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Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour 
growth

Step 2: a high fidelity model of tumour growth and 
response to single-dose irradiation

Step 3: a high fidelity model of tumour growth and 
response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose 
irradiation protocols by numerical simulation

Some reflections on the journey.
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The Emerald City
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Source: [1] Cancer Research UK, 
'Radiotherapy Briefsheet', Aug. 2010.

About 4 in 10 people presently receive radiotherapy as 
part of their treatment;

Majority of treatments delivered as a 'multi-fraction' 
protocol (a sequence of low-dose fractions applied once- 
or twice- a day) (often nothing on the weekend);

But exploration of alternative protocols (timing, dose, or 
dose+timing) is effectively non-existent ...
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The Emerald City: the hypothesis
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Well timed fractions might exploit the dynamical cell-phase response of the 
cells, leading to greater impact at no additional radiation burden, possibly 

due to synchronisation of cell-phases. 
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Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour 
growth

Step 2: a high fidelity model of tumour growth and 
response to single-dose irradiation

Step 3: a high fidelity model of tumour growth and 
response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose 
irradiation protocols by numerical simulation

Some reflections on the journey.

Piotrowska & Angus (2009), JTB
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Source: [1] Cancer Research UK, 
'Radiotherapy Briefsheet', Aug. 2010.

High Fidelity: the highest probability of translation to 
the lab / clinic

Single Cell-line Focus: the most available data for 
calibration and validation (choose EMT6/Ro) 

'Better': establish benchmarks results of standard 
protocols for statistical comparison to establish any 
benefit (again: translational outcomes)
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Spatial Considerations
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constrained to treating the proliferating rim as a one cell width
layer around the tumour mass. Furthermore, the ‘many-to-one’
assumption allows the implementation of a fully calibrated
in silico tumour mass that can successfully grow to cell-count
sizes on the order of 1! 106 but with several orders of magnitude
less numerical objects to handle. In this way, the implementable
model produces realistic, experimentally comparable data on the
onset and progression of necrosis. A theoretical interpretation of
this assumption is also provided to encourage further investiga-
tion by the field.

After full calibration and scaling of all experimentally available
input data on cellular metabolism, diffusion, mitosis and cell
death, we find that necrosis appears in our model due to sub-
viable nutrient concentrations in the centre of the tumour and
not, as has been suggested by some authors (e.g. Freyer and
Sutherland, 1986), due to rising toxicity in the tumour mass.
Indeed, we show that by including the diffusion of waste
materials out of the tumour mass, central waste (Hþ in our
model) concentrations are only sufficient to switch cells to
quiescence rather than unprogrammed cell death (Casciari et al.,
1992). Further results on the progression of the necrotic volume
are included and compared to experimental results. Given that
recent experimental data on nutrient concentrations prior to the
onset of necrosis contradict these results (Walenta et al., 2000),
the paper thus concludes that additional mechanisms for necrosis
are required to be identified by the literature.

The paper is organised as follows: in Section 2 we outline the
description of the MCS growth model, Section 3 contains the
parameter estimation, while in Section 4 the results of our
computational simulations were compared with experimental
data for the MCS of the EMT6/Ro tumour line cultivated
in vitro. Finally, Section 5 contains the comparison of our model
with other (discrete and continuous) models known from the
literature. In this section the current limitations and potential
applications of the present model for future research are
discussed.

2. Model definition

2.1. The 2D CA

We consider a 2D CA model comparable to those of, for
instance, Patel et al. (2001) and Gerlee and Anderson (2007). Since
it has been established that cells cultivated in the in vitro three-
dimension (3D) like fashion behave differently to those that are
kept as monolayers (Weaver et al., 1997), we approach the 2D
automaton as a representative planar slice through a 3D spheroid-
like tumour mass. For instance, nutrients are supplied to the
growing tumour seed from CA sites beyond the boundary of
occupied sites, mimicking the spheroid approach in the laboratory
(as opposed to the planar substrate support approach as utilised
in monolayer experiments). Subsequently, we use experimental
data taken from in vitro spheroid studies as inputs to, and
comparison with, our model, adjusting for the planar approach as
necessary (e.g. calculation of saturated volume).

However, we differ significantly with all known previous CA
tumour approaches by relaxing the perceived ‘enforced’ constraint
of a ‘one-to-one correspondence between automaton elements
and physical cells’ (Patel et al., 2001, p. 319). Instead, in our
approach, each automaton site is filled with a chosen packet of
homogeneous cells (count N) (see Fig. 2), such that subsequent
automaton updates occur at the level of the site, rather than at the
cellular level. Indeed, this approach is of wide interested in
statistical mechanics where it is often called coarse-graining
(Kardar, 2007).

The reasons for this approach are twofold. First, although it has
been argued that the CA approach is perhaps the pre-eminent
simulation approach for many-object biological systems such as
tumour growth due to its significantly smaller computational
time compared to (say) apparently more realistic continuous
interaction models (Drasdo, 2005), the fact remains that under a
one-to-one assumption between cells and automaton sites, to
model a biological system such as (even) pre-angiogenic tumours,
one needs to implement a complex system with up to 106 objects
(cells). At this scale, even the CA approach is prohibitively time-
consuming to carry out meaningful in silico experiments. Hence, a
reduction in system objects is desirable purely due to implemen-
tation considerations.

However, the second reason for our approach is very
important, and to our knowledge, has been overlooked in the
biological simulation literature. Namely, by using the CA

ARTICLE IN PRESS

Necrotic region

Healthy region

Fig. 1. A 1mm section of a tumour spheroid showing the inner necrotic region and
the outer living region (rat osteogenic sarcoma, reproduced with permission from
Yu et al., 2007).

Fig. 2. The 2D lattice structure assumed in the model. Each site is assumed to be
occupied by b1 individual cells as described in the text. The lattice size is
calculated directly from the packing density of tumour cells and the key control
parameter—the number of cells per lattice site.

M.J. Piotrowska, S.D. Angus / Journal of Theoretical Biology 258 (2009) 165–178166

Necrotic Region

Healthy Region

Source: Yu et al. (2007), 3-d video holography through biological tissue.

Source: Senavirathna et al. (2013), Theranostics 3(9):687-691.

Moore (8) 
Neighbourhood
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Metabolism Algorithms
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Parameters (…yes!)
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Bulk Tumour Dynamics, Comparison to Exp.

S.D. Angus & M.J. Piotrowska, Numerical Simulation of EMT6/Ro Spheroids under X-Therapy

0 500 1000 1500

100

200

300

400
Simulation ([CHO] = 5.5 mM)
Freyer & Sutherland (1985)

Tumor Diameter(µm)

T
hi
ck
ne
ss

of
V
ia
bl
e
R
im

(µ
m
)

0.8 1.7 2.8 5.5 10 16.5

100

200

300

400
Simulation
Freyer & Sutherland (1986)

Medium [CHO] (mM)

a b

0 4 8 12 16 20 24
104

106

108

1010

Time of Growth (days)

Tu
m

or
 V

ol
um

e 
(µm

3 )

Sat. Vol. 6.3e9 5.9e9
Sat. Diam 2,300 2,250
Init. Dbl. Time 17 14.8

Simulation 
([CHO] = 
5.5 mM)

Freyer & 
Sutherland 

(1985)

µm3

µm

h

0 4 8 12 16 20 24
0

500

1000

1500

Time of Growth (days)

Tu
m

or
 D

ia
m

et
er

 (µ
m

)

Freyer & Sutherland (1985)

Simulation ([CHO] = 5.5 mM)

10.0 mM 16.5 mM

2.8 mM 5.5 mM

500µm



The Basic Model

Cell Phase Dynamics, Comparison to Exp.
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Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour 
growth

Step 2: a high fidelity model of tumour growth and 
response to single-dose irradiation

Step 3: a high fidelity model of tumour growth and 
response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose 
irradiation protocols by numerical simulation

Some reflections on the journey.

Angus & Piotrowska (2013), JTB

Piotrowska & Angus (2009), JTB
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Single-dose X-Irradiation
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Single-dose Irradiation

Comparison to Exp. Data
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Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour 
growth

Step 2: a high fidelity model of tumour growth and 
response to single-dose irradiation

Step 3: a high fidelity model of tumour growth and 
response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose 
irradiation protocols by numerical simulation

Some reflections on the journey.

Angus & Piotrowska (2013), JTB

Piotrowska & Angus (2009), JTB

Angus & Piotrowska (submitted)



Multi-dose Irradiation

Multi-Dose Irradiation

S.D. Angus & M.J. Piotrowska, Numerical Simulation of EMT6/Ro Spheroids under X-Therapy

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Updates

D
os
e

'Effective Dose' (Gy)

Damage Burden (Gy)

Fowler's Repair Model:
  to fit: \tau



Multi-dose Irradiation

Calibration of \tau
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Multi-dose Irradiation

Optimal Calibration: Comparison to Experiment
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Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour 
growth

Step 2: a high fidelity model of tumour growth and 
response to single-dose irradiation

Step 3: a high fidelity model of tumour growth and 
response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose 
irradiation protocols by numerical simulation

Some reflections on the journey.

Angus & Piotrowska (2013), JTB
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Angus & Piotrowska (submitted)
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Visualising 'Protocol Space'
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The GA Search Architecture
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'Better': Establishing the Benchmarks
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Search

After the GA (40,000 CPU h!)
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After the GA: Temporal Synchronicity?
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Hand-Crafted Periodic Protocols
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Reflections
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'Emerald City'?  .. avg. benefit: 9.4% or 7.1% .. max benefit: 16.5% or 13.3%

• Only 1 week of treatment (most treatments over 4+ weeks)

• Only searching timing (what about dose? dose & timing?)

• Very conservative approach .. high possibility for translational benefit.

Inputs: 300 man-hours from SA alone; almost 100,000 CPU hours .. about 6 
years of collaboration

Intangibles: expertise, skills, knowledge, collaboration

Learnings: good data for calibration + validation consistent feature (run out 
now?) .. publication between/across disciplines?
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Appendix

GA Performance with Size of Library
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Example Candidate -- Benchmark Comparison
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Appendix

Comparison of Basic Model to Experiment

S.D. Angus & M.J. Piotrowska, Numerical Simulation of EMT6/Ro Spheroids under X-Therapy
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