Using High Fidelity Numerical Simulation & GA Search to find Better Radiation Therapies for Cancer

Simon D. Angus Department of Economics Monash University

Monika Joanna Piotrowska Faculty of Mathematics, Informatics & Mechanics University of Warsaw

Agenda

Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour growth

Step 2: a high fidelity model of tumour growth *and* response to single-dose irradiation

Step 3: a high fidelity model of tumour growth *and* response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose irradiation protocols by numerical simulation

Some reflections on the journey.

The Emerald City

Source: [1] Cancer Research UK, 'Radiotherapy Briefsheet', Aug. 2010.

About 4 in 10 people presently receive radiotherapy as part of their treatment;

Majority of treatments delivered as a 'multi-fraction' protocol (a sequence of low-dose fractions applied once-or twice- a day) (often nothing on the weekend);

But exploration of alternative protocols (timing, dose, or dose+timing) is effectively non-existent ...

The Emerald City

Source: [1] Cancer Research UK, 'Radiotherapy Briefsheet', Aug. 2010.

A '10 fraction' program, with time-gaps in {18,18.5,...,29.5,30}h can be constructed in over 95 trillion ways.

Can we find a better protocol, simply by changing the **timing** of the fractions?

The Emerald City: the hypothesis

Well timed fractions might exploit the **dynamical cell-phase response** of the cells, leading to greater impact **at no additional radiation burden**, possibly due to **synchronisation** of cell-phases.

Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour growth

Step 2: a high fidelity model of tumour growth *and* response to single-dose irradiation

Step 3: a high fidelity model of tumour growth *and* response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose irradiation protocols by numerical simulation

Some reflections on the journey.

Piotrowska & Angus (2009), JTB

The Approach

Source: [1] Cancer Research UK, 'Radiotherapy Briefsheet', Aug. 2010.

High Fidelity: the highest probability of translation to the lab / clinic

Single Cell-line Focus: the most available data for calibration and validation (choose EMT6/Ro)

'Better': establish benchmarks results of standard protocols for statistical comparison to establish any benefit (again: translational outcomes)

Spatial Considerations

Source: Senavirathna et al. (2013), Theranostics 3(9):687-691.

Source: Yu et al. (2007), 3-d video holography through biological tissue.

2D

Quasi-2D

Moore (8) Neighbourhood

Metabolism Algorithms

Parameters (...yes!)

Model parameters with references.

Description	Symbol	Value	Units	Ref ^a
Cell packing density	ρ	4 × 10 ⁸	cell cm ⁻³	Freyer and Sutherland (1985)
Number of cells per site	N	20	cell site-1	Calib.
Unit side-length	u	38.8	μm	Calc.
Update time-step	Δt	6	S	Set
Diffusion time-step	τ	0.25	S	Set
Cell cycle				
Av. G ₁ phase dur. (s.d.)	$\bar{r}^{G_1}(\sigma_0^{G_1})$	6(1)	h	Zacharaki et al. (2004)
Av. S phase dur. (s.d.)	$\bar{r}^S(\sigma_0^S)$	10(2)	h	Zacharaki et al. (2004)
Av. G ₂ phase dur. (s.d.)	$F^{G_2}(\sigma_0^{G_2})$	2(0)	h	Zacharaki et al. (2004)
Av. M phase dur. (s.d.) ^b	$\bar{r}^{M}(\sigma_{0}^{M})$	2(0)	h	Zacharaki et al. (2004)
Av. D phase dur. (s.d.)b	$\bar{r}^D(\sigma_0^D)$	0.1(0)	h	Est.
Maximal cell cycle time	r ^{max}	20.1	h	Est., Freyer and Sutherland (1980, 1985), Jiang et al. (2005)
Medium				
Medium [CHO]	n_{ex}	5.5	mM	Freyer and Sutherland (1985), Luk and Sutherland (1987), Kelley et al. (1981)
Medium [O ₂] conc.	Oex	0.28	mM	Freyer and Sutherland (1985), Luk and Sutherland (1987), Kelley et al. (1981)
Medium pH level	pH_{ex}	7.4		Freyer and Sutherland (1985), Luk and Sutherland (1987), Kelley et al. (1981)
Crit. pH: prolif. → quiesc.	pH ^{crit}	6.4		Casciari et al. (1992)
Crit. pH: quiesc.→death	pH ^{death}	6.0		Dairkee et al. (1995)
Diffusion coef.				
CHO diffusion coef.	D_n	9.5×10^{-6}	$cm^2 s^{-1}$	Calib.
O ₂ diffusion coef.	D_o	1.82×10^{-5}	$cm^2 s^{-1}$	Venkatasubramanian et al. (2006)
H ⁺ diffusion coef.	D_w	1.1×10^{-5}	cm ² s ⁻¹	Crone and Levitt (1984)
Proliferating cells				
Aer. prol. CHO cons. rt.	$n^{p,\infty}$	18×10^{-17}	mol (cell s)-1	Freyer and Sutherland (1985)
An. prol. CHO cons. rt.	$n^{p,an}$	52×10^{-17}	mol (cell s)-1	Freyer and Sutherland (1985)
Aer. prol. O2 cons. rt.	O ^{p,ox}	8.3×10^{-17}	mol (cell s) ⁻¹	Freyer and Sutherland (1985)
An. prol. O ₂ cons. rt.	o ^{p,an}	0.5 x 10	mol (cell s) ⁻¹	Freyer and Sutherland (1985)
Aer. prol. H ⁺ prod. rt.	w ^{p,ax}	1×10^{-5}	mM (s) ⁻¹	Patel et al. (2001)
An. prol. H ⁺ prod. rt	$w^{p,an} = 2n^{p,an}$	104×10^{-17}	mol (cell s) ⁻¹	Est.
		104 × 10	mor (cen s)	
Quiescent cells Aer. quiesc. CHO cons. rt.	$n^{q, cx}$	15×10^{-17}	1 (11 ->=1	Freyer and Sutherland (1985)
			mol (cell s) ⁻¹	
An. quies. CHO cons. rt.	$n^{q,an} = \frac{n^{p,an}}{n^{p,an}} n^{q,ax}$	43×10^{-17}	mol (cell s) ⁻¹	Est., Freyer and Sutherland (1985)
Aer. quiesc. O2 cons. rt.	O ^{q,ax}	5.5×10^{-17}	mol (cell s)-1	Freyer and Sutherland (1985)
An. quiesc. O2 cons. rt.	Oq.an	0	mol (cell s)-1	Freyer and Sutherland (1985)
Aer. quiesc. H ⁺ prod. rt.	$w^{q,\alpha x}$	0.05×10^{-5}	mM (s) ⁻¹	Patel et al. (2001)
An. quiesc. H ⁺ prod. rt.	$w^{q,an} = 2n^{q,an}$	86×10^{-17}	mol (cell s) ⁻¹	Est.
			()	
Dead cells Dead cells CHO cons. rt.	n ^{death}	0	mol (cell s)-1	Est.
Dead cells O2 cons. rt.	o ^{death}	0	mol (cell s)	Est.
Necrotic material prod.	w ⁿ	9.0 × 10 ⁻⁴	mM (site) ⁻¹	Est.
recroire material prod.	**	a.0 × 10 '	mivi (site)	Mat.

a 'calib.': parameter was defined by calibrating to empirical literature; 'est.': parameter and/or relationship assumed; and 'calc.': parameter the result of algebraic calculation of other parameters.

^b The biological duration of M phase is given by $\bar{r}_M(\sigma_0^{r_M}) + \bar{r}_D(\sigma_0^{r_D})$.

Bulk Tumour Dynamics, Comparison to Exp.

Cell Phase Dynamics, Comparison to Exp.

Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour growth

Step 2: a high fidelity model of tumour growth *and* response to single-dose irradiation

Step 3: a high fidelity model of tumour growth *and* response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose irradiation protocols by numerical simulation

Some reflections on the journey.

Piotrowska & Angus (2009), JTB

Angus & Piotrowska (2013), JTB

Introducing Single-dose X-Irradiation

Two functions to identify:

Delay(R)

b(R)

Single-dose X-Irradiation

Comparison to Exp. Data

Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour growth

Step 2: a high fidelity model of tumour growth *and* response to single-dose irradiation

Step 3: a high fidelity model of tumour growth *and* response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose irradiation protocols by numerical simulation

Some reflections on the journey.

Piotrowska & Angus (2009), JTB

Angus & Piotrowska (2013), JTB

Angus & Piotrowska (submitted)

Multi-Dose Irradiation

Calibration of \tau

Calibration: an ensemble of 18 Independent Multi-fraction Experiments

Optimal Calibration: Comparison to Experiment

Aims: The 'Emerald City'

Step 1: a high fidelity numerical model of tumour growth

Step 2: a high fidelity model of tumour growth *and* response to single-dose irradiation

Step 3: a high fidelity model of tumour growth *and* response to multi-dose irradiation

Step 4: Apply GA search to find better multi-dose irradiation protocols by numerical simulation

Some reflections on the journey.

Piotrowska & Angus (2009), JTB

Angus & Piotrowska (2013), JTB

Angus & Piotrowska (submitted)

Visualising 'Protocol Space'

The GA Search Architecture

'Better': Establishing the Benchmarks

After the GA (40,000 CPU h!)

After the GA: Temporal Synchronicity?

Hand-Crafted Periodic Protocols

Reflections

'Emerald City'? .. avg. benefit: 9.4% or 7.1% .. max benefit: 16.5% or 13.3%

- Only 1 week of treatment (most treatments over 4+ weeks)
- Only searching timing (what about dose? dose & timing?)
- Very conservative approach .. high possibility for translational benefit.

Inputs: 300 man-hours from SA alone; almost 100,000 CPU hours .. about 6 years of collaboration

Intangibles: expertise, skills, knowledge, collaboration

Learnings: good data for calibration + validation consistent feature (run out now?) .. publication between/across disciplines?

Appendices

GA Performance with Size of Library

Example Candidate -- Benchmark Comparison

Table 4: Example data used to derive the fitness score of a candidate. Here, candidate x1062 is measured by normalised cell count against the same for the BMI protocol, allowing the calculation of relative score vector (col 3).

Tumor Library	Norm.	Relative	
$ID\left(j\right)$	Benchmark	Candidate x1062	Score
	n'^{BMI^j}	$n'^{ ho^j_{ ext{ix}1062}}$	$s_{\tt x1062}^{j}$
1	1.20	1.07	13
2	1.22	1.06	16
3	1.16	1.03	13
4	1.15	0.93	22
5	1.22	1.05	17
6	1.21	1.05	16
7	1.10	1.02	8
8	1.15	1.13	2
9	1.15	1.02	13
10	1.11	0.97	14

Comparison of Basic Model to Experiment

Table 2: Characteristics of the 10 day, 10 tumor, library used in the present study. A comparison is provided to available *in vitro* literature for EMT6/Ro under equivalent medium conditions though over 14 and \sim 20 days.

Measure	10 Day Library	in vitro [†]	Units		
	(for BM I, II)	(at 14 or ~20 days)			
Bulk & necrotic properties					
Final Tumor diameter	840 (±11)	est. 1050 ^a - 1250 ^c	μ m		
Diameter growth rate	77.3 (±0.4)	60 ^b - 79 ^a	μ m/day		
Diameter at onset of necrosis	638 (±28)	413 ^c	μ m		
Viable rim (post necrosis)	185 (± 12)	207 (±13) ^b	μ m		
Gompertz fit properties		-			
Est. doubling time (vol.)	20.1	17 ^c - 18 ^d	h		
Saturation volume	3.72×10^{9}	$6.3^{c} - 11.0^{d} \times 10^{9}$	μ m ³		
Saturation cell count	6.91×10^{5}	$7.0^{c} - 9.8^{d} \times 10^{5}$			
Cell phase fractions					
G_1	76.8 (±2.6)	$60.1 \ (\pm 5.3)^b - 76 \ (\pm 3)^c$	%		
S	$14.8 (\pm 3.0)$	16 $(\pm 3)^c$ - 27.4 $(\pm 0.5)^a$	%		
$G_2 + M$	8.5 (±1.9)	9 $(\pm 3)^c$ - 13.1 $(\pm 2.1)^b$	%		

Notes:

[†] Experimental literature ranges given where available. Importantly, experimental values only available for tumors grown in the same media for 14 days or \sim 20 days as follows: 14 days { a [9], b [3]}, and \sim 20 days { c [10], d [11], and c [12]}.