used as it controls for the 

number of lags included in the regression equation. 

 

http://www.stanford.edu/~clint/bench/finnish.xls
http://www.math.ku.dk/~sjo/data/finnish_data.html
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Results for The M1 Monetary Aggregate 

 

R Code: 
> johansen <- read.table("C:/johansen.csv",header=T,sep=",") 

> lrm1 <- ts(johansen$lrm1, start=c(1958,2),end=c(1984,3),frequency=4) 

> lrm1df.ct <- ur.df(lrm1, type = "trend", lags = 6,selectlags = "BIC")  

> summary(lrm1df.ct) 

 

###############################################  

# Augmented Dickey-Fuller Test Unit Root Test #  

###############################################  

 

Test regression trend  

 

 

Call: 

lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag) 

 

Residuals: 

       Min         1Q     Median         3Q        Max  

-0.2139332 -0.0309009  0.0002432  0.0369146  0.1425951  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.4873168  0.1881050   2.591  0.01114 *  

z.lag.1     -0.1681760  0.0661381  -2.543  0.01267 *  

tt           0.0016737  0.0006817   2.455  0.01597 *  

z.diff.lag1 -0.1300637  0.1081278  -1.203  0.23211    

z.diff.lag2  0.0848455  0.1014305   0.836  0.40505    

z.diff.lag3 -0.2177778  0.1014727  -2.146  0.03449 *  

z.diff.lag4  0.3043583  0.0996525   3.054  0.00295 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.05421 on 92 degrees of freedom 

Multiple R-squared: 0.4531,     Adjusted R-squared: 0.4174  

F-statistic:  12.7 on 6 and 92 DF,  p-value: 2.150e-10  

 

Value of test-statistic is: -2.5428 3.2245 3.2341  

 

Critical values for test statistics:  

      1pct  5pct 10pct 

tau3 -3.99 -3.43 -3.13 

phi2  6.22  4.75  4.07 

phi3  8.43  6.49  5.47 

 

You have to do a little eyeball work to interpret these results.  Specifically, at the 

bottom of the output, you see 

―Value of test-statistic is: -2.5428 3.2245 3.2341‖ and below that you see a 

table of theoretical values 
 

Or I could reconstruct this table using the following commands 

 
> cbind(t(lrm1df.ct@teststat),lrm1df.ct@cval) 

     statistic  1pct  5pct 10pct 

tau3 -2.542799 -3.99 -3.43 -3.13 

phi2  3.224486  6.22  4.75  4.07 

phi3  3.234111  8.43  6.49  5.47 
 

To translate what I just did, note that if you type lrm1df.ct@teststat you get a row of 

the test statistic values ―-2.5428 3.2245 3.2341‖ but if you type lrm1df.ct@teststat 

you get a table.  So, I‘d like to join the row of values as a column to the previous 

table, so I use the transpose command, t(), and put it to the left of the table values.  

mailto:lrm1df.ct@teststat
mailto:lrm1df.ct@teststat
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This is the result for the model with a trend, but as long as I cannot reject the 

hypothesis that there is a unit root using the tau3 statistic, I should continue with two 

more tests, first in which the model has only a non-zero constant, and then finally, I 

should test to see if it‘s a pure random walk without the trend, and the constant itself 

is be zero.  Those results are 

 
> lrm1df.c <- ur.df(lrm1, type = "drift", lags = 6,selectlags = "BIC") 

> cbind(t(lrm1df.c@teststat),lrm1df.c@cval) 

 

      statistic  1pct  5pct 10pct 

tau2 -0.6469693 -3.46 -2.88 -2.57 

phi1  1.7297178  6.52  4.63  3.81 

 

> lrm1df.nc <- ur.df(lrm1, type = "none", lags = 6,selectlags = "BIC") 

> cbind(t(lrm1df.nc@teststat),lrm1df.nc@cval) 

 

     statistic  1pct  5pct 10pct 

tau1   1.67893 -2.58 -1.95 -1.62 

 

You see that the none of the test statistics magnitudes, i.e., the absolute values, in the 

left column are greater than the magnitudes of the critical values at the 1 percent level.  

So it‘s time to go to differences, but I‘ll do the STATA translation first. 

 

STATA Translation: 

 
clear 

set mem 100m 

insheet using "C:\johansen.csv", comma 

tsset date 

 

Just as with R, some functions for STATA, such as the adfuller, pperron, and vec, 

require that you specify that your data is in fact a time series.  This was the case in the 

panel data section, when I introduced the concept of time series setting the data, using 

the tsset command in order to use the xtreg command.  Before you can do that you 

also have to let STATA know which variable is ordered chronologically.  

Unfortunately, when I read in the data, the last command, tsset date, will not run 

because STATA does not actually recognize the variable date as a time object, but 

instead it reads it as a string/character variable.  I tried, to no avail, a number of 

different things to get STATA to read date as a time variable.  Finally I gave up and 

did an internet search on ―create + dates + stata‖ and found 

http://research.umbc.edu/economics/econ612/exercise2_1.pdf, and this lead me to 

write the following lines of code to create a new, quarterly time variable 

 
display q(1958q2) 

generate periods = _n 

** you don’t need this line, but it’s just to see what STATA did ** 

browse 

generate time = periods-8 

format time %tq 

tsset time 

** you don’t need this line, but it’s just to see what STATA did ** 

browse 

 

The first line tells you what is the numeric equivalent for the second quarter 1958, 

which is the first period for the Finnish data, and the answer is –7.  This might seem 

strange, until you find out that January 1, 1960 (for daily data), January 1960 (for 

monthly data), first quarter 1960 (for quarterly data) and 1960 (for annual data) are 

http://research.umbc.edu/economics/econ612/exercise2_1.pdf
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each equal to 0.  Since I have quarterly data, I have to go back seven quarters to reach 

the second quarter 1958.  With knowledge of the numerical equivalent of that date, I 

can create a new time variable, which I‘ll call periods.  You might ask yourself, 

what‘s the ―_n‖ in that command?  If you run that second line and then browse or edit 

the data, you will see that STATA created a new variable from 1 to the maximum 

number of rows there are in the data, in this case 106.  I could create a time variable 

out of this, except recall that observation 1 would be second quarter 1960 (since the 

first quarter 1960 equals zero).  So, I have to subtract 8 from the variable periods, in 

order to begin at –7, which STATA will recognize as second quarter 1958.  I call this 

new variable time, which equals periods – 8.  This new variable ranges from –7 to 

98.  To create a STATA time variable from this, simply type format time %tq, which 

tells STATA that it is a quarterly time object.  Now STATA has creates your time 

variable, so you can tsset (time series set) the data.  Once this is done, you can run 

unit root tests to your heart‘s content. 

 

In STATA you can either take the same approach as you saw for R, to determine how 

many lags to include when performing the ADF test, or you could use the command, 

varsoc, which gives you a number of information criteria to help choose.  I begin with 

six lags as the maximum, and look at the Akaike Information Criteria (AIC) to 

determine how many lags to include. 

 
varsoc lrm1, maxlag(6) exog(time) 

 

     Selection order criteria 

     Sample:  1959q4   1984q3   Number of obs = 100 

     lag     LL      LR      df    p      FPE       AIC      HQIC      SBIC     

     ----+----------------------------------------------------------------- 

     0  -21.5492                      .091915   .450984   .461528   .477036   

     1   124.251   291.6    1  0.000  .005078  -2.44501  -2.42392  -2.39291   

     2   137.589  26.677    1  0.000  .003967  -2.69178  -2.66015  -2.61362   

     3   138.977  2.7763    1  0.096  .003937  -2.69954  -2.65737  -2.59533   

     4   147.119  16.284    1  0.000  .003413  -2.84238  -2.78966  -2.71212   

     5   150.554  6.8693*   1  0.009  .003251* -2.89107* -2.82781* -2.73476*  

     6   151.503  1.8988    1  0.168  .003255  -2.89006  -2.81625   -2.7077   

 

The AIC criteria, and the stars, seem to point to five lags as the best number to 

include.  I‘ll run the test for five lags, and then show you that the STATA output for 

the ADF test produces essentially the same output as R‘s urca() package. 

 

First, take a look at the ADF test for five lags. 

 
dfuller lrm1, lags(5) trend regress 

 
Augmented Dickey-Fuller test for unit root Number of obs = 100 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 

 Z(t) -2.270   -4.040   -3.450  -3.150 

 MacKinnon approximate p-value for Z(t) = 0.4505 
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 D.lrm1 Coef.  Std. Err. t P>t [95% Conf. Interval] 

       

 lrm1  

 L1. -.1548821 .0682251 -2.27 0.026 -.2903829 -.0193812 

 LD. -.1199797 .1084045 -1.11 0.271 -.3352804  .095321 

 L2D.  .0546685 .1082833  0.50 0.615 -.1603915  .2697285 

 L3D. -.2237636 .1011125 -2.21 0.029 -.4245818 -.0229455 

 L4D.  .2809028 .1030158  2.73 0.008  .0763046  .485501 

 L5D. -.0782641 .1033961 -0.76 0.451 -.2836177  .1270895 

 _trend  .0015411 .0007004  2.20 0.030  .0001502  .0029321 

 _cons  .4506341 .1936926  2.33 0.022  .0659438  .8353244 

 

Now look at the ADF test with four lags to compare with R‘s output above. 
 

dfuller lrm1, lags(4) trend regress 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 

 Z(t) -2.546   -4.040   -3.450  -3.150 

 

MacKinnon approximate p-value for Z(t) = 0.3054 

 

D.lrm1 Coef.  Std. Err. t P>t [95% Conf. Interval] 

  

lrm1  

L1. -.1673291 .0657251 -2.55 0.013 -.2978279 -.0368303 

LD. -.1251288 .1071441 -1.17 0.246 -.337866  .0876083 

L2D.  .0930794 .1002433  0.93 0.356 -.105956  .2921148 

L3D. -.2084082 .1001273 -2.08 0.040 -.4072133 -.0096031 

L4D.  .3046843 .0982484  3.10 0.003  .1096098  .4997588 

_trend  .0016357 .0006744  2.43 0.017  .0002966  .0029748 

_cons  .4868339 .1870136  2.60 0.011  .115514  .8581537 

 

You‘ll notice that this is very close to the regression output that R reports, and that 

R‘s tau statistic is the same thing as STATA‘s Z(t) statistic, although the critical 

values are slightly different.  Since I‘m not an expert in times series, I can‘t offer an 

explanation, but I can tell you that the results are consistent.  See that the lagged level 

term L1, _trend and _cons are all statistically significant, and the Z(t) is not more 

negative than the 1% critical value, so you can‘t reject the null hypothesis that there is 

unit root in the money supply series.  Still, I‘ll rerun the ADF test for the series 

without the constant and no trend, and then with no constant or trend, but only report 

the Z(t) statistic, by removing the regress option. 

 
dfuller lrm1, lags(4) drift 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

Z(t) -0.760   -2.366   -1.661  -1.291 

 
dfuller lrm1, lags(4) noconstant 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

Z(t) 1.720   -2.600   -1.950  -1.610 
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So I should probably take the first difference to induce stationarity.  If this works, 

then money growth can be called integrated of order 1, often denoted I(1).  If it was in 

fact stationary right away, then it would have been integrated of order zero, or I(0).  

So, since the M1 series is in logs, the first difference will be the growth rate. 

Next I can run the test for first differences in the natural log of money growth.  First, 

you can compute the first difference, using the diff(lrm1) command, and then you 

can apply the Dickey-Fuller test. 

 

R Code: 
> gm <- diff(lrm1) 

> gm.ct <- ur.df(gm,type = "trend", lags = 6,selectlags = "BIC") 

> cbind(t(gm.ct@teststat),gm.ct@cval) 

 

     statistic  1pct  5pct 10pct 

tau3 -4.855305 -3.99 -3.43 -3.13 

phi2  7.872344  6.22  4.75  4.07 

phi3 11.808422  8.43  6.49  5.47 

 

> gm.c <- ur.df(gm,type = "drift", lags = 6,selectlags = "BIC") 

> cbind(t(gm.c@teststat),gm.c@cval) 

 

     statistic  1pct  5pct 10pct 

tau2 -4.883229 -3.46 -2.88 -2.57 

phi1 11.923059  6.52  4.63  3.81 

 

> gm.nc <- ur.df(gm,type = "none", lags = 6,selectlags = "BIC") 

> cbind(t(gm.nc@teststat),gm.nc@cval) 

 

     statistic  1pct  5pct 10pct 

tau1 -4.478248 -2.58 -1.95 -1.62 

 

So this you can be pretty sure is stationary, around a constant mean.  To get a visual 

sense of what this means just run the following plot command and the second line 

adds a horizontal dotted line, to help you visualize the cycle around a flat line, 

representing a constant, but non-zero mean. 

 
> plot.ts(gm,start=c(1958,3),end=c(1984,3),frequency=4) 

> abline(mean(gm),0,lty=3) 
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Figure 12.  Finnish Money Growth: That looks pretty stationary! 

 
 

STATA Translation: 
 

gen gm = lrm1-lrm1[_n-1] 

varsoc gm, maxlag(6) exog(time) 

 

 Selection order criteria 

 Sample:  1960q1   1984q3   Number of obs = 99 

 

     lag     LL      LR      df    p      FPE       AIC      HQIC      SBIC     

     ----+------------------------------------------------------------------ 

     0   121.855                      .005199  -2.42132  -2.40011   -2.3689   

     1   135.519  27.327    1  0.000  .004026  -2.67715  -2.64533  -2.59851   

     2   136.818  2.5977    1  0.107  .004002  -2.68319  -2.64076  -2.57834   

     3   145.037  16.438    1  0.000  .003459  -2.82902  -2.77599  -2.69796   

     4   148.361   6.649*   1  0.010    .0033* -2.87598* -2.81235*  -2.7187*  

     5   149.344   1.966    1  0.161  .003302  -2.87564   -2.8014  -2.69215   

     6   149.737  .78588    1  0.375  .003343  -2.86338  -2.77853  -2.65367 

 

You see that again, the command suggests keeping in four lags, but to keep it 

comparable with R, I‘ll work down to three lags. 
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dfuller gm, lags(4) trend 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

Z(t) -5.168   -4.040   -3.450  -3.150 

 

dfuller gm, lags(3) trend 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 Z(t) -5.012   -4.040   -3.450  -3.150 

 

dfuller gm, lags(3) drift 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 Z(t) -5.040   -2.366   -1.661  -1.290 

 

dfuller gm, lags(3) noconstant 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

Z(t) -4.657   -2.600   -1.950  -1.610 

 

So, first I started off with a trend and then, since it wasn‘t statistically significant, I 

removed it, leaving just the non-zero constant, as well as the lagged level and 

differences.  Now, I am pretty sure that the series is stationary, it is I(1).  For the other 

series, I‘ll suppress the output, but will show you some codes, and the results only in 

the interest of time. 

 

Results for GDP 

 

So, quarterly GDP may have a unit root, but no trend. 

 

R Code: 
> lny <- ts(johansen$lny, start=c(1958,2),end=c(1984,3),frequency=4) 

> lnydf.ct <- ur.df(lny,type = "trend", lags = 6,selectlags = "BIC") 

> cbind(t(lnydf.ct@teststat),lnydf.ct@cval) 

 

     statistic  1pct  5pct 10pct 

tau3 -1.387176 -3.99 -3.43 -3.13 

phi2  4.403456  6.22  4.75  4.07 

phi3  1.943562  8.43  6.49  5.47 

 

> lnydf.c <- ur.df(lny,type = "drift", lags = 6,selectlags = "BIC") 

> cbind(t(lnydf.c@teststat),lnydf.c@cval) 

 

     statistic  1pct  5pct 10pct 

tau2 -1.679225 -3.46 -2.88 -2.57 

phi1  6.068247  6.52  4.63  3.81 

 

 



 

 78 

 

> lnydf.nc <- ur.df(lny,type = "none", lags = 6,selectlags = "BIC") 

> cbind(t(lnydf.nc@teststat),lnydf.nc@cval) 

 

     statistic  1pct  5pct 10pct 

tau1  2.854122 -2.58 -1.95 -1.62 

 

So, I then take first differences of the GDP series and compute the test statistics from 

which I can conclude that GDP growth is trend-stationary 
 

> gy <- diff(lny) 

> gy.ct <- ur.df(gy,type = "trend", lags = 6,selectlags = "BIC") 

> cbind(t(gy.ct@teststat),gy.ct@cval) 

 

     statistic  1pct  5pct 10pct 

tau3 -4.762204 -3.99 -3.43 -3.13 

phi2  7.596229  6.22  4.75  4.07 

phi3 11.365183  8.43  6.49  5.47 

 

> gy.c <- ur.df(gy,type = "drift", lags = 6,selectlags = "BIC") 

> cbind(t(gy.c@teststat), gy.c@cval) 

 

     statistic  1pct  5pct 10pct 

tau2  -4.56585 -3.46 -2.88 -2.57 

phi1  10.45243  6.52  4.63  3.81 

 

> gy.nc <- ur.df(gy,type = "none", lags = 6,selectlags = "BIC") 

> cbind(t(gy.nc@teststat),gy.nc@cval) 

 

     statistic  1pct  5pct 10pct 

tau1 -3.288913 -2.58 -1.95 -1.62 

 

So, again, you can probably say that GDP growth is trend-stationary. 

 

STATA Translation: 
varsoc lny, maxlag(6) exog(time) 

dfuller lny, lags(5) trend 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 Z(t) -1.593   -4.040   -3.450  -3.150 

 

dfuller lny, lags(5) drift 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 Z(t) -1.624   -2.367   -1.661  -1.291 

 

dfuller lny, lags(5) noconstant 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

Z(t) 2.374   -2.600   -1.950  -1.610 

 

Again, I can‘t reject the hypothesis of non-stationarity.  So, I compute the log 

differences to calculate GDP growth. 
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gen gy = lny-lny[_n-1] 

varsoc gy, maxlag(6) exog(time) 

dfuller gy, lags(4) trend 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

Z(t) -3.891   -4.040   -3.450  -3.150 

 

dfuller gy, lags(4) drift regress 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 Z(t) -3.664   -2.367   -1.661  -1.291 

 

dfuller gy, lags(4) noconstant regress 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

Z(t) -2.579   -2.600   -1.950  -1.610 

 

Results for The Money Interest Rate 

 

The money rate at first appears close to being stationary, however, when I apply the 

third of the three tests, I wind up with contradictory results, so I‘ll ultimately have to 

take first differences to get more convincing results of stationarity 

 

R Code: 
> lnmr <- ts(johansen$lnmr, start=c(1958,2),end=c(1984,3),frequency=4) 

> lnmrdf.ct <- ur.df(lnmr,type = "trend", lags = 6,selectlags = "BIC") 

> cbind(t(lnmrdf.ct@teststat),lnmrdf.ct@cval) 

 

     statistic  1pct  5pct 10pct 

tau3 -4.958365 -3.99 -3.43 -3.13 

phi2  8.233197  6.22  4.75  4.07 

phi3 12.322775  8.43  6.49  5.47 

 

> lnmrdf.c <- ur.df(lnmr,type = "drift", lags = 6,selectlags = "BIC") 

> cbind(t(lnmrdf.c@teststat),lnmrdf.c@cval) 

 

     statistic  1pct  5pct 10pct 

tau2 -4.932651 -3.46 -2.88 -2.57 

phi1 12.192698  6.52  4.63  3.81 

 

> lnmrdf.nc <- ur.df(lnmr,type = "none", lags = 6,selectlags = "BIC") 

> cbind(t(lnmrdf.nc@teststat),lnmrdf.nc@cval) 

 

     statistic  1pct  5pct 10pct 

tau1 -1.277184 -2.58 -1.95 -1.62 

 

Since this last test contradicts the results from the previous two attempts, take first 

differences and then rerun the tests. 

 
> gr <- diff(lnmr) 

> gr.ct <- ur.df(gr,type = "trend", lags = 6,selectlags = "BIC") 

> cbind(t(gr.ct@teststat),gr.ct@cval) 
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     statistic  1pct  5pct 10pct 

tau3 -8.198998 -3.99 -3.43 -3.13 

phi2 22.408311  6.22  4.75  4.07 

phi3 33.612391  8.43  6.49  5.47 

 

> gr.c <- ur.df(gr,type = "drift", lags = 6,selectlags = "BIC") 

> cbind(t(gr.c@teststat),gr.c@cval) 

 

     statistic  1pct  5pct 10pct 

tau2 -8.232412 -3.46 -2.88 -2.57 

phi1 33.886380  6.52  4.63  3.81 

 

> gr.nc <- ur.df(gr,type = "none", lags = 6,selectlags = "BIC") 

> cbind(t(gr.nc@teststat),gr.nc@cval) 

 

     statistic  1pct  5pct 10pct 

tau1 -8.265611 -2.58 -1.95 -1.62 

 

This is convincing.  So changes in the money interest rate are stationary. 

 

STATA Translation: 
varsoc lnmr, maxlag(6) exog(time) 

dfuller lnmr, lags(1) trend 

 

 Augmented Dickey-Fuller test for unit root Number of obs = 104 

 

                  ---------- Interpolated Dickey-Fuller --------- 

           Test         1% Critical       5% Critical      10% Critical 

              Statistic           Value             Value             Value 

 Z(t) -4.732   -4.039   -3.449  -3.149 

 

dfuller lnmr, lags(1) drift 

 

 Augmented Dickey-Fuller test for unit root Number of obs = 104 

 

                  ---------- Interpolated Dickey-Fuller --------- 

           Test         1% Critical       5% Critical      10% Critical 

              Statistic           Value             Value             Value 

 Z(t) -4.754   -2.364   -1.660  -1.290 

 

dfuller lnmr, lags(1) noconstant 

 

 Augmented Dickey-Fuller test for unit root Number of obs = 104 

 

                  ---------- Interpolated Dickey-Fuller --------- 

           Test         1% Critical       5% Critical      10% Critical 

              Statistic           Value             Value             Value 

 Z(t) -1.354   -2.599   -1.950  -1.610 

 

STATA too gives a third test result that contradicts the results from the previous two 

tests.  So then take first differences and rerun the tests. 

 
gen gr = lnmr-lnmr[_n-1] 

varsoc gr, maxlag(6) exog(time) 

dfuller gr, lags(5) trend 

 

Augmented Dickey-Fuller test for unit root Number of obs = 99 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 Z(t) -6.477   -4.042   -3.451  -3.151 
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dfuller gr, lags(5) drift 

 

Augmented Dickey-Fuller test for unit root Number of obs = 99 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 Z(t) -6.501   -2.368   -1.662  -1.291 

 

dfuller gr, lags(5) noconstant 

 

Augmented Dickey-Fuller test for unit root Number of obs = 99 

 

                  ---------- Interpolated Dickey-Fuller --------- 

          Test         1% Critical       5% Critical      10% Critical 

       Statistic           Value             Value             Value 

 Z(t) -6.520   -2.600   -1.950  -1.610 

 

Results for The Rate of Inflation 

 

As with the money interest rate, the results for inflation are a bit troubling.  So, I‘ll 

run the three tests first with the constant and trend, then with just the constant and no 

trend, and finally without a constant or trend.  Then I‘ll take the first difference of the 

inflation, which actually gives you the rate of acceleration or deceleration in the price 

level, and that you can reject it being non-stationary. 

 

R Code: 
> difp <- ts(johansen$difp, start=c(1958,2),end=c(1984,3),frequency=4) 

> difpdf.ct <- ur.df(difp,type = "trend", lags = 6,selectlags = "BIC") 

> cbind(t(difpdf.ct@teststat),difpdf.ct@cval) 

 

     statistic  1pct  5pct 10pct 

tau3 -4.085187 -3.99 -3.43 -3.13 

phi2  5.574917  6.22  4.75  4.07 

phi3  8.362128  8.43  6.49  5.47 

 

> difpdf.c <- ur.df(difp,type = "drift", lags = 6,selectlags = "BIC") 

> cbind(t(difpdf.c@teststat),difpdf.c@cval) 

 

     statistic  1pct  5pct 10pct 

tau2 -2.434529 -3.46 -2.88 -2.57 

phi1  2.971361  6.52  4.63  3.81 

 

> difpdf.nc <- ur.df(difp,type = "none", lags = 6,selectlags = "BIC") 

> cbind(t(difpdf.nc@teststat),difpdf.nc@cval) 

 

     statistic  1pct  5pct 10pct 

tau1 -1.028685 -2.58 -1.95 -1.62 

 

> diffdifp <- diff(difp) 

> difpdfdiff.ct <- ur.df(diffdifp,type = "trend", lags = 6,selectlags = 

"BIC") 

> cbind(t(difpdfdiff.ct@teststat),difpdfdiff.ct@cval) 

 

     statistic  1pct  5pct 10pct 

tau3 -10.17202 -3.99 -3.43 -3.13 

phi2  34.49351  6.22  4.75  4.07 

phi3  51.74023  8.43  6.49  5.47 

 

> difpdfdiff.c <- ur.df(diffdifp,type = "drift", lags = 6,selectlags = 

"BIC") 

> cbind(t(difpdfdiff.c@teststat),difpdfdiff.c@cval) 
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     statistic  1pct  5pct 10pct 

tau2 -10.21271 -3.46 -2.88 -2.57 

phi1  52.14981  6.52  4.63  3.81 

 

> difpdfdiff.nc <- ur.df(diffdifp,type = "none", lags = 6,selectlags = 

"BIC") 

> cbind(t(difpdfdiff.nc@teststat),difpdfdiff.nc@cval) 

 

     statistic  1pct  5pct 10pct 

tau1 -10.26618 -2.58 -1.95 -1.62 

 

STATA Translation: 
varsoc difp, maxlag(6) 

dfuller difp, lags(4) trend regress 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

 

  ---------- Interpolated Dickey-Fuller --------- 

          Test 1% Critical       5% Critical      10% Critical 

       Statistic    Value             Value             Value 

Z(t) -2.516  -4.040   -3.450   -3.150 

 

dfuller difp, lags(4) drift regress 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

 

  ---------- Interpolated Dickey-Fuller --------- 

          Test 1% Critical       5% Critical      10% Critical 

       Statistic    Value             Value             Value 

 Z(t) -2.509  -2.366   -1.661   -1.291 

 

dfuller difp, lags(4) noconstant regress 

 

Augmented Dickey-Fuller test for unit root Number of obs = 101 

 

  ---------- Interpolated Dickey-Fuller --------- 

          Test 1% Critical       5% Critical      10% Critical 

       Statistic    Value             Value             Value 

 Z(t) -0.878  -2.600   -1.950   -1.610 

 

Now, since the last test does not reject the unit root, it‘s better to take first differences 

and then to rerun the tests. 

 
gen diffdifp = difp-difp[_n-1] 

dfuller diffdifp, lags(4) trend 

 
Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

  ---------- Interpolated Dickey-Fuller --------- 

          Test 1% Critical       5% Critical      10% Critical 

       Statistic    Value             Value             Value 

 Z(t) -5.655  -4.040   -3.450   -3.150 

 

dfuller diffdifp, lags(4) drift 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

  ---------- Interpolated Dickey-Fuller --------- 

          Test 1% Critical       5% Critical      10% Critical 

       Statistic    Value             Value             Value 

 Z(t) -5.641  -2.367   -1.661   -1.291 
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dfuller diffdifp, lags(4) noconstant 

 

Augmented Dickey-Fuller test for unit root Number of obs = 100 

 

  ---------- Interpolated Dickey-Fuller --------- 

          Test 1% Critical       5% Critical      10% Critical 

       Statistic    Value             Value             Value 

 Z(t) -5.667  -2.600   -1.950   -1.610 

 

So, the Finnish data series from Johansen and Juselius (1991) are all difference 

stationary.  I can now check to see if there are any co-integrating relationships among 

them. 

 

Cointegration Analysis 

 

When you look at the formal presentation of cointegration analysis it looks quite 

complicated, yet if you boil it down to the intuition it is rather simple.  Accordingly, 

I‘ll spare the formal details, since you can get that from Pfaff (2006) or plenty of other 

sources, and jump to the intuition.  The idea is simply do two or more variables share 

a common random walk?  You can‘t address this by looking at non-stationary 

variables, since when you regress one random walk against another the correlations 

are spurious.  Pfaff has the R codes for you to simulate this.  Granger and Engle 

(1987) propose cointegration analysis, in which the relationship between two or more 

integrated series can be assessed.  That is, by first transforming the non-stationary 

series to be stationary, the relationship can then be assessed.  Typically, taking 

differences (first or second, or more) of the non-stationary series makes them 

stationary.  If a series is non-stationary, and the first (or nth) difference is stationary, it 

is called integrated of order one (or n), denoted I(1) (or I(n)).  If a series is stationary 

it is denoted I(0).  After determining the stationarity of each variable then an analysis 

of their interaction can be performed using the aforementioned cointegration analysis.  

This means bringing all the variables on the left-hand side and normalizing the 

coefficients by dividing by the coefficient of the original left-hand side variable and 

testing whether there is co-movement among the variables using the Johansen test.  

As Pfaff (2006) discusses, you can think about cointegration in a transitory or long 

run sense.  In the transitory case, you have one lag of the vector of variables, as in 
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while in the long-run case you have the level effect is lagged back k periods so that 

the innovations lead up to the current innovation 
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There are a number of really intuitive applications of cointegration analysis, which is 

why I have covered it here.  Again, the common theme is simply this:  is there a unit 

root that is common to all of the variables in the system being considered?  You will 

probably have to go further than this in your own work, however, I think the most 

important issue is whether a collection of variables is co-integrated because it has real 

world implications.  I‘ll start out with just testing for cointegration, and later I‘ll show 
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you the process from E-Views, to give you a feel for the practicality of the technique.  

I‘ll begin with the cointegration rank test in R and STATA for the four Finnish data 

series since they are each I(1). 

 

Useful Application #1:  Estimating a Money Demand Equation 

 

You might think of this as an exercise in vanity, because really money demand 

estimation is much harder (probably impossible) than you think for a central bank 

given the millions of contracts and transactions that take place each day.  But, given 

that we have central banking, you are almost compelled to do this to discover the 

match with the money supply.  For this last application, I‘ll just do the rank test.  If 

the trace test statistic is greater than the 1% critical value you know the series are co-

integrated. 

 

R Code: 
> finnish <- data.frame(gm,gy,gr,diffdifp) 

> H1 <- ca.jo(finnish,type='trace',K=4) 

> cbind(H1@cval,cbind(H1@teststat)) 

 

         10pct  5pct  1pct           

r <= 3 |  6.50  8.18 11.65  15.68204 

r <= 2 | 15.66 17.95 23.52  56.39332 

r <= 1 | 28.71 31.52 37.22 113.82506 

r = 0  | 45.23 48.28 55.43 191.61472 

 

STATA Translation: 
varsoc gm gy gr diffdifp, maxlag(6) exog(time) 

 

Selection order criteria 

Sample:  1960q1 1984q3 Number of obs = 99 

 

     lag     LL      LR      df    p      FPE       AIC      HQIC      SBIC     

     ----+------------------------------------------------------------------ 

     0   739.014                      4.5e-12   -14.768  -14.6831  -14.5582   

     1   795.184  112.34   16  0.000  2.0e-12  -15.5795  -15.3249  -14.9504*  

     2   810.523  30.677   16  0.015  2.0e-12  -15.5661  -15.1419  -14.5176   

     3   859.029  97.012   16  0.000  1.1e-12  -16.2228  -15.6289  -14.7549   

     4   896.254   74.45*  16  0.000  7.0e-13* -16.6516*  -15.888* -14.7642   

     5   909.065  25.623   16  0.060  7.6e-13  -16.5872  -15.6538  -14.2804   

     6   919.527  20.924   16  0.181  8.6e-13  -16.4753  -15.3723  -13.7491 

 

vecrank gm gy gr diffdifp, lags(4) levela 

 

  Johansen tests for cointegration            

Trend: constant     Number of obs = 101 

Sample:   1959q3 1984q3     Lags = 4 

Maximum     trace    5% critical   1% critical 

rank parms LL  eigenvalue statistic value  value 

0 52 816.93904   191.6147 47.21  54.46 

1 59 855.83389   0.53708 113.8250 29.68  35.65 

2 64 884.54977   0.43370  56.3933 15.41  20.04 

3 67 904.9054   0.33174  15.6820  3.76   6.65 

4 68 912.74641   0.14381 

 

So, you see that STATA and R are producing the same test statistic here, but the 

critical values they each report are slightly different. 
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Useful Application #2:  Searching for Segmented Regions in Guinea, West Africa 

 

Having watched my colleague at the World Bank do co-integration analysis for about 

fifteen regions in Guinea, I then repeated this exercise for three regional rice prices 

against the world rice price, to be used as a teaching device.  What my colleague was 

looking for was to figure out the regions that were facing the most difficulties in 

integrating with the rest of the country.  By adding in the world rice price we can see 

if the regional markets are integrated with the world.  Put another way, if the market 

prices of the commodity in one region are cointegrated with the market prices in other 

regions, then the markets are integrated, or else they are segmented.  This exercise can 

be used to provide some part of the answer to the question: are regions in Guinea, 

West Africa integrated with the capital, and also the world rice market?   An analogy 

for Australia would be whether the Outback, and Melbourne-Sydney-Brisbane-Perth-

Adelaide are integrated with the world market.  Your first thought might be that the 

Outback is segmented, while the cities are well integrated, but that‘s something you 

can test.  Regional GDP would be an obvious choice of variables, but, especially in a 

country like Guinea, you may have difficulty getting sufficient GDP data to do the 

analysis.  For about 20 regions, we got about 70 monthly observations of rice prices 

(70 is a bare minimum at best; in practice you should only think about doing this if 

you can get more data).  First my colleague tested for stationarity, and found that only 

15 out of almost 20 regions so were difference-stationary (that is I(1)), so we 

excluded the series that were non-stationary in differences.  Here, I will show you the 

results for the stationarity tests and then the cointegration analysis to test whether or 

not Conakry, Boffa, and Boke are economically tied to the world rice market (see the 

Atlantic coastline in the map above, taken from MapZones.com). 

 

Figure 13.  A Map of Guinea, West Africa to Situate the Cointegrated Regions 
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To test this proposition more formally, cointegration analysis can be used to 

determine which markets are in the ―integrated space‖.  Since these are price series, 

and since price series are generally non-stationary, a regression of one price on others 

is spurious (the regressions will look much better than they really are).  To do this in 

practice, the first step is therefore to test the stationarity of each of the four rice price 

series (Thai 35% broken rice, which is the proxy for the world rice price, and the 35% 

broken bulk rice price series for each of the three Guinean cities).  Augmented Dickey 

Fuller tests can be estimated as above.  The ADF-tests are first run with a constant, 

trend, and three lags, as shown in equation 12) above.  When I did this, I was unaware 

of the general-to-specific approach that I followed earlier, and which is probably 

better than what you see here where I dropped everything that is statistically 

insignificant at the same time; that‘s because your risk omitting relevant variables, 

which is more problematic than including irrelevant variables, in this case one or 

more lags.  As seen earlier, if the value of the ADF test is greater in absolute value 

than the 1% critical value, then the hypothesis of non-stationarity is rejected, and the 

integrated series can be included in the co-integration analysis.  By taking first 

differences, stationarity is restored in the sense that the ADF tests values are now 

lower than the theoretical values at the five percent level. 

 

World Price Stationarity Tests 

 

ADF test of World with constant, trend, and three lags 
ADF Test Statistic -3.418352     1%   Critical Value* -4.0969 

      5%   Critical Value -3.4759 
      10% Critical Value -3.1651 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(LWORLD) 
Method: Least Squares 
Date: 06/27/03   Time: 16:05 
Sample(adjusted): 1995:05 2000:12 
Included observations: 68 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

LWORLD(-1) -0.316913 0.092709 -3.418352 0.0011 
D(LWORLD(-1)) 0.302266 0.124300 2.431749 0.0179 
D(LWORLD(-2)) -0.007906 0.124255 -0.063624 0.9495 

D(LWORLD(-3)) 0.081051 0.124396 0.651559 0.5171 

C 1.794744 0.522638 3.434010 0.0011 
@TREND(1995:01) 4.04E-05 0.000360 0.112220 0.9110 

R-squared 0.204933     Mean dependent var 0.002360 
Adjusted R-squared 0.140815     S.D. dependent var 0.061709 
S.E. of regression 0.057200     Akaike info criterion -2.800442 
Sum squared resid 0.202851     Schwarz criterion -2.604603 
Log likelihood 101.2150     F-statistic 3.196177 
Durbin-Watson stat 1.991636     Prob(F-statistic) 0.012455 

 

These results suggest that the trend should not be there, and three lags are probably 

too much (the p-values on @trend and lag two are far from 0.05).  So the trend and 

two lags are dropped in the table below.  The Akaike drops from -2.800 in the table 

above to -2.899 in the table below, suggesting that that is a better specification.  Yes, 

the first differences are stationary, even though the log of the world is not. 
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ADF test of World with constant, no trend and one lag 
ADF Test Statistic -3.729186     1%   Critical Value* -3.5253 

      5%   Critical Value -2.9029 
      10% Critical Value -2.5886 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(LWORLD) 
Method: Least Squares 
Date: 06/27/03   Time: 16:06 
Sample(adjusted): 1995:03 2000:12 
Included observations: 70 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

LWORLD(-1) -0.277299 0.074359 -3.729186 0.0004 
D(LWORLD(-1)) 0.270997 0.115346 2.349435 0.0218 

C 1.571090 0.420773 3.733821 0.0004 

R-squared 0.188554     Mean dependent var 0.002449 
Adjusted R-squared 0.164332     S.D. dependent var 0.060813 
S.E. of regression 0.055593     Akaike info criterion -2.899625 
Sum squared resid 0.207065     Schwarz criterion -2.803261 
Log likelihood 104.4869     F-statistic 7.784317 
Durbin-Watson stat 2.000338     Prob(F-statistic) 0.000912 

 

Conakry Price Stationarity Tests 

 

As before, the trend should not be there (the p-values on @trend is from 0.05), 

therefore, it is dropped.  Notice that the Akaike drops from -2.18 in the table above to 

-2.23 after dropping the trend, suggesting that that is a better specification.  The first 

differences are stationary, even though the log levels are not. 

 

ADF test of Conakry with constant, trend, and three lags 
ADF Test Statistic -4.237653     1%   Critical Value* -4.0969 

      5%   Critical Value -3.4759 
      10% Critical Value -3.1651 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(LCONAK) 
Method: Least Squares 
Date: 06/27/03   Time: 16:12 
Sample(adjusted): 1995:05 2000:12 
Included observations: 68 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

LCONAK(-1) -0.385653 0.091006 -4.237653 0.0001 
D(LCONAK(-1)) 0.274384 0.115924 2.366927 0.0211 
D(LCONAK(-2)) 0.265660 0.120653 2.201850 0.0314 
D(LCONAK(-3)) 0.152819 0.123803 1.234370 0.2217 

C 2.558320 0.603203 4.241223 0.0001 
@TREND(1995:01) -0.000146 0.000482 -0.301724 0.7639 

R-squared 0.248092     Mean dependent var 0.000427 
Adjusted R-squared 0.187454     S.D. dependent var 0.086479 
S.E. of regression 0.077954     Akaike info criterion -2.181307 
Sum squared resid 0.376760     Schwarz criterion -1.985468 
Log likelihood 80.16444     F-statistic 4.091381 
Durbin-Watson stat 2.051979     Prob(F-statistic) 0.002833 
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ADF test of Conakry with constant, no trend, and two lags 
ADF Test Statistic -4.215160     1%   Critical Value* -3.5267 

      5%   Critical Value -2.9035 
      10% Critical Value -2.5889 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(LCONAK) 
Method: Least Squares 
Date: 06/27/03   Time: 16:11 
Sample(adjusted): 1995:04 2000:12 
Included observations: 69 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

LCONAK(-1) -0.336154 0.079749 -4.215160 0.0001 
D(LCONAK(-1)) 0.266893 0.114164 2.337790 0.0225 
D(LCONAK(-2)) 0.258967 0.118185 2.191210 0.0320 

C 2.225703 0.527911 4.216057 0.0001 

R-squared 0.234928     Mean dependent var 0.001389 
Adjusted R-squared 0.199617     S.D. dependent var 0.086212 
S.E. of regression 0.077129     Akaike info criterion -2.230454 
Sum squared resid 0.386677     Schwarz criterion -2.100940 
Log likelihood 80.95065     F-statistic 6.653093 
Durbin-Watson stat 2.080851     Prob(F-statistic) 0.000548 

 

Boffa Price Stationarity Tests 

 

The tests below suggests that the trend and last lag should not be there (the p-values 

on @trend and lag are far from 0.05).  Therefore, two tables below the trend is 

dropped.  Notice that the Akaike drops from –1.97 in the table above to -2.03 after 

dropping the trend and one lag, suggesting that that is a better specification.  Yes, the 

first differences are stationary, even though the log of the Boffa‘s rice price is not. 

 

ADF test of Boffa with constant, trend, and three lags 
ADF Test Statistic -4.262570     1%   Critical Value* -4.0969 

      5%   Critical Value -3.4759 
      10% Critical Value -3.1651 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(LBOFFA) 
Method: Least Squares 
Date: 06/27/03   Time: 16:13 
Sample(adjusted): 1995:05 2000:12 
Included observations: 68 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

LBOFFA(-1) -0.381060 0.089397 -4.262570 0.0001 
D(LBOFFA(-1)) 0.365965 0.115016 3.181859 0.0023 
D(LBOFFA(-2)) 0.374146 0.123998 3.017353 0.0037 
D(LBOFFA(-3)) 0.071350 0.135175 0.527831 0.5995 

C 2.450476 0.572814 4.277963 0.0001 
@TREND(1995:01) 0.000646 0.000581 1.112700 0.2701 

R-squared 0.328887     Mean dependent var -0.001647 
Adjusted R-squared 0.274765     S.D. dependent var 0.101517 
S.E. of regression 0.086453     Akaike info criterion -1.974337 
Sum squared resid 0.463394     Schwarz criterion -1.778499 
Log likelihood 73.12747     F-statistic 6.076769 
Durbin-Watson stat 1.971569     Prob(F-statistic) 0.000122 
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ADF test of Boffa with constant, no trend, and two lags 
ADF Test Statistic -4.619981     1%   Critical Value* -3.5267 

      5%   Critical Value -2.9035 
      10% Critical Value -2.5889 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(LBOFFA) 
Method: Least Squares 
Date: 06/27/03   Time: 16:13 
Sample(adjusted): 1995:04 2000:12 
Included observations: 69 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

LBOFFA(-1) -0.325520 0.070459 -4.619981 0.0000 
D(LBOFFA(-1)) 0.349267 0.112771 3.097128 0.0029 
D(LBOFFA(-2)) 0.348722 0.119442 2.919590 0.0048 

C 2.113745 0.458099 4.614162 0.0000 

R-squared 0.316915     Mean dependent var -0.000784 
Adjusted R-squared 0.285388     S.D. dependent var 0.101023 
S.E. of regression 0.085400     Akaike info criterion -2.026728 
Sum squared resid 0.474051     Schwarz criterion -1.897214 
Log likelihood 73.92211     F-statistic 10.05216 
Durbin-Watson stat 2.002127     Prob(F-statistic) 0.000016 

Boke Price Stationarity Tests 

 

The tests below suggests that the trend and at least one lag should not be there (the p-

values on @trend and second lag are far from 0.05).  In the tables below, the trend 

and two lags are dropped.  The Akaike rises from –2.226 in the table above to -2.223 

after dropping the trend and two lags, however the ADF drops below the 1% critical 

value with the smaller model suggesting that that is a better specification.  Yes, the 

first differences are stationary, even though the log of Boke‘s rice price is not. 

 

ADF test of Boke with constant, trend, and three lags 
ADF Test Statistic -3.669111     1%   Critical Value* -4.0969 

      5%   Critical Value -3.4759 
      10% Critical Value -3.1651 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(LBOKE) 
Method: Least Squares 
Date: 06/27/03   Time: 16:14 
Sample(adjusted): 1995:05 2000:12 
Included observations: 68 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

LBOKE(-1) -0.301642 0.082211 -3.669111 0.0005 
D(LBOKE(-1)) 0.326907 0.116393 2.808655 0.0066 
D(LBOKE(-2)) -0.005307 0.117462 -0.045185 0.9641 
D(LBOKE(-3)) 0.254979 0.117183 2.175910 0.0334 

C 1.923184 0.524588 3.666085 0.0005 
@TREND(1995:01) 0.000471 0.000492 0.956142 0.3427 

R-squared 0.222652     Mean dependent var -0.000406 
Adjusted R-squared 0.159962     S.D. dependent var 0.083190 
S.E. of regression 0.076246     Akaike info criterion -2.225596 
Sum squared resid 0.360438     Schwarz criterion -2.029757 
Log likelihood 81.67025     F-statistic 3.551668 
Durbin-Watson stat 1.973470     Prob(F-statistic) 0.006895 
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ADF test of Conakry with constant, no trend, and one lag 
ADF Test Statistic -3.828176     1%   Critical Value* -3.5253 

      5%   Critical Value -2.9029 
      10% Critical Value -2.5886 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(LBOKE) 
Method: Least Squares 
Date: 06/27/03   Time: 16:16 
Sample(adjusted): 1995:03 2000:12 
Included observations: 70 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   

LBOKE(-1) -0.258862 0.067620 -3.828176 0.0003 
D(LBOKE(-1)) 0.298614 0.112687 2.649952 0.0100 

C 1.668596 0.435167 3.834379 0.0003 

R-squared 0.208823     Mean dependent var 0.003954 
Adjusted R-squared 0.185206     S.D. dependent var 0.086391 
S.E. of regression 0.077982     Akaike info criterion -2.222766 
Sum squared resid 0.407440     Schwarz criterion -2.126402 
Log likelihood 80.79682     F-statistic 8.841983 
Durbin-Watson stat 1.991415     Prob(F-statistic) 0.000391 
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Johansen‘s cointegration test is run to determine how many markets are connected.  If 

the number of cointegrating equations is below the total number of markets minus 

one, not all markets are contained in the integrated space.  The likelihood ratio must 

be greater than the critical value here. The top portion of the E-Views output is 

reproduced below; notice, all markets are integrated, although the test statistic is just 

below the 1% critical value.  It should be mentioned here that in addition to constant 

and trend, you see two exogenous series: recolte, which is a dummary variable for the 

months of the harvest, and soudure, which is a dummy variable for the months during 

which the seeds are planted. 

 
Date: 06/27/03   Time: 17:42 
Sample: 1995:01 2000:12 
Included observations: 69 

Test 
assumption: 
Quadratic 

deterministic 
trend in the data 

    

Series: LWORLD LCONAK LBOKE LBOFFA  
Exogenous series: RECOLTE SOUDURE 
Warning: Critical values were derived assuming no exogenous series 
Lags interval: 1 to 2 

 Likelihood 5 Percent 1 Percent Hypothesized 
Eigenvalue Ratio Critical Value Critical Value No. of CE(s) 

 0.389509  73.00227  54.64  61.24       None ** 
 0.228402  38.95129  34.55  40.49    At most 1 * 
 0.192250  21.06013  18.17  23.46    At most 2 * 
 0.087637  6.328472   3.74   6.40    At most 3 * 

 *(**) denotes 
rejection of the 
hypothesis at 

5%(1%) 
significance 

level 

    

 L.R. test 
indicates 4 

cointegrating 
equation(s) at 

5% significance 
level 

    

     
 Unnormalized Cointegrating Coefficients: 

LWORLD LCONAK LBOKE LBOFFA  
-0.664074 -2.083896  0.253087  1.995538  
 1.873414 -1.907785 -0.356755  0.910542  
-0.912541 -1.576989  2.837943 -0.996026  
-0.212643 -0.494608 -0.319819 -0.477971  

Note: Brooks (2002) notes that E-VIEWS 3.1 and 4 generate different Johansen results  Also, software packages can usually 
handle at most about ten markets (vectors). 

 

Here is the other cointegration test result from E-Views.  By typing 

coint lworld lconak lboke lboffa into the prompt and then including the exogenous 

variables (under the Vector Error Correction (VEC) option) soudure and recolte, two 

seasonal dummy variables representing planting and harvesting respectively, yields. 
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Date: 06/27/03   Time: 16:22 
 Sample(adjusted): 1995:04 2000:12 
 Included observations: 69 after adjusting endpoints 
 Standard errors & t-statistics in parentheses 

Cointegrating Eq:  CointEq1    

LWORLD(-1)  1.000000    
     

LCONAK(-1)  3.138048    
  (1.79161)    
  (1.75153)    
     

LBOKE(-1) -0.381113    
  (0.57814)    
 (-0.65920)    
     

LBOFFA(-1) -3.004992    
  (1.72836)    
 (-1.73863)    
     

@TREND(95:01)  0.008333    
     

C -4.749839    

Error Correction: D(LWORLD) D(LCONAK) D(LBOKE) D(LBOFFA) 

CointEq1 -0.061992 -0.119125 -0.036268  0.130616 
  (0.03983)  (0.04511)  (0.05023)  (0.05124) 
 (-1.55649) (-2.64102) (-0.72200)  (2.54899) 
     

D(LWORLD(-1))  0.140507  0.248597  0.066360  0.111489 
  (0.13351)  (0.15120)  (0.16838)  (0.17177) 
  (1.05243)  (1.64417)  (0.39410)  (0.64906) 
     

D(LWORLD(-2)) -0.086166  0.050046  0.133460 -0.439715 
  (0.14216)  (0.16100)  (0.17930)  (0.18290) 
 (-0.60611)  (0.31085)  (0.74434) (-2.40408) 
     

D(LCONAK(-1))  0.098395 -0.126766 -0.109514 -0.450909 
  (0.15455)  (0.17503)  (0.19492)  (0.19884) 
  (0.63666) (-0.72426) (-0.56184) (-2.26771) 
     

D(LCONAK(-2))  0.155684  0.174093  0.131779 -0.152096 
  (0.13428)  (0.15207)  (0.16935)  (0.17276) 
  (1.15943)  (1.14482)  (0.77812) (-0.88040) 
     

D(LBOKE(-1))  0.083206 -0.037126  0.110085  0.075005 
  (0.13000)  (0.14723)  (0.16397)  (0.16726) 
  (0.64003) (-0.25216)  (0.67139)  (0.44843) 
     

D(LBOKE(-2))  0.090479 -0.152270 -0.477459 -0.007649 
  (0.12202)  (0.13819)  (0.15390)  (0.15699) 
  (0.74152) (-1.10190) (-3.10248) (-0.04873) 
     

D(LBOFFA(-1)) -0.285572  0.165945 -0.084075  0.156309 
  (0.13687)  (0.15501)  (0.17263)  (0.17610) 
 (-2.08645)  (1.07056) (-0.48704)  (0.88764) 
     

D(LBOFFA(-2)) -0.265769 -0.089728  0.303849  0.204131 
  (0.13939)  (0.15786)  (0.17580)  (0.17934) 
 (-1.90669) (-0.56840)  (1.72836)  (1.13826) 
     

C  0.007068  0.043643  0.055259  0.065358 
  (0.01872)  (0.02120)  (0.02361)  (0.02408) 
  (0.37759)  (2.05863)  (2.34050)  (2.71370) 
     

@TREND(95:01) -0.000142 -2.08E-05 -0.000172 -0.000219 
  (0.00037)  (0.00041)  (0.00046)  (0.00047) 
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 (-0.38883) (-0.05023) (-0.37274) (-0.46423) 
     

SOUDURE  0.005913 -0.049656 -0.063267 -0.001422 
  (0.02239)  (0.02536)  (0.02824)  (0.02881) 
  (0.26411) (-1.95833) (-2.24045) (-0.04935) 
     

RECOLTE -0.002221 -0.086254 -0.089821 -0.171464 
  (0.02373)  (0.02687)  (0.02993)  (0.03053) 
 (-0.09357) (-3.20947) (-3.00109) (-5.61608) 

 R-squared  0.210502  0.488821  0.366980  0.519538 
 Adj. R-squared  0.041324  0.379282  0.231333  0.416582 
 Sum sq. resids  0.201431  0.258356  0.320422  0.333433 
 S.E. equation  0.059975  0.067923  0.075643  0.077163 
 F-statistic  1.244260  4.462551  2.705403  5.046209 
 Log likelihood  103.4496  94.86278  87.43490  86.06170 
 Akaike AIC -2.621727 -2.372834 -2.157533 -2.117730 
 Schwarz SC -2.200809 -1.951916 -1.736615 -1.696812 
 Mean dependent  0.002354  0.001389  0.002604 -0.000784 
 S.D. dependent  0.061254  0.086212  0.086278  0.101023 

 Determinant Residual Covariance  7.55E-11   
 Log Likelihood  412.4670   
 Akaike Information Criteria -10.33238   
 Schwarz Criteria -8.519189   

 

One Step Cointegration Analysis 

 

Although all four markets are cointegrated according to Johansen‘s test, the one step 

cointegration analysis, that would be used if not all were found to be in the integrated 

space, is used here.  Beginning with the world price, the first natural test would be to 

see of the biggest market in Conakry is in the same market space as the world, which 

would suggest whether or not people in the capital of Guinea are subjected to world 

rice price shocks.  According to the table below, the likelihood ratio is above the 1% 

threshold.  Therefore, Conakry responds to world prices. 
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Step 1: Sequential Cointegration Analysis for World and Conakry 
Date: 06/27/03   Time: 16:27 
Sample: 1995:01 2000:12 
Included observations: 69 

Test 
assumption: 
Quadratic 

deterministic 
trend in the data 

    

Series: LWORLD LCONAK  
Exogenous series: RECOLTE SOUDURE 
Warning: Critical values were derived assuming no exogenous series 
Lags interval: 1 to 2 

 Likelihood 5 Percent 1 Percent Hypothesized 
Eigenvalue Ratio Critical Value Critical Value No. of CE(s) 

 0.167020  19.62593  18.17  23.46       None * 
 0.096689  7.016468   3.74   6.40    At most 1 ** 

 *(**) denotes 
rejection of the 
hypothesis at 

5%(1%) 
significance 

level 

    

 L.R. test 
indicates 2 

cointegrating 
equation(s) at 

5% significance 
level 

    

     
 Unnormalized Cointegrating Coefficients: 

LWORLD LCONAK    
 1.722460 -0.462747    
-0.556411  1.651630    

     
 Normalized 

Cointegrating 
Coefficients: 1 
Cointegrating 
Equation(s) 

    

LWORLD LCONAK @TREND(95:02
) 

C  

 1.000000 -0.268655 -0.000629 -3.858855  
  (0.23446)    
     

 Log likelihood  189.8962    

 

 

The next step below is to see if Boke is also cointegrated with these two markets to 

see if it responds to world prices. 
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Step 2: Sequential Cointegration Analysis for World, Conakry, Boffa 
Date: 06/27/03   Time: 18:08 
Sample: 1995:01 2000:12 
Included observations: 69 

Test 
assumption: 
Quadratic 

deterministic 
trend in the data 

    

Series: LWORLD LCONAK LBOFFA  
Exogenous series: RECOLTE SOUDURE 
Warning: Critical values were derived assuming no exogenous series 
Lags interval: 1 to 2 

 Likelihood 5 Percent 1 Percent Hypothesized 
Eigenvalue Ratio Critical Value Critical Value No. of CE(s) 

 0.388402  55.83639  34.55  40.49       None ** 
 0.201960  21.91051  18.17  23.46    At most 1 * 
 0.087846  6.344303   3.74   6.40    At most 2 * 

 *(**) denotes 
rejection of the 
hypothesis at 

5%(1%) 
significance 

level 

    

 L.R. test 
indicates 3 

cointegrating 
equation(s) at 

5% significance 
level 

    

     
 Unnormalized Cointegrating Coefficients: 

LWORLD LCONAK LBOFFA   
-0.598392 -1.916755  2.057593   
-1.719582  2.026683 -0.804652   
-0.295473 -0.657454 -0.593159   

     
 Normalized 

Cointegrating 
Coefficients: 1 
Cointegrating 
Equation(s) 

    

LWORLD LCONAK LBOFFA @TREND(95:02
) 

C 

 1.000000  3.203176 -3.438537  0.008925 -4.837767 
  (1.90359)  (1.74384)   
     

 Log likelihood  296.3298    

     
 Normalized 

Cointegrating 
Coefficients: 2 
Cointegrating 
Equation(s) 

    

LWORLD LCONAK LBOFFA @TREND(95:02
) 

C 

 1.000000  0.000000 -0.582812  0.000930 -1.904916 
   (0.16531)   

 0.000000  1.000000 -0.891529  0.002496 -0.915607 
   (0.08891)   
     

 Log likelihood  304.1129    
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By adding in Boke to the other three markets, we see that the market is still 

cointegrated, although the threshold is lower, but still above the 95% significance 

level.  So at the risk of sounding redundant, all four markets are weakly contained in 

an integrated market space; they are weakly cointegrated. 

 

Step 3: Sequential Cointegration Analysis for World, Conakry, Boffa, Boke 
Date: 06/27/03   Time: 18:10 
Sample: 1995:01 2000:12 
Included observations: 69 

Test 
assumption: 
Quadratic 

deterministic 
trend in the data 

     

Series: LWORLD LCONAK LBOFFA LBOKE  
Exogenous series: RECOLTE SOUDURE 
Warning: Critical values were derived assuming no exogenous series 
Lags interval: 1 to 2 

 Likelihood 5 Percent 1 Percent Hypothesized  
Eigenvalue Ratio Critical Value Critical Value No. of CE(s)  

 0.389509  73.00227  54.64  61.24       None ** 
 0.228402  38.95129  34.55  40.49    At most 1 * 
 0.192250  21.06013  18.17  23.46    At most 2 * 
 0.087637  6.328472   3.74   6.40    At most 3 * 

 *(**) denotes 
rejection of the 
hypothesis at 

5%(1%) 
significance 

level 

     

 L.R. test 
indicates 4 

cointegrating 
equation(s) at 

5% significance 
level 

     

      
 Unnormalized Cointegrating Coefficients: 

LWORLD LCONAK LBOFFA LBOKE   
-0.664074 -2.083896  1.995538  0.253087   
 1.873414 -1.907785  0.910542 -0.356755   
-0.912541 -1.576989 -0.996026  2.837943   
 0.212643  0.494608  0.477971  0.319819   

      
 Normalized 

Cointegrating 
Coefficients: 1 
Cointegrating 
Equation(s) 

     

LWORLD LCONAK LBOFFA LBOKE @TREND(95:02
) 

C 

 1.000000  3.138048 -3.004992 -0.381113  0.008333 -4.749839 
  (1.79161)  (1.72836)  (0.57814)   
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 Log likelihood  412.4670     

      
 Normalized 

Cointegrating 
Coefficients: 2 
Cointegrating 
Equation(s) 

     

LWORLD LCONAK LBOFFA LBOKE @TREND(95:02
) 

C 

 1.000000  0.000000 -0.369293 -0.237149  0.000715 -1.758343 
   (0.29737)  (0.27106)   

 0.000000  1.000000 -0.839917 -0.045877  0.002428 -0.953298 
   (0.17418)  (0.15877)   
      

 Log likelihood  421.4126     

      
 Normalized 

Cointegrating 
Coefficients: 3 
Cointegrating 
Equation(s) 

     

LWORLD LCONAK LBOFFA LBOKE @TREND(95:02
) 

C 

 1.000000  0.000000  0.000000 -0.591383  0.000263 -1.862092 
    (0.12975)   

 0.000000  1.000000  0.000000 -0.851543  0.001400 -1.189263 
    (0.11711)   

 0.000000  0.000000  1.000000 -0.959221 -0.001223 -0.280938 
    (0.14189)   
      

 Log likelihood  428.7784     
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Rolling Regressions 

 

Now I can illustrate what I meant earlier about exploring a simple model over time.  

Using the same four variables that I used in the cointegration analysis, I‘ll estimate a 

rolling money demand equation.  In this case, I‘ll estimate a simple linear regression 

over time with ten years of quarterly observations, but after each estimation I‘ll drop 

the earliest observation and add the latest.  I chose ten years rather arbitrarily, as I 

don‘t want the sample to be too small, and figured 40 observations per estimation 

would be small, but not too small.  This is probably better done with higher frequency 

data, but still it can be informative to see the effect of news, or changes in the 

economy.  I‘ll break up the codes in four sections to: 1) create the data, 2) estimate the 

rolling regressions, 3) construct the objects to be plotted, and then 4) plot them.  I‘ll 

then show you the same thing in STATA. 

 
# Create a new dataset so that all variables have the same starting date 

sample <- length(johansen$date) 

finnish <- data.frame(date=johansen$date[2:sample],gm,gy,gr,diffdifp) 

 

# Create objects in R’s memory to store the forthcoming regression output 

window <- 40 

subsample <- sample-window 

bgy <- numeric(subsample) 

bgy.ci <- numeric(subsample) 

bgr <- numeric(subsample) 

bgr.ci <- numeric(subsample) 

bddifp <- numeric(subsample) 

bddifp.ci <- numeric(subsample) 

bcons <- numeric(subsample) 

bcons.ci <- numeric(subsample) 

 

# Estimate rolling regressions 

for (i in 1:subsample) { 

model <- lm(gm~gy+gr+diffdifp,data=finnish,subset=i:(i+window-1)) 

modelsum <- summary.lm(model) 

coefs <- coefficients(model) 

bgy[i] <- coefs[2] 

bgy.ci[i] <- 1.96*modelsum$coefficients[2,2] 

bgr[i] <- coefs[3] 

bgr.ci[i] <- 1.96*modelsum$coefficients[3,2] 

bddifp[i] <- coefs[4] 

bddifp.ci[i] <- 1.96*modelsum$coefficients[4,2] 

bcons[i] <- coefs[1] 

bcons.ci[i] <- 1.96*modelsum$coefficients[1,2] 

} 

 

# Create time series objects to be plotted shortly from the regression 

# coefficients and the coefficient standard errors 

 

bgy <- ts(bgy, start=c(1968,2),end=c(1984,3),frequency=4) 

bgr <- ts(bgr, start=c(1968,2),end=c(1984,3),frequency=4) 

bddifp <- ts(bddifp, start=c(1968,2),end=c(1984,3),frequency=4) 

bcons <- ts(bcons, start=c(1968,2),end=c(1984,3),frequency=4) 

bgyplusci <- ts(bgy+bgy.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bgyminusci <- ts(bgy-bgy.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bgrplusci <- ts(bgr+bgr.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bgrminusci <- ts(bgr-bgr.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bddifpplusci<-ts(bddifp+bddifp.ci,start=c(1968,2),end=c(1984,3),frequency=4) 

bddifpminusci<-ts(bddifp-ddifp.ci,start=c(1968,2),end=c(1984,3),frequency=4) 

bconplusci <- ts(bcons+bcons.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bconminusci <- ts(bcons-bcons.ci, start=c(1968,2),end=c(1984,3),frequency=4) 
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# Use the par(mfrow … command to create a multi-panel plot, in this case 

# with a 2 row, 2 column layout, and then plot each of the series together 

# with the standard errors 

 

par(mfrow=c(2,2)) 

plot(bgy,type="n",ylim=c(0,2)) 

abline(0,0,lty=8) 

lines(bgy) 

lines(bgyplusci,lty=2) 

lines(bgyminusci,lty=2) 

plot(bgr,type="n",ylim=c(-0.5,1.5)) 

abline(0,0,lty=8) 

lines(bgr) 

lines(bgrplusci,lty=2) 

lines(bgrminusci,lty=2) 

plot(bddifp,type="n",ylim=c(-2.2,3.2)) 

abline(0,0,lty=8) 

lines(bddifp) 

lines(bddifpplusci,lty=2) 

lines(bddifpminusci,lty=2) 

plot(bcons,type="n",ylim=c(-0.04,0.04)) 

abline(0,0,lty=8) 

lines(bcons) 

lines(bconplusci,lty=2) 

lines(bconminusci,lty=2) 

 

Figure 14.  Money Growth Elasticities Against All Variables Plus the Constant 
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STATA Translation: 

 
clear 

set mem 100m 

insheet using "C:\johansen.csv", comma 

generate periods = _n 

generate time = periods-8 

format time %tq 

tsset time 

drop if periods==1 

gen gm = lrm1-lrm1[_n-1] 

gen gy = lny-lny[_n-1] 

gen gr = lnmr-lnmr[_n-1] 

gen diffdifp = difp-difp[_n-1] 

 

rolling _b _se, window(40) start(1958q3) end(1984q3) clear: reg gm gy gr 

diffdifp 

gen gyseplus = _b_gy+1.96*_se_gy 

gen gyseminus = _b_gy-1.96*_se_gy 

twoway (line _b_gy end) (line gyseplus end, lpattern(dot)) (line gyseminus 

end, lpattern(dot)), ytitle(GDP Growth) xtitle("") legend(order(1 

"Coefficient" 2 "+S.E.'s" 3 "-S.E.'s")) 

graph save "C:\GDPGrowth.gph", replace 

 

gen grseplus = _b_gr+1.96*_se_gr 

gen grseminus = _b_gr-1.96*_se_gr 

twoway (line _b_gr end) (line grseplus end, lpattern(dot)) (line grseminus 

end, lpattern(dot)), ytitle(Interest Rate Changes) xtitle("") legend(order(1 

"Coefficient" 2 "+S.E.'s" 3 "-S.E.'s")) 

graph save "C:\InterestRate.gph", replace 

 

gen diffdifpseplus = _b_diffdifp+1.96*_se_diffdifp 

gen diffdifpseminus = _b_diffdifp-1.96*_se_diffdifp 

twoway (line _b_diffdifp end) (line diffdifpseplus end, lpattern(dot)) (line 

diffdifpseminus end, lpattern(dot)), ytitle(Inflation Acceleration) 

xtitle("") legend(order(1 "Coefficient" 2 "+S.E.'s" 3 "-S.E.'s")) 

graph save "C:\Inflation.gph", replace 

 

gen conseplus = _b_cons+1.96*_se_cons 

gen conseminus = _b_cons-1.96*_se_cons 

twoway (line _b_cons end) (line conseplus end, lpattern(dot)) (line 

conseminus end, lpattern(dot)), ytitle(Constant (Avg. Money Growth)) 

xtitle("") legend(order(1 "Coefficient" 2 "+S.E.'s" 3 "-S.E.'s")) 

graph save "C:\Constant.gph", replace 

 

graph combine "C:\GDPGrowth.gph" "C:\InterestRate.gph" "C:\Inflation.gph" 

"C:\Constant.gph" 
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Figure 15.  Money Growth Elasticities Against All Variables Plus the Constant 
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How about an interpretation?  It‘s not too difficult.  You‘ll see that during the 1970‘s 

GDP growth was increasingly correlated with money growth, but that that sensitivity 

has since declined.  At the same time, however, you see that just as the sensitivity of 

money growth to GDP has fallen, money growth has become more sensitive to 

interest rate changes.  This fact could reflect a change in monetary policy.  Perhaps in 

the 1970‘s the Finnish Central Bank was following a GDP rule to target inflation (or 

perhaps not), and perhaps when they realized that wasn‘t working, they switched to 

interest rate targests.  This is all pure conjecture, and perhaps it‘s worth exploring, if it 

hasn‘t already been looked into.  Perhaps this pattern is true for other country‘s?  I 

don‘t know.  
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Higher Frequency Data Analysis: ARMA and GARCH in One Shot 

 

In this section, I can summarize the basics of ARMA and GARCH modelling.  These 

days, in terms of software, my metric for what‘s a good program to run GARCH 

models is how many multivariate-, not univariate-, GARCH models it does.  I think 

only S-Plus (not R) and Ox
©

 have routines for multivariate GARCH models.  I‘ve also 

seen that Robert Engle has a program for E-Views, which you can download from his 

web-site, to run a number of multi-variate GARCH models.  I‘m not sure if it runs 

―right off the bat‖ or if you have to do something to your E-Views program to get it to 

run, but consider looking into it.  If you plan to work with high-frequency data, you 

might consider Ox
©

, which is a program put out by Oxford University, unless you‘re 

an expert R programmer, or you can wait for other people to improve what R can do.  

STATA‘s not bad, but it‘s still limited.  However, keep in mind that people like Frank 

Diebold are now calling these models generation I volatility (i.e., they‘re getting old).  

The generation II is called realized volatility and betas, and these are quite simple to 

compute, even though the mathematics look, at times, daunting. 

 

The the quantity and frequency of your data is a crucial component of the kind of 

estimation you‘re able to do.  You can estimate an auto-regressive moving average (or 

ARMA) model, which are models of the conditional mean of a variable, with annual 

data.  To estimate generalized auto-regressive conditional heteroskedasticity (or 

GARCH), which are models of the conditional variance, you‘ll need higher-frequency 

data to increase the number of potential observations.  You‘ll probably have to have at 

least monthly data, and weekly, daily, and intra-daily are better.  A rule of thumb that 

I‘ve read, but can‘t remember where, is at you‘ll need at least 100 observations for an 

ARCH model (I‘ve seen a paper where they estimate an ARCH model with over one-

hundred years of annual data), and at least 500 for a GARCH model.  Here I‘ll 

illustrate with daily data, but in finance you can have intra-daily data, so that you‘re 

dealing with millions of data points.  I‘ll do a basic ARMA(1,1)-GARCH(1,1) model, 

just to illustrate both.  But first off, what would such an animal look like? 

 

The ARMA(1,1), means that it‘s part auto-regressive with 1 lag, and part moving 

average, with 1 lag.  Hence, the conditional mean portion of the model would be 
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So, the   is the constant portion of the mean, as we‘ve seen in the ADF test (there‘s 

no time trend here to simplify), there‘s one lagged dependent variable, and the   is 

the auto-correlation coefficient, and the   is the moving average parameter associated 

with the lagged residual.  Before GARCH, most people assumed the errors were 

drawn from a distribution with a constant variance.  However, in the real world, you 

might see that the volatility can change over time; it would be heteroskedastic.  The 

errors would be said to come from a distribution with a mean equal to zero and a 

variance expressed by the following equation 
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where   is the constant part of the variance,   captures the marginal impact of 

lagged squared residuals, and   captures the marginal impact of lagged variance.  

You should notice that it has the same structure, as the ARMA model, except for the 

contemporaneous error term.  There are, by the way, lots of variations of this.  The 

merits of each should be considered if you plan to do work in this area.  You can also 

put independent variables in either or both of equations 15) or 16).  To estimate an 

ARMA GARCH model in R, you‘ll need to Install and Load the fseries package. 

 

Once you have the codes run it‘s simple to run the model in R, except that I think they 

are still in the process of developing this program so it looks a bit rough (for instance, 

I‘m still not sure how to calculate the standard errors for the coefficients).  As for 

data, I‘ll get the Bollerslev and Ghysels (1996) daily British Pound-Deutschmark 

exchange rate also from http://www.stanford.edu/~clint/bench/#garch, and get the file 

garch11x.zip.  You‘ll have to save this file as a .csv file as you‘ve done before to 

your favourite location.  I also changed the names of the variables in the .csv file to 

from Obs to obs and from Y to bpdret, since it‘s the daily rate of return on the 

British Pound-Deutschmark exchange rate.  Once you do that you can read in the data, 

and then run the garchFit command in R, which will give you the following output, 

which I‘ll forgo explaining until I get to STATA, since I think it does a little better. 

 
> mydailydata <- read.table("C:/bpdret.csv",header=T,sep=",") 

> armagarch <- garchFit(~arma(1,1)+garch(1,1),mydailydata$bpdret) 

 

Lots of Output that I’ve suppressed, and then 

 

                       U          V      params includes 

    mu     -1.642679e-01  0.1642679 -0.01641602     TRUE 

    ar1    -1.000000e+00  1.0000000 -0.62103194     TRUE 

    ma1    -1.000000e+00  1.0000000  0.64278556     TRUE 

    omega   2.211298e-07 22.1129849  0.02211298     TRUE 

    alpha1  1.000000e-08  1.0000000  0.10000000     TRUE 

    gamma1 -1.000000e+00  1.0000000  0.10000000    FALSE 

    beta1   1.000000e-08  1.0000000  0.80000000     TRUE 

    delta   0.000000e+00  2.0000000  2.00000000    FALSE 

    skew    1.000000e-01 10.0000000  1.00000000    FALSE 

    shape   1.000000e+00 20.0000000  4.00000000    FALSE 

 

mu  ar1  ma1  omega  alpha1  beta1  

-0.00842 -0.37208 0.42763 0.01150 0.16002 0.79608  

 

More output related to time to convergence and then 

  

mu  ar1  ma1  omega  alpha1  beta1  

-0.00842 -0.37208 0.42763 0.01150 0.16002 0.79608  

 

Hessian Matrix: 

                mu        ar1         ma1        omega       alpha1 

mu     6956.340703  -29.29060    7.146397    -263.2579   -183.51830 

ar1     -29.290599 1767.20855 1803.103297     778.4359     55.09995 

ma1       7.146397 1803.10330 1852.242279     729.8793     54.46767 

omega  -263.257916  778.43594  729.879257 1322300.7769 107048.36951 

alpha1 -183.518302   55.09995   54.467671  107048.3695  16217.57723 

beta1   -27.476697  280.72289  287.251455  179515.6190  19948.07314 

              beta1 

mu        -27.47670 

ar1       280.72289 

ma1       287.25145 

omega  179515.61895 

alpha1  19948.07314 

beta1   29161.65200 

 

http://www.stanford.edu/~clint/bench/#garch
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> armagarchcoef <- armagarch@fit$coef 

 

mu  ar1  ma1  omega  alpha1  beta1  

-0.00842 -0.37208 0.42763 0.01150 0.16002 0.79608  

 

As I said, I‘m not sure how you get the standard errors for the coefficients.  STATA 

doesn‘t give you the same thing for the ARMA terms, but the GARCH terms are the 

same.  To do this in STATA, you‘d have to run the following 

 
clear 

set mem 100m 

insheet using "C:\bpdret.csv", comma 

tsset obs, daily 

arch bpdret, ar(1) ma(1) arch(1) garch(1) 

 

ARCH family regression -- ARMA disturbances 

 

Sample:  02jan1960 to 28may1965   Number of obs = 1974 

Wald chi2(2) = 10.86 

Log likelihood = -1103.911    Prob > chi2 = 0.0044 

 
bpdret Coef.  Std. Err. z P>z [95% Conf. Interval] 

_cons -.006106 .0087586 -0.70 0.486  -.0232725  .0110605 

       

ARMA  

ar  

L1. -.4098897 .3069457 -1.34 0.182 -1.011492  .1917128 

ma  

L1.  .4645401 .2992367  1.55 0.121  -.121953 1.051033 

       

ARCH  

arch  

L1.  .1602145 .0146999 10.90 0.000   .1314033  .1890258 

garch  

L1.  .7957788 .0176828 45.00 0.000   .7611211  .8304364 

_cons  .0115303 .0014334  8.04 0.000   .0087209  .0143397 
 

How would I interpret this?  Well, the constant part of the mean exchange rate return 

is –0.6%, which means that during the sample, the British pound was appreciating, 

although the result is not statistically significant; i.e., since pounds are in the 

numerator, one pound buys more Deutschmarks (or one Deutschmark buys fewer 

pounds).  Also, there is evidence of negative serial correlation, since   = –0.41, 

implying that if it‘s up today, it‘s likely to be down tomorrow.  The p-value is not too 

high, but leave it in since it‘s better to leave in an irrelevant variable than to omit a 

relevant variable (as before, omitted variable bias is worse than including an 

irrelevant variable).  Finally, the MA term is 0.46, with a p-value that is lower, 

reflecting a higher significance level than the AR term.  Now for the ARCH and 

GARCH terms.  Well, you see the ARCH term is smaller in magnitude than the 

GARCH term, but both are statistically significant.  Also, it is a good thing to check if 

the GARCH terms are not explosive, by adding up the two coefficients   and  .  

Just as the  <1 means that the series is not explosive, since the sum of the squares of 

the two ARCH and GARCH coefficients is 0.16
2
 + 0.79

2
 = 0.0256 + 0.6241 = 0.6497, 

likewise, the volatility is not explosive. 

 

Note, however, that there‘s a slight problem here with the dates.  I‘m not exactly sure 

when the Bollerslev-Ghysels (1996) data is from, but I‘m pretty sure it‘s not from 

those dates.  However, I also was not too careful about the dates in this context, since 
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I only needed to tell STATA to time-series set (tsset) the data, and working with 

daily dates can be more of a problem in STATA than in R, which I believe allows for 

irregularly spaced time-series, which is what you have because of weekends and 

holidays (intra-daily dates are even worse!). 

 

GARCH with Ox
©
 

 

Having just noted that R is not a well developed GARCH modelling environment, 

there are alternatives, including Ox
©

.  There are two versions of Ox
©

, the very user-

friendly and very expensive Professional version, and the very clumsy, but freely 

downloadable Console version.  This section is intended to give you an understanding 

of how to start working with Ox
©

; it is not intended to teach you the ―ins and outs‖ of 

GARCH modelling.  To get access to the Console version, you may go to the 

following web-site http://www.doornik.com/download.html.  You will see a link 

 

Download Ox Console (all platforms) 

 

When you left click on this button, you will be prompted for an e-mail address and 

additional information.  If you agree to the terms of use (and you should), then you 

will receive an e-mail shortly thereafter, and and the very bottom of the message you 

will see the following link 

 

http://www.doornik.com/download/oxmetrics5/c645br/oxcons.html 

 

You will see two links (you can use either one) that allow you to download the 

Console version of Ox
©

.  Once you download this, there are two additional packages 

you may wish to download.  To get them, go back to 

 

http://www.doornik.com/download.html 

 

As you scroll down the page, the first package you may wish to use is the Arfima 

package, which allows you to estimate models when the underlying data is 

fractionally integrated, which relates to long range dependence, the last topic covered 

in this cookbook, high frequency data and the R/S statistic.  The second is the 

G@RCH package, which allows you to estimate a whole range of univariate and 

multivariate GARCH models.  When you download these zipped packages, the Ox
©

 

documentation asks you to make sure that you include them in the packages folder, 

such as, which might be found in a location such as 

 

―C:\Program Files\OxMetrics5\Ox\packages‖ 

 

To estimate a GARCH model in Ox
©

 the first thing to do is to start with the working 

example.  There is a working example in the G@RCH package examples folder, 

which might be found in a location such as 

 

―C:\Program Files\OxMetrics5\Ox\packages\Garch42\Garch42\Examples‖ 

 

[Note: the Garch42 in ―packages\Garch42\Garch42\‖ appears twice because when I 

unzipped the package in the ―packages‖ folder, it created a folder within ―Garch42‖ 

http://www.doornik.com/download.html
http://www.doornik.com/download/oxmetrics5/c645br/oxcons.html
http://www.doornik.com/download.html
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called ―Garch42.‖  I left it as is, but you may eliminate the second folder after copying 

all contents to ―packages\Garch42‖] 

 

The G@RCH 4.0 version has an example called ―GarchEstim.ox.‖  To run it, the first 

thing to note is that you‘ll have to change the location of the file ―garch‖ in the first 

line of the codes from #import <packages/Garch42/garch> to 

#import <packages/Garch42/Garch42/garch> so that the correct address is called.  

Once you change the first line, you can run the model and it will give you results for 

the Nasdaq for a simple GARCH model with a constant conditional mean for the first 

2000 observations of the 1984-1999 sample: 

 
******************** 

 ** SPECIFICATIONS ** 

 ******************** 

Dependent variable : Nasdaq 

Mean Equation : ARMA (0, 0) model. 

No regressor in the mean 

Variance Equation : GARCH (1, 1) model. 

 No regressor in the variance 

The distribution is a Gauss distribution. 

 

Strong convergence using numerical derivatives 

Log-likelihood = -2192.99 

Please wait : Computing the Std Errors ... 

 

Robust Standard Errors (Sandwich formula) 

Coefficient Std.Error  t-value t-prob 

Cst(M) 0.078371 0.018303 4.282  0.0000 

Cst(V) 0.038572 0.014600 2.642  0.0083 

ARCH(Alpha1)0.193262 0.051737 3.735  0.0002 

GARCH(Beta1)0.762596 0.057457 13.27  0.0000 

 

No. Observations :      2000  No. Parameters  :         4 

Mean (Y)         :   0.04326  Variance (Y)    :   0.83876 

Skewness (Y)     :  -2.33675  Kurtosis (Y)    :  33.73842 

Log Likelihood   : -2192.990  Alpha[1]+Beta[1]:   0.95586 

 

The sample mean of squared residuals was used to start 

recursion. 

The positivity constraint for the GARCH (1,1) is observed. 

This constraint is alpha[L]/[1 - beta(L)] >= 0. 

The unconditional variance is 0.873822 

The conditions are alpha[0] > 0, alpha[L] + beta[L] < 1 and 

alpha[i] + beta[i] >= 0. 

  => See Doornik & Ooms (2001) for more details. 

The condition for existence of the fourth moment of the GARCH 

is observed. 

The constraint equals 0.988364 and should be < 1. 

  => See Ling & McAleer (2001) for details. 

 

Estimated Parameters Vector :  

 0.078371; 0.038572; 0.193262; 0.762596 

 

Elapsed Time : 0.594 seconds (or 0.0099 minutes). 

 

Now, from this exercise you should be able to estimate the ARMA(1,1)-GARCH(1,1) 

model from that we tried earlier in R and STATA.  Before doing that, note that the 
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only thing you would have to change to apply the model just estimated to the 

exchange rate data that you used earlier, is to change the data object, 

 
 garchobj.Load("/data/garch11x/garch11.xls"); 

 

as well as the sample from 2000 to 1974 in  
 

garchobj.SetSelSample(-1, 1, 1974, 1); 
 

To estimate the model with an ARMA(1,1) specification, you may run the following  

 
#import <packages/Garch42/Garch42/garch> 

 

main() 

{ 

 decl garchobj; 

 

 garchobj = new Garch(); 

 

//*** DATA ***// 

 garchobj.Load("/data/garch11x/garch11.xls"); 

 garchobj.Info();           

                                  

garchobj.Select(Y_VAR, {"Y",0,0}); 

// TO INCLUDE A REGRESSOR IN THE VARIANCE INCLUDE THE FOLLOWING LINE 

// garchobj.Select(Z_VAR, {"NAME",0,0});  //  

       

 garchobj.SetSelSample(-1, 1, 1974, 1);      

 

//*** SPECIFICATIONS ***// 

garchobj.CSTS(1,1); // cst in Mean (1 or 0), cst in 

// Variance (1 or 0) 

 garchobj.DISTRI(0); // 0 for Gauss, 1 for Student, 2 for 

// GED, 3 for Skewed-Student 

 garchobj.ARMA_ORDERS(1,1);  // AR order (p), MA order (q). 

 garchobj.ARFIMA(0); // 1 if Arfima wanted, 0 otherwise 

 garchobj.GARCH_ORDERS(1,1); // p order, q order 

 garchobj.ARCH_IN_MEAN(0); // ARCH-in-mean: 1 or 2 to add 

// the variance or std. dev in  

//  the cond. mean  

     

 garchobj.MODEL("GARCH"); // 0: RISKMETRICS  1:GARCH 

    // 2:EGARCH 3:GJR 4:APARCH 

    // 5:IGARCH  6:FIGARCH-BBM 

    // 7:FIGARCH-CHUNG   8:FIEGARCH 

    // 9:FIAPARCH-BBM 

    // 10: FIAPARCH-CHUNG 11: HYGARCH 

 garchobj.TRUNC(1000); 

  // Truncation order (only F.I. models with BBM method) 

 

//*** TESTS & FORECASTS ***//  

 garchobj.BOXPIERCE(<10;15;20>); 

// Lags for the Box-Pierce Q-statistics, <> otherwise 

 garchobj.ARCHLAGS(<2;5;10>); 

// Lags for Engle's LM ARCH test, <> otherwise 

 garchobj.NYBLOM(1); 

// 1 to compute the Nyblom stability test, 0 otherwise   

 garchobj.SBT(1); 

// 1 to compute the Sign Bias test, 0 otherwise   



 

 108 

 

 garchobj.PEARSON(<40;50;60>); 

 

// Cells (<40;50;60>) for the adjusted Pearson Chi-square 

// Goodness-of-fit test, <> otherwise //G@RCH1.12 

 

 garchobj.RBD(<10;15;20>); 

 

// Lags for the Residual-Based Diagnostic test of Tse, <> otherwise 

  

 garchobj.FORECAST(0,15,0); // Arg.1 : 1 to launch the 

// forecasting procedure, 0 

// otherwize  

      // Arg.2 : Number of forecasts 

      // Arg.3 : 1 to Print the 

// forecasts, 0 otherwise  

  

//*** OUTPUT ***//  

garchobj.MLE(2); // 0 : MLE (Second derivatives), 

// 1 : MLE (OPG Matrix), 

// 2 : QMLE 

 garchobj.COVAR(0); // if 1, prints variance-covariance 

// matrix of the parameters. 

 garchobj.ITER(0);  // Interval of iterations between 

// printed intermediary results (if 

// no intermediary results wanted, 

// enter '0') 

 garchobj.TESTS(0,0); // Arg. 1 : 1 to run tests PRIOR to 

// estimation, 0 otherwise 

// Arg. 2 : 1 to run tests AFTER 

// estimation, 0 otherwise 

 garchobj.GRAPHS(0,0,"");// Arg.1 : if 1, displays graphics of 

// the estimations (only when 

// using GiveWin). 

     // Arg.2 : if 1, saves these graphics 

// in a EPS file (OK with all Ox 

// versions) 

     // Arg.3 : Name of the saved file. 

 

 garchobj.FOREGRAPHS(0,0,""); 

 

// Same as GRAPHS(p,s,n) but for the graphics of the forecasts.  

 

//*** PARAMETERS ***//  

 garchobj.BOUNDS(0); // 1 if bounded parameters wanted, 

// 0 otherwise 

 garchobj.FIXPARAM(0,<0;0;0;0;1;0>); 

    

// Arg.1 : 1 to fix some parameters to their starting values, 

// 0 otherwize 

// Arg.2 : 1 to fix (see garchobj.DoEstimation(<>)) and 0 to estimate 

// the corresponding parameter 

 

//*** ESTIMATION ***// 

 

 garchobj.MAXSA(0,5,0.5,20,5,2,1);   

 

// Arg.1 : 1 to use the MaxSA algorithm of Goffe, Ferrier and Rogers 

// (1994)  

//         and implemented in Ox by Charles Bos  

// Arg.2 : dT=initial temperature  

// Arg.3 : dRt=temperature reduction factor  
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// Arg.4 : iNS=number of cycles  

// Arg.5 : iNT=Number of iterations before temperature reduction  

// Arg.6 : vC=step length adjustment   

// Arg.7 : vM=step length vector used in initial step  

 

 garchobj.Initialization(<>); 

 

// m_vPar = m_clevel | m_vbetam |  m_dARFI | m_vAR | m_vMA | 

// m_calpha0 | m_vgammav | m_dD |  m_vbetav | 

// m_valphav | m_vleverage | m_vtheta1 | m_vtheta2 | m_vpsy | 

// m_ddelta | m_cA | m_cV | m_vHY | m_v_in_mean 

 

garchobj.PrintStartValues(0); // 1: Prints the S.V. in a table 

// form; 2: Individually; 

//  3: in a Ox code to use in StartValues 

 garchobj.PrintBounds(1); 

 garchobj.DoEstimation(<>); 

 garchobj.Output(); 

 garchobj.STORE(0,0,0,1,1,"01",0); 

// Arg.1,2,3,4,5 : if 1 -> stored. 

// (Res-SqRes-CondV-MeanFor-VarFor) 

    // Arg.6 : Suffix. The name of the saved 

// series will be "Res_ARG6" (or 

// "MeanFor_ARG6", ...).  

    // Arg.7 : if 0, saves as an Excel 

// spreadsheet (.xls). If 1, saves as a 

// GiveWin dataset (.in7) 

 

 delete garchobj; 

} 
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The codes look quite messy, but it will give you the following output. 

 
******************** 

 ** SPECIFICATIONS ** 

 ******************** 

Dependent variable : Y 

Mean Equation : ARMA (1, 1) model. 

No regressor in the mean 

Variance Equation : GARCH (1, 1) model. 

 No regressor in the variance 

The distribution is a Gauss distribution. 

 

Strong convergence using numerical derivatives 

Log-likelihood = -1103.88 

Please wait : Computing the Std Errors ... 

 

 Robust Standard Errors (Sandwich formula) 

                  Coefficient  Std.Error  t-value  t-prob 

Cst(M)              -0.006128  0.0093623  -0.6546  0.5128 

AR(1)               -0.371991    0.26599   -1.398  0.1621 

MA(1)                0.427544    0.25927    1.649  0.0993 

Cst(V)               0.011502  0.0063498    1.811  0.0702 

ARCH(Alpha1)         0.160304   0.051525    3.111  0.0019 

GARCH(Beta1)         0.795984   0.068860    11.56  0.0000 

 

No. Observations :      1974  No. Parameters  :         6 

Mean (Y)         :  -0.01643  Variance (Y)    :   0.22102 

Skewness (Y)     :  -0.24951  Kurtosis (Y)    :   6.62765 

Log Likelihood   : -1103.881  Alpha[1]+Beta[1]:   0.95629 

 

The sample mean of squared residuals was used to start 

recursion. 

The positivity constraint for the GARCH (1,1) is observed. 

This constraint is alpha[L]/[1 - beta(L)] >= 0. 

The unconditional variance is 0.263129 

The conditions are alpha[0] > 0, alpha[L] + beta[L] < 1 and 

alpha[i] + beta[i] >= 0. 

  => See Doornik & Ooms (2001) for more details. 

The condition for existence of the fourth moment of the GARCH 

is observed. 

The constraint equals 0.965882 and should be < 1. 

  => See Ling & McAleer (2001) for details. 

 

Estimated Parameters Vector :  

-0.006128;-0.371991; 0.427544; 0.011502; 0.160304; 0.795984 

 

Elapsed Time : 1.187 seconds (or 0.0197833 minutes). 
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Higher Frequency Data Analysis: The Range Scale or R/S Statistic 

 

I‘ll finish off with one more technique for time series analysis, essentially because it 

is so simple, yet it is quite useful.  But for the simplicity of the Pfaff‘s R codes, I 

would have passed it over.  Hurst (1951), who was looking at flooding in reservoirs, 

proposed a statistic to analyze the long-range dependence of the data.  The idea is to 

compute the Hurst statistic.  It has in the numerator the difference between the 

maximum and the minimum of the series in question.   In the denominator, there is the 

standard deviation, as a measure of scale.  If the Hurst statistics has the properties  

15.0  H , then the series is persistant.  If H = 0.5, then there is no persistence, and 

finally, if the Hurst statistic is 5.00  H , then the series is anti-persistent. 

 
> timemean <- mean(mydailydata$bpdret) 

> bpd.dm <- mydailydata$bpdret-timemean 

> max.bpdret <- max(cumsum(bpd.dm)) 

> min.bpdret <- min(cumsum(bpd.dm)) 

> sd.bpdret <- sd(bpd.dm) 

> RS <- (max.bpdret - min.bpdret)/sd.bpdret 

> H <- log(RS)/log(length(bpd.dm)) 

[1] 0.5620137 

> d <- H - 0.5 

[1] 0.06201372 

 

So what you see is that the BP-DM exchange rate is mildly persistant, since H is 

above 0.5.  The d is the fractional difference parameter.  This is Hurst‘s way to 

estimate it and there are other ways.  If the d is greater than 0.5, then the series is 

explosive.  If it‘s between 0 and 0.5, then the data is a long memory process, or 

persistant.  If it‘s between –0.5 and 0, then it‘s intermediate memory process, or anti-

persistant.  At zero, the series exhibits no memory (think a random walk).  The 

STATA codes below generate the same output. 

 

STATA translation: 

 
clear 

set mem 100m 

insheet using "C:\bpdret.csv", comma 

tsset obs, daily 

egen timemean = mean(bpdret) 

gen bpddm = bpdret-timemean 

gen cumsumbpddm=sum(bpddm) 

egen maxbpdret = max(cumsumbpddm) 

egen minbpdret = min(cumsumbpddm) 

egen sdbpdret = sd(bpddm) 

gen RS = (maxbpdret - minbpdret)/sdbpdret 

gen sample = _N 

gen H = log(RS)/log(sample) 

gen d = H - 0.5 

sum H d 

 
Variable Obs    Mean   Std. Dev.  Min  Max 

H    1974 .5620137  0   .5620137  .5620137 

d    1974 .0620137  0   .0620137  .0620137 
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Conclusions 

 

Depending on your tastes (i.e., whether you like to know how to make the sausages, 

or you just like to eat them) you may find that R or STATA, or another program is 

more to your liking.  You should have seen that for some things, like OLS, you get 

identical results, while for other things (anything related to Maximum Likelihood, like 

ordered logit, GARCH, random effects, because of the starting values) you can get 

different results.  You should also have seen that neither program is best in all things.  

I still think R always has the greater potential, but that does not stop me from being 

interested in learning how to use STATA better.  I still find R to be challenging to 

grasp (and at times it is even frustrating for a non-programmer like me), but still I 

often find that it is worth taking the challenge.  In fact, writing this helped me figure 

out some of the mysteries in R, and to make the mental switch from S-Plus.  So I 

thank the readers of this cookbook who were my inspiration on the demand side, 

while I again thank Grant Farnsworth, whose Rosetta-Stone ―Econometrics with R‖ 

was my inspiration on the supply side, since it provided me with the technology to 

think about R in the language of econometrics rather than statistics. 
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Appendix 1:  A More Concrete Expression of the Relationship between the OLS 

and Median Regression 

 

There are several ways to understand the relationship between OLS and the median 

regression.  One way is to think about how OLS is usually defined as the solution to 

the following minimization problem 
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where t  is the error term, ty  is the ―dependent‖ variable, 0  is the intercept, and i  

are the slope coefficients, representing the ―marginal impact‖ of a the i
th

 ―independent 

variable‖, itx .  Without really changing the problem, the parentheses can be replaced 

with the absolute value operator 
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Written this way, it is clear that OLS is a special example of what‘s called an L
p
 

estimator, in this case with p = 2 because the residuals are squared.  The least absolute 

deviations (LAD) or least absolute errors (LAE) regression, which may also simply be 

called the median regression, is the analogous L
1
 estimator, represented as the sum of 

absolute errors 
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Unlike the sum of squares problem, from which the normal equations can be solved 

using calculus, the sum of absolute errors problem cannot.  In fact, it was not until 

Charnes, Cooper and Ferguson (1955) figured out how to apply piece-wise linear 

programming in the 1950‘s that the median regression could be implemented. 
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Appendix 2:  The Median Regression as a Special Case of Quantile Regressions 

 

So far, we have seen the relationship between the mean (OLS) and median (LAD) 

regressions.  Remember that the median is also the 50
th

 percentile, among other 

things.  Therefore, another way to think about it is that it is only one case of many 

possible quantile regressions.  To understand how piece-wise linear programming fits 

in here, consider rewriting the problem for the median regression as follows 
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where all notation is the same, except that   now represents any residual that is 

above the median, and   is any residual below the median.  Unlike OLS, the median 

estimator actually goes through the n + 1 data points, since it represents an actual 

observation.  So, if you have 10 right-hand-side variables (including the intercept), 

you will know that the median estimator passes through ten data points. 

So, what does that mathematical notation above mean?  In words, it says, first 

you get fitted values that are subtracted from the dependent variable to give you 

residuals, second, you rank/sort the residuals, and third, if you fit a line through the 

tau-percentile residual, in this case the 50
th

 percentile, that represents the tau-

percentile regression line, in this case the median.  From this we see that you pick any 

percentile, tau, and you will get the corresponding quantile regression line as the 

solution to the following problem 
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Appendix 3:  Ordered and Generalized Ordered Logit 

 

Ordered logit is a Maximum Likelihood Estimator (MLE), which can be used to 

estimate the likelihood that the household will make a certain number of visits to the 

doctor, and can be expressed in this case as follows 

 

L = p(v = 0| X, b, c1, c2) ∙ p(v = 1| X, b, c1, c2) ∙p(v = 2 | X, b, c1, c2) ∙  

p(v = 3 or more | X, b, c1, c2) 

 

   = F(c1 – Xb) ∙ [F(c2 – Xb) – F(c1 – Xb)] ∙ [F(c3 – Xb) – F(c2 – Xb)] ∙  

[1 – F(c3 – Xb)] 

 

where in the first line, p(v = j | …) denotes ―probability the number of visits v equals i 

given …,‖ X is a matrix of exogenous factors that explains variation in visits to the 

doctor by the i
th

 person‖, b is an estimate of the sensitivity of an exogenous variable 

on the probability of visits y equal to j, and c1 , c2, and c3 are the thresholds at which 

the number of visits y takes on a new higher value, as depicted in the graph above.  In 

the second line, F( ∙ ) refers to the cumulative distribution function (cdf), the first term 

on the right hand side is the cdf up to the first cut point, the second and third terms, in 

brackets, are the cdf between the first and second cut points, and second and third cut 

points, respectively, and the fourth term, also in brackets, is the cdf between the 

highest cut point and one.  Taking logs of both sides yields 

 

ln L(b, c1, c2 | y, X) = ln[F(c1 – Xb)] + ln[F(c2 – Xb) – F(c1 – Xb)] + 

ln[F(c3 – Xb) – F(c2 – Xb)] + ln[1 – F(c3 – Xb)]  

 

An optimal b is computed using a maximum likelihood estimator (MLE). After 

computing the MLE coefficients, an intuitive way to interpret the statistical output is 

to consider the odds ratio as a measure of the marginal effect of an increase in the 

independent variable on the probability of observing a specific number of visits to the 

doctor.  First, consider the odds making ―3‖ visits as opposed to making more than 

―3‖ visits, which is the same as ―4‖ here.  This can expressed as follows 

 

Odds = p(visits ≤ 3 | X)/[1 − p(visits ≤ 3 | X)] 

= p(visits ≤ 3 | X)/p(visits > 3 | X) 

= 3c Xb
e

  

 

By considering a change in one of the variables in X, it is possible compute the so-

called odds ratio, the ratio of the likelihood of that the person makes a specific 

number of visits to the doctor at the new X values relative to the old X values, or 

 

                 p(visits ≤ 3 | Xnew)/p(visits > 3 | Xnew) 

Odds ratio  = ———————————————— 

                            p(visits ≤ 3 | Xold)/p(visits > 3 | Xold) 

 

    3 newc X b
e

  

= ——— 

    3 oldc X b
e

  

= 
 bXX newolde
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According to Fu (http://www.bol.ucla.edu/~vfu/gologitfaq.html), there is apparently 

no formal derivation of the Generalized Ordered Logit estimator.  He lists eight 

references pointing to the possibility of this estimator.  Essentially Fu‘s gologit 

relaxes the assumption that the b‘s are identical across thresholds.  In the context of 

predicting the number of visits to the doctor, the log likelihood function becomes 

 

       L = p(v = 0| X, b1, b2, b3, c1, c2, c3) ∙ p(v = 1| X, b1, b2, b3, c1, c2, c3) ∙ 

  p(v = 2 | X, b1, b2, b3, c1, c2, c3) ∙ p(v = 3 or more | X, b1, b2, b3, c1, c2, c3) 

 

       = F(c1 – X b1) ∙ [F(c2 – X b2) – F(c1 – X b1)] ∙ [F(c3 – X b3) – F(c2 – X b2)] ∙  

 [1 – F(c3 – X b3)] 

 

where p(y = i | …) again denotes ―probability the number of visits to the doctor, y 

equals j given …,‖ X is again the matrix of exogenous factors used to explain the 

number of visits to the doctor by the individual, bj is an estimate of the sensitivity of 

an exogenous variable on the probability of event y at threshold j, and c1, and c2 are 

the thresholds at which y takes on a new higher value, as depicted in the graph above.  

Taking logs of both sides yields the following assumed log-likelihood function 

 

         ln L(b1, b2, c1, c2 | y, X) = ln[F(c1 – X b1)] + ln[F(c2 – X b2) – F(c1 – X b1)] + 

ln[F(c3 – X b3) – F(c2 – X b2)] + ln[1 – F(c3 – X b3)] 

 

The generalized odds ratios now appear as follows 
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http://www.bol.ucla.edu/~vfu/gologitfaq.html
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Appendix 4:  Penn World Table Country Data Grades 

 
country grade country grade country grade 

Algeria D israel B taiwan D 

Angola D italy A tanzania C 

argentina B jamaica C thailand C 

australia A japan A togo D 

austria A jordan C trinidad C 

bahrain C Kenya C tunisia C 

bangladesh C korea B turkey C 

barbados C kuwait C uganda D 

belgium A Lesotho D uae D 

Benin C Liberia D uk A 

bolivia C luxembourg A uruguay B 

Botswana C Madagascar C usa A 

brazil C Malawi C venezeula C 

BurkinaFaso C malaysia C yemen D 

Burundi C Mali C zambia C 

Cameroon C malta D zimbabwe C 

canada A Mauritania C   

CentralAfr.Rep. D Mauritius C   

Chad D mexico C   

chile B Morocco C   

colombia C Mozambique D   

zaire D myanmar D   

Congo C nepal C   

costarica C netherlands A   

cyprus D newzealand B   

denmark A nicaragua C   

dominicanrep C Niger D   

ecuador C Nigeria C   

Egypt C norway A   

elsalvador C oman C   

Ethiopia C pakistan C   

fiji C panama C   

finland A papuanewguinea D   

france A paraguay C   

Gabon C peru C   

Gambia C philippines C   

westgermany B Rwanda C   

Ghana C Saudiarabia D   

greece B Senegal C   

guatemala C SierraLeone C   

Guinea C singapore B   

guyana D Somalia D   

haiti D SAfrica C   

honduras C spain B   

HongKong A Srilanka C   

iceland B sudan D   

india C surinam D   

indonesia C swaziland C   

iran C sweden A   

iraq D switzerland A   

ireland A syria C   
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Appendix 5:  R and STATA Codes if You’d Like to Cut To the Chase 

 

R Code: 

 
# Codes to load in basic data and get summary statistics 

mydata <- read.table("C:/temple.csv",header=T,sep=",") 

summary(mydata$DY) 

summary(mydata) 

sd(mydata$DY, na.rm = T) 

median(mydata$DY, na.rm = T) 

mad(mydata$DY, na.rm = T) 

quantile(mydata$DY,probs=seq(0,1,0.25),na.rm=T) 

 

# Codes to estimate regressions and generate regression summaries and 

# replicate MRW 

myreg <- lm(DY~LGDP60+LNGD+LINV,data=mydata) 

summary(myreg) 

myaugreg <- lm(DY~LGDP60+LNGD+LINV+LSCH,data=mydata) 

summary(myaugreg) 

myregnsam <- lm(DY~LGDP60+LNGD+LINV,data=subset(mydata,mydata$NSAM == 1)) 

summary(myregnsam) 

myregisam <- lm(DY~LGDP60+LNGD+LINV,data=subset(mydata,mydata$ISAM == 1)) 

summary(myregisam) 

myregosam <- lm(DY~LGDP60+LNGD+LINV,data=subset(mydata,mydata$OSAM == 1)) 

summary(myregosam) 

 

# Codes to generate histogram with normal density plot of the residuals 

# of myaugreg 

augsolres <- myaugreg$residuals 

hist(augsolres,br=20,freq = FALSE) 

new.x <- seq(min(augsolres), max(augsolres), length = length(augsolres)) 

new.dens <- dnorm(new.x, mean = mean(augsolres), sd = sd(augsolres)) 

lines(new.x, new.dens) 

 

# Codes to generate quantile-quantile normal plots for a random sample 

set.seed(91) 

rs <- rnorm(15) 

cbind(sort(rs)) 

plot(qnorm(ppoints(15),mean=mean(rs),sd=sd(rs)),sort(rs)) 

abline(0,1) 

qqnorm(rs) 

abline(mean(rs),sd(rs)) 

qqnorm(rs) 

qqline(rs) 

 

# Codes to generate quantile-quantile normal plots of the residuals 

# of myaugreg 

qqnorm(augsolres) 

qqline(augsolres) 

 

# Codes to generate quantile-quantile normal plots of the residuals 

# of myaugreg with more detail 

qqnorm(augsolres,main="Normal Q-Q Plot",xlab="Normal 

Quantiles",ylab="Residual Quantiles") 

qqline(augsolres) 

text(-1.5,-0.8,"Fat-Tailed") 

text(-2,-0.3,"Light-Tailed") 

text(2,0.3,"Light-Tailed") 

text(1.7,0.85,"Fat-Tailed") 

 

# Codes to generate basic scatterplot matrix with lattice package 

mydata <- read.table("C:/temple.csv",header=T,sep=",") 

mymatrix <- 

cbind(mydata$DY,mydata$LGDP60,mydata$LNGD,mydata$LINV,mydata$LSCH) 

splom(~mymatrix, varnames = c("DY","LGDP60","LNGD", "LINV","LSCH")) 
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# Codes to generate fancier scatterplot matrix 

solowmatrix <- cbind(mydata$DY,mydata$LGDP60,mydata$LNGD,mydata$LINV) 

splom( ~ solowmatrix, varnames = c("Per Capita\n\Real GDP\n\Growth","Log 

of\n\Real Per\n\GDP in 1960","Log of\n\(n+g+d)","Log\n\Investment\n\Share"), 

panel = function(x, y) 

{ 

i <- c(2,3,5,6,8,9,12,14:24,27:33,35,37,38,40,41,42,46,47,49,58,97) 

j <- c(1,4,7,10,11,13,25,26,34,36,39,43:45,48,50:57,59:96,98:121) 

panel.splom(x[i],y[i], pch = 16, cex = 0.7, col = 1) 

panel.splom(x[j],y[j], pch = 16, cex = 0.4, col = 2) 

},sub=list("Points In Black: Angola, Benin, Burkina Faso, CAR, Chad, 

Ethiopia, Gambia, Ghana, Ivory Coast, Kenya, Lesotho, Liberia, Madagascar, 

Malawi, Mali, Mauritania, 

Mozambique, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, Somalia, Sudan, 

Tanzania, Togo, Uganda, Zaire, Zambia, Bangladesh, Burma, India, Nepal, 

Haiti",cex=0.5)) 

 

# Codes to generate Spread-Location Plot for residuals against fitted values 

# to visualize heteroskedasticity using the lattice package 

xyplot(sqrt(abs(residuals(myaugreg))) ~ fitted.values(myaugreg), panel = 

function(x, y) 

{panel.xyplot(x, y, pch = 16, cex = 0.7, col = 1) 

panel.loess(x, y, span = 1, degree = 2, family = 'symmetric') 

}, aspect = 1,xlab="Fitted Values of Regression",ylab="Residuals of  

Regression") 

 

# Codes to install quantile regressions package and estimate the median 

# 25
th
 and 75

th
 quantile regressions 

myqreg <- rq(DY~LGDP60+LNGD+LINV,data=mydata) 

summary.rq(myqreg) 

myaugqreg <- rq(DY~LGDP60+LNGD+LINV+LSCH,data=mydata) 

summary.rq(myaugqreg) 

myaugq25reg <- rq(DY~LGDP60+LNGD+LINV+LSCH,tau=0.25,data=mydata) 

summary.rq(myaugq25reg) 

myaugq75reg <- rq(DY~LGDP60+LNGD+LINV+LSCH,tau=0.75,data=mydata) 

summary.rq(myaugq75reg) 

 

# Codes for non-parametric bootstrapping of regression coefficients 

mydata <- read.table("C:/temple.csv",header=T,sep=",") 

mod1 <- lm(DY~LGDP60+LNGD+LINV,data=mydata) 

mod1coefs <- coef(mod1) 

fit <- fitted(mod1) 

e <- residuals(mod1) 

X <- model.matrix(mod1) 

mod2 <- NULL 

for (i in 1:1000) 

{ 

 s <- sample(length(X[,1]),replace=T) 

 y <- fit + e[s] 

mod2 <- rbind(mod2, lm(y[s]~-1+X[s,])$coef) 

} 

cov(mod2) 

se <- sqrt(diag(cov(mod2))) 

 

OLS <- c(mod1coefs[1],mod1coefs[2],mod1coefs[3],mod1coefs[4]) 

BootStrap <- c(mean(mod2[,1]),mean(mod2[,2]),mean(mod2[,3]), mean(mod2[,4])) 

Bias <- c(mean(mod2[,1])-mod1coefs[1],mean(mod2[,2])-mod1coefs[2], 

mean(mod2[,3])-mod1coefs[3],mean(mod2[,4])-mod1coefs[4]) 

table <- cbind(OLS,BootStrap,Bias) 

coefsum <- coef(summary(mod1)) 

OLSSE <- c(coefsum[1,2],coefsum[2,2],coefsum[3,2],coefsum[4,2]) 

tableSE <- data.frame(OLSSE,BootSE=se,row.names=c("Intercept","LGDP60", 

"LINV","LSCH")) 
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# Codes for parametric bootstrapping of regression coefficients to 

# demonstrate the efficiency of the median regression relative to OLS when 

# the errors are drawn from a t-distribution with three degrees of freedom 

Rw <- 0.04287973 

sigmaw <- 0.1245768 

sample <- 250 

n.trial <- 10000 

alphaols <- rep(0,n.trial) 

betaols <- rep(0,n.trial) 

alphalad <- rep(0,n.trial) 

betalad <- rep(0,n.trial) 

set.seed(200) 

a <- 0 

b <- 2 

for (trial in 1:n.trial) { 

trial.mktret <- Rw+sigmaw*rnorm(sample,mean=0,sd=1) 

trial.res <- rt(sample,df=3) 

trial.indret <- (a + b*trial.mktret + trial.res) 

trial.ols <- lm(trial.indret~trial.mktret) 

tmpols <- coef(trial.ols) 

alphaols[trial] <- tmpols[1] 

betaols[trial] <- tmpols[2] 

trial.lad <- rq(trial.indret~trial.mktret) 

tmplad <- coef(trial.lad) 

alphalad[trial] <- tmplad[1] 

betalad[trial] <- tmplad[2] 

} 

 

# Codes to generate table of average coefficients for OLS and LAD 

c("mean ols alpha"=mean(alphaols),"mean lad alpha"=mean(alphalad),"mean ols 

beta"=mean(betaols),"mean lad beta"=mean(betalad)) 

 

# Codes to generate table of coefficient bias for OLS and LAD 

c("ols alpha bias"=(mean(alphaols)-a),"lad alpha bias"=(mean(alphalad)-

a),"ols beta bias"=(mean(betaols)-b),"lad beta bias"=(mean(betalad)-b)) 

 

# Codes to generate table of efficiency of OLS and LAD 

c("stdev ols alpha"=sd(alphaols),"stdev lad alpha"=sd(alphalad),"stdev ols 

beta"=sd(betaols),"stdev lad beta"=sd(betalad)) 

 

# Codes to merge data 

myrandom <- data.frame("countryname"=mydata$country,"Random"=rnorm(121,0,1)) 

mynewdata <- merge(mydata,myrandom,by.x="country",by.y="countryname") 

 

# Codes to load panel data and estimate fixed effects, and random effects 

# regressions 

mypanel <- read.table("C:/grunfeld.csv",header=T,sep=",") 

xtfereg <- lm(I~factor(FIRM)+F+K,data=mypanel) 

bfe <- coef(xtfereg)[11:12] 

Vfe <- vcov(xtfereg)[11:12,11:12] 

xtrereg <- lme(I~F+K,data=mypanel,random=~1| FIRM) 

 

# Codes to apply the Hausman Specification test 

bre <- fixef(xtrereg)[-1] 

Vre <- summary(xtrereg)$varFix[-1,-1]  # or you could type 

Vre <- vcov(xtrereg)[-1,-1] 

bdifft <- bre-bfe 

bdiff <- t(bre-bfe) 

Vdiff <- (Vfe-Vre) 

m <- bdiff%*%solve(Vdiff)%*%bdifft 

pvalue <- 1 – pchisq(m,df=2) 

Hausmantable <- c("Hausman"=m,"P-Value"=pvalue) 
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# Codes to estimate Seemingly Unrelated 

mypanel <- read.table("C:/grunfeld.csv",header=T,sep=",") 

model <- I ~ F + K  

SUR <- 

systemfitClassic("SUR",model,"FIRM","YEAR",data=mypanel,rcovformula=0) 

summary(SUR) 
 

# Codes to estimate logit 

logitreg <- glm(AFRICA~LGDP60+LNGD+LINV+LSCH,data=mydata, 

family=binomial(link="logit")) 

logitsum <- summary(logitreg) 
oddratios <- exp(coef(logitreg)[-1]) 

prob <- logitreg$fitted.values 

 

# Codes to estimate ordered logit 

mydata <- read.table("C:/temple.csv",header=T,sep=",") 

gradedata <- read.table("C:/templegr.csv",header=T,sep=",") 

mynewgradedata <- merge(mydata,gradedata,by.x="country", by.y="country") 

mynewgradedata$grade <- 

ordered(mynewgradedata$grade,levels=c("D","C","B","A")) 

ologitreg <- polr(factor(graden)~LGDP60+LNGD+LSCH,data= 

mynewgradedata,method="logistic") 

summary(ologitreg) 

ologitoddratios <- exp(coef(ologitreg)) 

 

# Unit Root Tests:  It looks Messy, but it’s not too involved 

johansen <- read.table("C:/johansen.csv",header=T,sep=",") 

lrm1 <- ts(johansen$lrm1, start=c(1958,2),end=c(1984,3),frequency=4) 

lrm1df.ct <- ur.df(lrm1, type = "trend", lags = 6,selectlags = "BIC")  

summary(lrm1df.ct) 

lrm1df.c <- ur.df(lrm1, type = "drift", lags = 6,selectlags = "BIC") 

cbind(t(lrm1df.c@teststat),lrm1df.c@cval) 

lrm1df.nc <- ur.df(lrm1, type = "none", lags = 6,selectlags = "BIC") 

cbind(t(lrm1df.nc@teststat),lrm1df.nc@cval) 

gm <- diff(lrm1) 

gm.ct <- ur.df(gm,type = "trend", lags = 6,selectlags = "BIC") 

cbind(t(gm.ct@teststat),gm.ct@cval) 

gm.c <- ur.df(gm,type = "drift", lags = 6,selectlags = "BIC") 

cbind(t(gm.c@teststat),gm.c@cval) 

gm.nc <- ur.df(gm,type = "none", lags = 6,selectlags = "BIC") 

cbind(t(gm.nc@teststat),gm.nc@cval) 

 

lny <- ts(johansen$lny, start=c(1958,2),end=c(1984,3),frequency=4) 

lnydf.ct <- ur.df(lny,type = "trend", lags = 6,selectlags = "BIC") 

cbind(t(lnydf.ct@teststat),lnydf.ct@cval) 

lnydf.c <- ur.df(lny,type = "drift", lags = 6,selectlags = "BIC") 

cbind(t(lnydf.c@teststat),lnydf.c@cval) 

lnydf.nc <- ur.df(lny,type = "none", lags = 6,selectlags = "BIC") 

cbind(t(lnydf.nc@teststat),lnydf.nc@cval) 

gy <- diff(lny) 

gy.ct <- ur.df(gy,type = "trend", lags = 6,selectlags = "BIC") 

cbind(t(gy.ct@teststat),gy.ct@cval) 

gy.c <- ur.df(gy,type = "drift", lags = 6,selectlags = "BIC") 

cbind(t(gy.c@teststat), gy.c@cval) 

gy.nc <- ur.df(gy,type = "none", lags = 6,selectlags = "BIC") 

cbind(t(gy.nc@teststat),gy.nc@cval) 

 

lnmr <- ts(johansen$lnmr, start=c(1958,2),end=c(1984,3),frequency=4) 

lnmrdf.ct <- ur.df(lnmr,type = "trend", lags = 6,selectlags = "BIC") 

cbind(t(lnmrdf.ct@teststat),lnmrdf.ct@cval) 

lnmrdf.c <- ur.df(lnmr,type = "drift", lags = 6,selectlags = "BIC") 

cbind(t(lnmrdf.c@teststat),lnmrdf.c@cval) 

lnmrdf.nc <- ur.df(lnmr,type = "none", lags = 6,selectlags = "BIC") 

cbind(t(lnmrdf.nc@teststat),lnmrdf.nc@cval) 

gr <- diff(lnmr) 

gr.ct <- ur.df(gr,type = "trend", lags = 6,selectlags = "BIC") 

cbind(t(gr.ct@teststat),gr.ct@cval) 

gr.c <- ur.df(gr,type = "drift", lags = 6,selectlags = "BIC") 
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cbind(t(gr.c@teststat),gr.c@cval) 

gr.nc <- ur.df(gr,type = "none", lags = 6,selectlags = "BIC") 

cbind(t(gr.nc@teststat),gr.nc@cval) 

 

difp <- ts(johansen$difp, start=c(1958,2),end=c(1984,3),frequency=4) 

difpdf.ct <- ur.df(difp,type = "trend", lags = 6,selectlags = "BIC") 

cbind(t(difpdf.ct@teststat),difpdf.ct@cval) 

difpdf.c <- ur.df(difp,type = "drift", lags = 6,selectlags = "BIC") 

cbind(t(difpdf.c@teststat),difpdf.c@cval) 

difpdf.nc <- ur.df(difp,type = "none", lags = 6,selectlags = "BIC") 

cbind(t(difpdf.nc@teststat),difpdf.nc@cval) 

diffdifp <- diff(difp) 

difpdfdiff.ct <- ur.df(diffdifp,type = "trend", lags = 6,selectlags = "BIC") 

cbind(t(difpdfdiff.ct@teststat),difpdfdiff.ct@cval) 

difpdfdiff.c <- ur.df(diffdifp,type = "drift", lags = 6,selectlags = "BIC") 

cbind(t(difpdfdiff.c@teststat),difpdfdiff.c@cval) 

difpdfdiff.nc <- ur.df(diffdifp,type = "none", lags = 6,selectlags = "BIC") 

cbind(t(difpdfdiff.nc@teststat),difpdfdiff.nc@cval) 

 

# Cointegrating Rank Test 

finnish <- data.frame(gm,gy,gr,diffdifp) 

H1 <- ca.jo(finnish,type='trace',K=4) 

cbind(H1@cval,cbind(H1@teststat)) 

 

# Create a new dataset so that all variables have the same starting date 

sample <- length(johansen$date) 

finnish <- data.frame(date=johansen$date[2:sample],gm,gy,gr,diffdifp) 

 

# Create a objects in R’s memory to store the forthcoming regression output 

window <- 40 

subsample <- sample-window 

bgy <- numeric(subsample) 

bgy.ci <- numeric(subsample) 

bgr <- numeric(subsample) 

bgr.ci <- numeric(subsample) 

bddifp <- numeric(subsample) 

bddifp.ci <- numeric(subsample) 

bcons <- numeric(subsample) 

bcons.ci <- numeric(subsample) 

 

# Estimate rolling regressions 

for (i in 1:subsample) { 

model <- lm(gm~gy+gr+diffdifp,data=finnish,subset=i:(i+window-1)) 

modelsum <- summary.lm(model) 

coefs <- coefficients(model) 

bgy[i] <- coefs[2] 

bgy.ci[i] <- 1.96*modelsum$coefficients[2,2] 

bgr[i] <- coefs[3] 

bgr.ci[i] <- 1.96*modelsum$coefficients[3,2] 

bddifp[i] <- coefs[4] 

bddifp.ci[i] <- 1.96*modelsum$coefficients[4,2] 

bcons[i] <- coefs[1] 

bcons.ci[i] <- 1.96*modelsum$coefficients[1,2] 

} 

 

# Create time series objects to be plotted shortly from the regression 

# coefficients and the coefficient standard errors 

 

bgy <- ts(bgy, start=c(1968,2),end=c(1984,3),frequency=4) 

bgr <- ts(bgr, start=c(1968,2),end=c(1984,3),frequency=4) 

bddifp <- ts(bddifp, start=c(1968,2),end=c(1984,3),frequency=4) 

bcons <- ts(bcons, start=c(1968,2),end=c(1984,3),frequency=4) 

bgyplusci <- ts(bgy+bgy.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bgyminusci <- ts(bgy-bgy.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bgrplusci <- ts(bgr+bgr.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bgrminusci <- ts(bgr-bgr.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bddifpplusci<-ts(bddifp+bddifp.ci,start=c(1968,2),end=c(1984,3),frequency=4) 

bddifpminusci<-ts(bddifp-ddifp.ci,start=c(1968,2),end=c(1984,3),frequency=4) 
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bconplusci <- ts(bcons+bcons.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

bconminusci <- ts(bcons-bcons.ci, start=c(1968,2),end=c(1984,3),frequency=4) 

 

# Use the par(mfrow … command to create a multi-panel plot, in this case 

# with a 2 row, 2 column layout, and then plot each of the series together 

# with the standard errors 

 

par(mfrow=c(2,2)) 

plot(bgy,type="n",ylim=c(0,2)) 

abline(0,0,lty=8) 

lines(bgy) 

lines(bgyplusci,lty=2) 

lines(bgyminusci,lty=2) 

plot(bgr,type="n",ylim=c(-0.5,1.5)) 

abline(0,0,lty=8) 

lines(bgr) 

lines(bgrplusci,lty=2) 

lines(bgrminusci,lty=2) 

plot(bddifp,type="n",ylim=c(-2.2,3.2)) 

abline(0,0,lty=8) 

lines(bddifp) 

lines(bddifpplusci,lty=2) 

lines(bddifpminusci,lty=2) 

plot(bcons,type="n",ylim=c(-0.04,0.04)) 

abline(0,0,lty=8) 

lines(bcons) 

lines(bconplusci,lty=2) 

lines(bconminusci,lty=2) 

 

# Codes to install fSeries packages to estimate ARMA-GARCH model 

mydailydata <- read.table("C:/bpdret.csv",header=T,sep=",") 

armagarch <- garchFit(~arma(1,1)+garch(1,1),mydailydata$bpdret) 

armagarchcoef <- armagarch@fit$coef 

 

# Codes to estimate Hurst Statistic 

timemean <- mean(mydailydata$bpdret) 

bpd.dm <- mydailydata$bpdret-timemean 

max.bpdret <- max(cumsum(bpd.dm)) 

min.bpdret <- min(cumsum(bpd.dm)) 

sd.bpdret <- sd(bpd.dm) 

RS <- (max.bpdret - min.bpdret)/sd.bpdret 

H <- log(RS)/log(length(bpd.dm)) 

d <- H - 0.5 
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STATA translation: 

 
* Codes for basic data entry and summary statistics 

clear 

set mem 100m 

insheet using "C:\temple.csv", comma 
describe 

summarize dy 

regress dy lgdp60 lngd linv 

tabstat dy, statistics( min p25 p50 p75 p90 max ) columns(variables) 

 

* Codes to estimate OLS regressions and replicate MRW results 

regress dy lgdp60 lngd linv 

drop lsch 

generate lsch=ln(school/100) 
regress dy lgdp60 lngd linv lsch 

regress dy lgdp60 lngd linv if nsam==1 

regress dy lgdp60 lngd linv if isam==1 
regress dy lgdp60 lngd linv if osam==1 

 

* Codes to estimate augmented Solow Model and to generate model residuals 

reg dy lgdp60 lngd linv lsch 

predict augsolres, res 

 

* Codes to generate histogram with normal density plot of the residuals 

histogram augsolres, bin(20) normal 

 

* Codes to generate quantile-quantile normal density plot of the residuals 

qnorm augsolres 

 

* Codes to generate quantile-quantile normal density plot of the residuals 

* with more detail 

qnorm augsolres, ytitle("Residual Quantiles") xtitle("Normal Quantiles") 

title("Normal Q-Q Plot") 

 

* Codes to generate scatterplot matrix 

drop lsch 

generate LSCH=ln(school/100) 

graph matrix dy lgdp60 lngd linv LSCH 

 

* Codes to estimate median, 25
th
 and 75

th
 quantile regressions 

qreg dy lgdp60 lngd linv 

qreg dy lgdp60 lngd linv lsch 

qreg dy lgdp60 lngd linv lsch, q(0.25) 

qreg dy lgdp60 lngd linv lsch, q(0.75) 

 

* Codes for non-parametric bootstrap of regression coefficients 

clear 

set mem 100m 

insheet using "C:\temple.csv", comma 

drop lsch 

generate lsch=ln(school/100) 

regress dy lgdp60 lngd linv lsch 

* STATA 7.0 command for non-parametric bootstrap of regression coefficients 

bs "regress dy lgdp60 lngd linv" "_b[_c] _b[lgdp60] _b[lngd] _b[linv]", 

reps(1000) 

* STATA 9.0 command for non-parametric bootstrap of regression coefficients 

bootstrap _b, reps(1000) bca: regress dy lgdp60 lngd linv estat bootstrap, 

all 
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* Codes to load panel data and estimate fixed effects, random effects 

* regressions and to apply the Hausman Specification test 

clear 

insheet using "c:\grunfeld.csv", comma 

xi: reg i f k i.firm 

tab firm, gen(d) 

reg i d2 d3 d4 d5 d6 d7 d8 d9 d10 f k 

tsset firm year, yearly 

xtreg i f k, fe 

est store fixed 

xtreg i f k, re 

hausman fixed 

 

* Codes to estimate Seemingly Unrelated 

clear 

insheet using "C:\grunfeld.csv", comma 

reshape wide i f k, i(year) j(firm) 

sureg (i1 f1 k1) (i2 f2 k2) (i3 f3 k3) (i4 f4 k4) (i5 f5 k5) (i6 f6 k6) (i7 

f7 k7) (i8 f8 k8) (i9 f9 k9) (i10 f10 k10) 

sureg (i1 f1 k1) (i2 f2 k2) (i3 f3 k3) (i4 f4 k4) (i5 f5 k5) (i6 f6 k6) (i7 

f7 k7) (i8 f8 k8) (i9 f9 k9) (i10 f10 k10), dfk corr 

 

* Codes to estimate logit 

clear 

set mem 100m 

insheet using "C:\temple.csv", comma 

drop lsch 

generate lsch=ln(school/100) 

logit africa lgdp60 lngd linv lsch 

glm africa lgdp60 lngd linv lsch, family(binomial) link(logit) 

logit africa lgdp60 lngd linv lsch, or 

predict prob, pr 

 

* Codes to estimate ordered logit and generalized ordered logit 

clear 

set mem 100m 

insheet using "C:\templegr.csv", comma 

sort country 

save "C:\gradedata.dta", replace 

clear 

insheet using "C:\temple.csv", comma 

sort country 

save "C:\mydata.dta", replace 

sort country 

merge country using "C:\gradedata.dta" 

tab _merge 

drop if _merge==1 

drop _merge 

sort country 

tab grade, gen(d) 

gen gradea = d1*4 

gen gradeb = d2*3 

gen gradec = d3*2 

gen graded = d4 

egen graden = rsum(gradea gradeb gradec graded) 

drop d1-graded 

drop lsch 

generate lsch=ln(school/100) 

save "C:\mymergegradedata.dta", replace 

ologit graden lgdp60 lngd lsch 

 

gologit graden lgdp60 lngd lsch, or 
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* Unit Root Tests:  It looks Messy, but it’s not too involved 

clear 

set mem 100m 

insheet using "C:\johansen.csv", comma 

display q(1958q2) 

generate periods = _n 

generate time = periods-8 

format time %tq 

tsset time 

varsoc lrm1, maxlag(6) exog(time) 

dfuller lrm1, lags(5) trend regress 

dfuller lrm1, lags(4) trend regress 

dfuller lrm1, lags(4) drift 

dfuller lrm1, lags(4) noconstant 

 

gen gm = lrm1-lrm1[_n-1] 

varsoc gm, maxlag(6) exog(time) 

dfuller mg, lags(4) trend 

dfuller mg, lags(3) trend 

dfuller mg, lags(3) drift 

dfuller mg, lags(3) noconstant 

 

varsoc lny, maxlag(6) exog(time) 

dfuller lny, lags(5) trend 

dfuller lny, lags(5) drift 

dfuller lny, lags(5) noconstant 

 

gen gy = lny-lny[_n-1] 

varsoc gy, maxlag(6)  exog(time) 

dfuller gy, lags(4) trend 

dfuller gy, lags(4) drift 

dfuller gy, lags(4) noconstant 

 

varsoc lnmr, maxlag(6) exog(time) 

dfuller lnmr, lags(1) trend 

dfuller lnmr, lags(1) drift 

dfuller lnmr, lags(1) noconstant 

 

gen gr = lnmr-lnmr[_n-1] 

varsoc gr, maxlag(6) exog(time) 

dfuller gr, lags(5) trend 

dfuller gr, lags(5) drift 

dfuller gr, lags(5) noconstant 

 

varsoc difp, maxlag(6) exog(time) 

dfuller difp, lags(4) trend 

dfuller difp, lags(4) drift 

dfuller difp, lags(4) noconstant 

 

gen diffdifp = difp-difp[_n-1] 

varsoc diffdifp, maxlag(6) exog(time) 

dfuller diffdifp, lags(4) trend 

dfuller diffdifp, lags(4) drift 

dfuller diffdifp, lags(4) noconstant 

 

* Cointegrating Relationship Rank Test 

varsoc gm gy gr diffdifp, maxlag(6) exog(time) 

vecrank gm gy gr diffdifp, lags(4) levela 
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* Codes to generate data series for rolling regressions 

clear 

set mem 100m 

insheet using "C:\johansen.csv", comma 

generate periods = _n 

generate time = periods-8 

format time %tq 

tsset time 

drop if periods==1 

gen gm = lrm1-lrm1[_n-1] 

gen gy = lny-lny[_n-1] 

gen gr = lnmr-lnmr[_n-1] 

gen diffdifp = difp-difp[_n-1] 

 

* Codes to estimate rolling regressions and generate two-standard error 

* bands 

rolling _b _se, window(40) start(1958q3) end(1984q3) clear: reg gm gy gr 

diffdifp 

gen gyseplus = _b_gy+1.96*_se_gy 

gen gyseminus = _b_gy-1.96*_se_gy 

 

* Codes to plot rolling regression and two-standard error bands for money 

* against GDP 

twoway (line _b_gy end) (line gyseplus end, lpattern(dot)) (line gyseminus 

end, lpattern(dot)), ytitle(GDP Growth) xtitle("") legend(order(1 

"Coefficient" 2 "+S.E.'s" 3 "-S.E.'s")) 

graph save "C:\GDPGrowth.gph", replace 

 

* Codes to plot rolling regression and two-standard error bands for money 

* against money rates 

gen grseplus = _b_gr+1.96*_se_gr 

gen grseminus = _b_gr-1.96*_se_gr 

twoway (line _b_gr end) (line grseplus end, lpattern(dot)) (line grseminus 

end, lpattern(dot)), ytitle(Interest Rate Changes) xtitle("") legend(order(1 

"Coefficient" 2 "+S.E.'s" 3 "-S.E.'s")) 

graph save "C:\InterestRate.gph", replace 

 

* Codes to plot rolling regression and two-standard error bands for money 

* against inflationary acceleration 

gen diffdifpseplus = _b_diffdifp+1.96*_se_diffdifp 

gen diffdifpseminus = _b_diffdifp-1.96*_se_diffdifp 

twoway (line _b_diffdifp end) (line diffdifpseplus end, lpattern(dot)) (line 

diffdifpseminus end, lpattern(dot)), ytitle(Inflation Acceleration) 

xtitle("") legend(order(1 "Coefficient" 2 "+S.E.'s" 3 "-S.E.'s")) 

graph save "C:\Inflation.gph", replace 

 

* Codes to plot rolling regression intercept and two-standard error bands 

gen conseplus = _b_cons+1.96*_se_cons 

gen conseminus = _b_cons-1.96*_se_cons 

twoway (line _b_cons end) (line conseplus end, lpattern(dot)) (line 

conseminus end, lpattern(dot)), ytitle(Constant (Avg. Money Growth)) 

xtitle("") legend(order(1 "Coefficient" 2 "+S.E.'s" 3 "-S.E.'s")) 

graph save "C:\Constant.gph", replace 

 

* Codes to combine plots of rolling regression coefficients 

graph combine "C:\GDPGrowth.gph" "C:\InterestRate.gph" "C:\Inflation.gph" 

"C:\Constant.gph" 

 

* Codes to estimate ARMA-GARCH model 

clear 

set mem 100m 

insheet using "C:\bpdret.csv", comma 

tsset obs, daily 

arch bpdret, ar(1) ma(1) arch(1) garch(1) 
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* Codes to estimate Hurst Statistic 

clear 

set mem 100m 

insheet using "C:\bpdret.csv", comma 

tsset obs, daily 

egen timemean = mean(bpdret) 

gen bpddm = bpdret-timemean 

gen cumsumbpddm=sum(bpddm) 

egen maxbpdret = max(cumsumbpddm) 

egen minbpdret = min(cumsumbpddm) 

egen sdbpdret = sd(bpddm) 

gen RS = (maxbpdret - minbpdret)/sdbpdret 

gen sample = _N 

gen H = log(RS)/log(sample) 

gen d = H - 0.5 

sum H d 


