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Abstract The cryptographic hash function Grøstl is a finalist in the NIST’s SHA-3 hash function
competition and it is a tweaked variant of its predecessor called Grøstl-0, a second round SHA-3 can-
didate. In this article, we consider 256-bit Grøstl-0 and its 512-bit compression function. We show that
internal differential trails built between the two almost similar looking permutations of the compression
function can be coverted to chosen-multi-target-preimage attacks, a variant of multi-target preimage
attacks. Consequently, we show chosen-multi-target-preimage attacks for up to 9 out of 10 rounds of
the compression function and up to 7 rounds of the hash function. Finally, we use these attacks as a
tool to find preimages and pseudo preimages for 6 rounds of the 256-bit Grøstl-0 hash function.
Keywords: Hash function, Compression function, Grøstl-0, Grøstl, (Chosen-multi-target) preimage
attack, Super-Sbox attack.

1 Introduction

The cryptographic hash function Grøstl [3] is a finalist in the ongoing NIST’s SHA-3 competi-
tion [14,13,15,8]. Grøstl [3] is an iterated hash function which operates in the wide-pipe hash
function mode with an internal state of size at least twice of the hash value size. Its compression
function uses two large distinct (fixed-key) permutations that have a byte-oriented substitution-
permutation structure similar to AES [1]. Soon after its selection for the final round of the SHA-3
competition, a tweak was proposed for Grøstl and since then the earlier version has been referred
to as Grøstl-0 [3] and SHA-3 finalist as Grøstl [4]. Extensive analysis of Grøstl-0 and its building
blocks [10,9,11,6,16,5,18] has motivated the designers to tweak it by making its permutations to look
more distinct for an enhanced security against attacks that apply to Grøstl-0 due to the usage of al-
most similar permutations. So far, these attacks on Grøstl-0 have employed the rebound attack [10]
and its extensions such as Super-Sbox [7,5,11] and non-full-active Super-Sbox [18] attacks to find
collisions for the reduced round compression function [10,9,5,18] or hash function [11,6] and to find
distinguishers for the compression function [5,16] and permutations [9,5,16]. It is interesting to see
whether the similar looking permutations in Grøstl-0 can be further exploited to mount preimage
attacks or their variants on the compression function or hash function. We address this problem by
analyzing 256-bit Grøstl-0 compression function and hash function against (chosen-multi-target)
preimage attacks. When the l-bit permutations of Grøstl-0 are assumed ideal, the compression
function has a 2l/2 security against preimage attacks [2,3]. Grøstl-0 with n-bit hash value has a
claimed complexity of 2n against preimage attacks [3]. These claims also apply to Grøstl.
Chosen-(multi-target preimage attacks). In a preimage attack on an n-bit hash function H,
for a given y, an adversary finds a messageM such that H(M) = y in less than 2n evaluations of H.
Similarly, in a preimage attack on l-bit compression function cf , for a given y, an adversary finds an
input chaining value and message block pair (h,m) such that cf(h,m) = y. The idea of multi-target
(Aka one-of-many) preimage attacks on hash functions was first proposed by Merkle [12]. In this
attack on an n-bit hash function H, an attacker aims to find a preimage for one of the given K
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Table 1: Summary of results on 256-bit Grøstl-0 where each attack requires 264 memory.
Attack Rounds Targets Time Generic Section

Comp. Function

Preimage 6 - 2128 2256 6

Chosen-multitarget preimage

6 264 264 2224 4.1
6 28 2120 2252 4.1
7 280 264 2216 4.2
7 224 2120 2244 4.2
8 2192 264 2160 4.2
8 2136 2120 2188 4.2
9 2192 2120 2160 4.2

Hash Function

Preimage
5 - 2144 2256 6
6 - 2144 2256 6

Pseudo preimage 6 - 2128 2256 6

Chosen-multi-target preimage
5 264 280 2192 5.1
6 216 2136 2240 5.1

Chosen-multi-target pseudo preimage

6 264 264 2192 5
6 28 2120 2248 5
7 280 264 2176 5
7 224 2120 2232 5

hash values in less than 2n/K evaluations of H [12,17]. On a compression function cf , the task is
to find a pair (h,m) which hits one of K outputs of cf in less than 2n/K evaluations of cf . We call
these attacks K-target preimage attacks. In a slightly different setting, an attacker may show the
existence of a set of outputs for cf or H wherein a preimage can be found for one of the outputs
in the set. We call attacks in this setting chosen-multi-target preimage attacks or chosen-K-target
preimage attacks for an output set of size K.
Our analysis and results.We consider 256-bit Grøstl-0 which has a 10-round 512-bit compression
function based on two almost similar 512-bit permutations and an output transformation based on
10 rounds of one of these permutations. We analyze reduced round variants of the compression
function and hash function against (chosen-K-target) preimage attacks. To summarize:

1. In the ideal permutation model, we prove that finding a preimage for one among K-target
compression function outputs has a complexity of about 2l/2/

√
K queries to the permutations.

While doing so, we also correct the previous security proof [2] which finds a security bound
for the compression function against preimage attacks and we provide an accurate proof with
almost similar security bound as [2]. These security bounds are also applicable to Grøstl com-
pression function. We then present chosen-K-target preimage attacks for up to 9 rounds of the
compression function for a complexity less than the generic attack complexity.

2. We convert some of the reduced-round chosen-K-target preimage attacks on the Grøstl-0 com-
pression function into the corresponding chosen-K∗-target (pseudo) preimage attacks on the
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hash function where K∗ ≤ K. As the K∗ hash value targets of these attacks are determined
by the K targets of the compression function attacks, we derive a generic security bound re-
sembling a similar scenario in the ideal permutation model and compare our results with this
bound. In addition, in some instances, we find reduced-round (pseudo) preimage attacks on
Grøstl-0 where an attacker can find a preimage for any hash value challenged to the attacker
from a set of hash values that are determined from the chosen targets of compression function
attacks. As a consequence, we show 5 and 6-round (pseudo) preimage attacks on Grøstl-0 hash
function.

In all our attacks we apply the idea of internal differences between similar looking permutations
introduced for Grøstl-0 by Peyrin [16] to build new internal differential trails to find chosen-K-
target preimages for the compression function. These trails are built by using an improved variant
of the rebound attack called Super-Sbox attack which was used to find collisions for the reduced
round Grøstl-0 compression function and hash function [11,16,5]. Table 1 summarizes our results.
Impact of our attacks. Our attacks highlight an interesting method of finding preimages for a
specific set of hash values for reduced round Grøstl-0 by extending chosen-multi-target preimages
built for its compression function. Although this property also holds for Grøstl due to its similar
structure to Grøstl-0, more distinction between the permutations in Grøstl completely prevent
the application of internal differentials even for very few rounds and therefore, any possibilities
of building chosen-multi-target preimages for the compression function using internal differentials
are ruled out. Therefore, our results strengthen the rationale for proposing the tweak for Grøstl-0
for the final round of the SHA-3 competition. In addition, our reduced-round preimage attacks on
Grøstl-0 cannot be converted to finding second preimages as in our attacks a preimage can be found
for any hash value from only a set of hash values.
Guide to the paper. In Section 2 we discuss 256-bit Grøstl-0 hash function; internal differentials
for its compression function; the idea of rebound attack and its Super-Sbox extension. In Section 3
together with Appendices A and B, we derive generic security bounds for the Grøstl-0 compression
function against (K-target) preimage attacks and for Grøstl-0 hash function against K∗-target
preimage attacks respectively. Section 4 describes chosen-multi-target preimage attacks on several
reduced round versions of the compression function. Chosen-multi-target (pseudo) preimage attacks
and (pseudo) preimage attacks on reduced Grøstl-0 are shown in Sections 5 and 6 respectively.
Finally, we conclude the paper in Section 7.

2 Background

2.1 Brief description of 256-bit Grøstl-0 hash function

The 256-bit Grøstl-0 hash function works as follows [3]: It takes an input message M and pads
it securely and splits the padded message into equal length 512-bit blocks m1 . . .mt. The initial
value IV is defined as the 512-bit representation of the size of the hash value (i.e 256 bits) which in
hexadecimal is 00 00 . . . 01 00. Note that IV has only one non-zero byte. Each block is processed
by iterating a compression function cf . At any iteration i, the compression function is defined by

cf(Hi−1,mi) = P (Hi−1 ⊕mi)⊕Q(mi)⊕Hi−1 = Hi (1)

where Hi−1 and Hi are the respective 512-bit input and output chaining values of cf , P and
Q are 512-bit 10-round permutations each and H0 = IV . The 512-bit output value Ht of the
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Figure 1: Illustration of 256-bit Grøstl-0 hash function.

final compression function is processed by using an output transformation described by OT (Ht) =
trunc256(P (Ht)⊕Ht) where the operation trunc256 discards all except the last 256 bits of P (Ht)⊕Ht

to produce a hash value of 256 bits. An abstract view of 256-bit Grøstl-0 is illustrated in Figure 1.
Often, in our analysis, we denote the pair (Hi−1,mi) with (h,m) and Hi with h′.

The permutations P and Q are designed following the wide trail design strategy and in every
round ri for i = 0, . . . , 9, they update an 8× 8 state of 64 bytes. These transformations are similar
to that of AES and are described as follows:

– AddRoundConstant (AC): Exclusive-or operation of distinct one byte constants to the 8 × 8
internal states of P and Q. For P , this constant is a round number i which is XORed to the
first byte of the internal state. For Q, this constant is i ⊕ ff XORed to the eighth byte of the
internal state. The permutations P and Q differ in only this step.

– SubBytes (SB): Independent substitution of each byte in P and Q states by using AES S-box [1].
– ShiftBytes (SH): Cyclic left rotation of the jth row state bytes by j positions where j = 0, . . . , 7.
– MixBytes (MB): Linear diffusion layer in which each column of the state is multiplied with a

constant 8× 8 circulant MDS matrix.

The state S in a round ri of the compression function is updated by a round transformation defined
by MCi ◦ SHi ◦ SBi ◦ACi(S) where i ∈ {0, . . . , 9}. For more details of the design we refer to [3].

2.2 Rebound and Super-Sbox Attacks.

The rebound attack was proposed by Mendel et al. [10] to analyze block cipher and permutation
based hash functions, in particular designs that are of AES-style or AES-based. On Grøstl-0, this
attack decomposes the two permutations into three sub-permutations and employs identical trun-
cated differentials between their round transformations in an inside-out approach via the inbound
and outbound phases. The inbound phase starts with an 8-byte truncated difference between the
MB layers of two consecutive rounds, say r2 and r3, and is propagated both forward and backward
of the S-box layer of r3. This phase is solved by an efficient meet-in-the-middle technique aided by
the degrees of freedom called match-in-the-middle approach. The solutions of the inbound phase
are pairs of values conforming the inbound phase differential trail which connects the input and
output of S-boxes in r3. Finally, these pairs are used as the starting points for the outbound phase
which is the probabilistic part of the attack and extends the inbound phase differential trail in both
the forward and backward directions.

The Super-Sbox attack [7,5] is an improved variant of the rebound attack to solve the inbound
phase of two consecutive rounds covering two S-box layers and this method was applied to Grøstl-0
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in [11]. When we apply this method to Grøstl-0, instead of checking each S-box for a valid differential
as in the basic rebound attack, eight parallel 64-bit S-boxes called Super-Sboxes are checked. Figure
2 illustrates the inbound phase for a sample differential trail of the permutation P or Q of 256-bit
Grøstl-0 between the state before the application of MB in round 1 and completion of round 3 (i.e
between states SSH

1 and SMB
3 ) and the first Super-Sbox is highlighted. Two adjacent SH and SB

transformations in the first round of the inbound phase can be commuted without changing the
final result. In Figure 2, every column in SSH

2 is the input to one 64-bit Super-Sbox and overall
there are 8 independent Super-Sboxes. Although the differential distribution table (DDT) for the
Super-Sbox includes 2128 entries; by fixing the input and output differences of the Super-Sbox, we
can check all 264 input values to see if the input difference to a Super-Sbox maps to the output
difference.
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Figure 2: Application of Super-Sbox attack on Grøstl-0 compression function.

The inbound phase illustrated in Figure 2 is analyzed as follows:

1. For all 264 differences at the state SMB
3 , compute backward through MB and SH to the state

SSB
3 , then store the resulting 264 differences for each column in list L1.

2. Choose a random difference at SSH
1 and compute the difference forward to SSH

2 . Each column
at state SSH

2 is the input to one Super-Sbox. For each Super-Sbox at state SSH
2 , connect the

input and output differences as follows:

(a) For the selected Super-Sbox (column) at state SSH
2 , try all 264 possible pairs of values to

calculate the output value of SB2. Therefore, overall we can compute 264 possible differences
and corresponding pairs of values for the column at state SSB

2 .
(b) Compute forward to SSB

3 through MB and SB, and find 264 differences and corresponding
pairs of values as the output of the Super-Sbox, then store them in list L2.

(c) Find a match between differences of list L1 and corresponding differences and pairs of values
in list L2 through SB3. Since each list has 264 entries and we must match 64 bits (with the
probability 2−64) and find 264 × 264 × 2−64 = 264 solutions for each Super-Sbox.

3. Since all Super-Sboxes are independent, find 264 solutions for each Super-Sbox at SSB
3 and

subsequently for the whole state with a complexity of 264 time and memory. Hence, on average,
the time complexity for each solution is one.

We can also choose 264 differences for SSH
1 and repeat inbound phase with each of these differences

to find up to 2128 solutions (pairs of values and differences) that satisfy the inbound phase trail.
These pairs of values are the starting points for the probabilistic outbound phase of the attack.
Memory required for any number of applications of the inbound phase is still 264.
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Figure 3: Illustration of internal differentials for Grøstl-0 compression function.

2.3 Internal differentials for 256-bit Grøstl-0

Peyrin [16] observed that when a cryptographic function is built upon similar parallel components
then it may be possible to construct a differential trail which spans between these components
and such a trail is called internal differential trail. Since the parallel permutations P and Q in
256-bit Grøstl-0 differ in only one byte of AC layer, internal differentials can be constructed for
the compression function as illustrated in Figure 3. The differences between P and Q of Grøstl-0
compression function cf can be traced as follows: Let A and B be the input states for P and Q
respectively. The input difference of the internal differential trail is given by 4IN = A⊕B and its
output difference by 4OUT = P (A) ⊕Q(B). Therefore, at any iteration i of cf , we can note that
h = A⊕B, m = B and h′ = P (A)⊕Q(B)⊕A⊕B = 4OUT ⊕4IN . The pair (A,B) = (h⊕m,m)
is the valid pair confirming to the internal differential trail. Peyrin combined internal differentials
with Super-Sbox attack to distinguish Grøstl-0 compression function from the one based on ideal
permutations and to mount a collision attack on the 5 round compression function. This approach
was extended by Ideguchi et al. [6] to find collisions for the 5 and 6 rounds of Grøstl-0 hash function.
For details of the distinguisher and collision attacks we refer to [16,6].

3 The generic security of Grøstl-0 against (K-target) preimage attacks

For the compression function of Grøstl-0 with an l-bit output there is a security proof [2] which shows
that when the permutations P and Q are assumed ideal, an adversary who makes at most q queries
to these permutations and their inverses has an advantage of at most q2/2l to find a preimage. That
is, the complexity of a preimage attack on the compression function is about 2l/2 which is also the
claimed security bound [3]. We remark that this security proof [2] is not completely accurate as it
assumes that for an input query made to a permutation, the output is chosen uniformly at random
from {0, 1}l due to the random choice of the permutation. It seems that this proof does not take
into consideration that P and Q are permutations. For example, after P has been queried i times
on inputs α1, . . . , αi, returning values β1 = P (α1), . . . , βi = P (αi), the response for the next query
α depends on the previous responses β1, . . . , βi and hence, the returned value β = P (α) should be
uniformly random over 2l − i values (i.e all values except β1, . . . , βi).

Therefore, in Appendix A we improve the security proof in [2] for Grøstl-0 compression function
against preimage attacks and our security bound is almost the same as the one in [2]. We also
extend our analysis to the security of the construction against K-target preimage attacks. To find
a preimage for one of the K targets for the l-bit Grøstl-0 compression function requires about
2l/2/

√
K queries. Since this analysis does not depend on the details of P and Q, it is reasonable to

use its result for the chosen-K-target scenario as well. In Appendix B, we assume ideality of P and
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Q and prove that K∗-target preimage attack on n-bit Grøstl-0 hash function is lower bounded by
approximately 2l/K queries, assuming that the target set Y is defined as Y = OT (x) : x ∈ X, for
some fixed set X of compression function outputs (independent of P ,Q) of size K. Note that this
is the way Y is defined in our attacks in Section 5. Our results in Appendices A and B also apply
to Grøstl compression function and hash function respectively as permutations are assumed ideal.

4 Chosen-K-target preimage attacks on 512-bit Grøstl-0 compression function

We first provide the main idea used in our chosen-K-target preimage attacks on the Grøstl-0
compression function followed by the details of the attacks in the subsequent sections.

In our attacks, we build internal differential trails between the permutations P and Q by us-
ing Super-Sbox attack so that the complexity of a chosen-K-target preimage attack is less than
2l/2/

√
K. An internal difference is the difference between P and Q. The size of K in our attacks is

influenced by the factors such as the number of attackable rounds, the number of solutions obtained
from the inbound phase of the Super-Sbox attack and the amount of control we would like to exert
at the input state of the compression function. Recall from Section 2.3 that if A and B are inputs
to the permutations P and Q, the compression function following the internal differential trail can
be described as cf(h,m) = h′ = 4IN ⊕4OUT where 4IN = A⊕B and 4OUT = P (A)⊕ P (B).

Once the internal differential trail is built for a possible number of rounds, we take all possible
outputs of this trail as the K-chosen-target set. Then we can find a preimage (h,m) for one of the
K targets as follows: Since A⊕ B = 4IN = h, when we extend the difference between the pair of
values that satisfy the inbound trail and outbound trails of the Super-Sbox attack in the backward
trail of the outbound phase, we would eventually end up with h and a pair of values (A,B) with
the difference h. Note that the message block m = B (i.e. the input value to permutation Q). By
computing the forward trail of the outbound phase with the solution which satisfies both inbound
and outbound phases, we end up hitting at least one of the K target hash values. A matched hash
value is defined by h′ = 4IN ⊕4OUT . Thus, we have found the pair (h,m) = (4IN , B) which hits
one of the chosen-K-target hash values. If more than one solution satisfies the internal differential
trail then we can find preimages for more than one K target outputs.

4.1 Attacks on 6-round compression function
Figure 4 shows the truncated internal differential trail for 6-round compression function where A
and B are the inputs to the permutations P and Q and their difference A⊕B is the input chaining
value h for the compression function. For this trail, we use the labels controlled and uncontrolled
values to refer to the actual values of the states. Controlled values are known to the adversary from
the beginning of the attack, for example in the state h′ there are 56 controlled bytes and their
values are fixed to zero. On the other hand, values of uncontrolled bytes are not known until the
completion of the attack. Set Y is the target set which has 264 512-bit values. Every element of Y
consists of only 8 uncontrolled bytes in the same positions as shown in the state h′ in Figure 4. The
application of Super-Sbox attack on these 6 rounds finds the preimage (h,m) of the compression
function for a h′ ∈ Y . The attack works as follows:

– Inbound phase: This phase starts at the state beforeMB1 and ends before SB4 as illustrated by
the dashed lines in Figure 4. This phase is solved by the application of the Super-Sbox attack
described in Section 2.2 which finds 264 pairs which are also the starting points for the outbound
phase. The complexity of this part is 264 time and memory.
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Figure 4: Internal differential trail for 264-target preimage attack on 6-round compression function.

– Outbound phase

1. Use the starting points of the inbound phase to compute forward from the state before SB4
to state SOUT . This part is satisfied with 2−64 probability. Since, the 8 7→ 2 bytes difference
propagation through MB4 is successful with 2−48 probability and two bytes differences are
erased by AC5 with 2−16 probability.

2. Use the corresponding starting point of the pair satisfying step 1 and work backward from
the state before MB1 to the input state SIN . This step has a success probability of one.

3. The XOR addition of the input difference h at the state SIN and output difference at SOUT

is h′ which is one of the 264 target output values of the compression function.
4. The pair of values that gives the difference at SIN are the inputs of P and Q, their difference

is the input chaining value h and the input value of Q is the message block m. Thus, we
found the pair (h,m) for an output chaining value h′ which is one of the target outputs.

The time complexity of the attack is 264 computations due to the outbound phase and requires 264

memory due to the inbound phase. This is much less than the generic complexity of 2224 to find a
preimage for one among 264 target compression function outputs.

Figure 7 in Appendix C illustrates another 6-round attack for 28 targets for a complexity of
2120 time (from outbound phase due to the 8 7→ 2 difference propagation through MB4, two bytes
difference cancellation by AC5 and 8 7→ 1 difference propagation through MB0) and 264 memory
(required for the inbound phase). This is much less than the generic attack complexity of 2252 for
a 28-target preimage attack.
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Figure 5: Extended internal differential trails of Figure 4 for chosen-K-target pseudo preimage
attacks

4.2 Chosen-K-target preimage attacks on more rounds of the compression function

The internal differential trail of Figure 4 can be extended to 7 and 8-round trails as illustrated
in Figure 5. As Figure 5a illustrates, by adding one round to the 6-round trail of Figure 4, we
can generate the trail for 280-target preimage attack on 7-round compression function for no extra
cost as the internal differentials of 7th round hold with a probability of one. MB6 is a linear
transformation which maps 2-byte differences to 16-byte differences. Therefore, for all 216 possible
differences in the state before MB6, 216 differences are generated for the state after MB6. Since
for every value among 264 possibilities in h, there are 216 values in the final state, there are up to
280 possibilities for the state h′. This attack finds the chosen-multi-target preimage in 264 time and
memory, while the generic attack needs 2216 computations.

The 7-round trail of Figure 5a is extended by one more round to obtain an 8-round trail as
illustrated in Figure 5b. Here MB7 propagates the state of 16 non-zero differences to the full
active state. However, due to the linearity of MB7, there are 2128 possible values for the full active
state. Since, there are 264 possibilities for h, there are totally 2192 possible values for h′ and hence
2192 targets for the compression function. The complexity of this attack is 264 time and memory
computations which is much less than 2160 generic attack complexity.

The 6-round internal differential trail of Figure 7 in Appendix C is also extended to 7 (Fig-
ure 8a) and 8-round (Figure 8b) internal differential trails to apply respectively 224 and 2136-target
preimage attacks on the 256-bit Grøstl-0 compression function. Note that both extensions in the
compression function rounds follow the outbound phase of 6-round attack explained in Section
4.1 with probability one. Therefore, the complexity of the 224-target preimage attack on 7-round
compression function as well as the 2136-target preimage attack on 8 rounds are 2120 time and 264

memory.
2192-target preimage attack on 9 rounds. The best possible internal differential trail in terms
of number of rounds is a 9-round 2192-target preimage attack illustrated in Figure 10 in Appendix
C. The backward trail of the outbound phase is followed with 2−56 probability whereas the forward
trail holds with 2−64 probability. Overall, the complexity of this attack is 2120 time and 264 memory
which is less than the generic complexity of 2160.
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5 Chosen-K∗-target (pseudo) preimage attacks on the reduced Grøstl-0

Sometimes, we can convert a chosen-K-target preimage attack on an r-round 256-bit Grøstl-0
compression function to the corresponding r-round chosen-K-target pseudo preimage attack on
the hash function for a negligible additional complexity. The general description of this attack is
outlined below:

1. Let X be the set of K target outputs of the r-round compression function where for one of
which a preimage can be found. Choose a message block m′ such that it satisfies the padding
rule of Grøstl-0 and process it with the chaining values in the set X under the compression
function to generate K outputs.

2. Process the above K outputs under the output transformation OT (.) of Grøstl-0 to generate a
set Y = {OT (cf(m′, x)) : x ∈ X} of K∗ hash values.

3. Find the preimage (h,m) for a target in the set X. This implies that we have also found a
pseudo preimage (h,m‖m′) for r-round Grøstl-0 for one of the hash values in the set Y . Note
that the first compression function has r rounds whereas the second one may have all rounds.

We can use the above method to convert 6-round 264 and 28-target preimage attacks on the
compression function shown in Figures 4 and 7 to the corresponding 2-block chosen-multi-target
pseudo preimage attacks on Grøstl-0 hash function respectively in 264 and 2120 time complexity and
264 memory in each of these attacks. In comparison, the complexity of generic attacks to find 264

and 28 target pseudo preimages is 2192 and 2248 respectively. Similarly, 7-round attacks illustrated
in Figures 5a and 8a can be converted to the corresponding pseudo preimage attacks on the hash
function for less than generic attack complexity. For beyond 7 rounds of 256-bit Grøstl-0, generic
attacks are the best to find chosen-multi-target pseudo preimages.

5.1 Chosen-K∗-target preimage attacks on the reduced hash function

In the above attacks, if the input chaining value h of the first compression function is equal to
IV then we obtain chosen-K∗-target preimage attacks on the hash function. Therefore, we present
only the internal differential trails of chosen-K-target preimage attacks on the reduced compression
function where h = IV and then it is straight forward to convert them to the corresponding 2-block
chosen-K∗-target preimage attacks for Grøstl-0.

Figure 6 illustrates internal differential trail to mount a 264-target preimage attack for the
compression function with h = IV . The inbound phase of the attack starts at the 10-byte active
state beforeMB1 and ends at the 8-byte active state before SB4. For a difference chosen at the state
before MB1, the inbound phase results in 264 pairs of values in 264 time and memory. Therefore,
the inbound phase can produce up to 264+80 = 2144 pairs of values as the starting points for the
outbound phase in 264 memory. The forward trail of the outbound phase holds with probability one.
In the backward trail of the outbound phase, at first AC1 cancels 2 active bytes in the first column
of the state before SB1 with 2−16 probability. The 8 7→ 2 active bytes propagation through MB0
has a success probability of 2−48. Finally, with 2−8 probability, AC0 cancels the one byte difference
in the first column before SB0 and with a probability of 2−8 the active byte of the input state is
forced to be the non-zero byte in the IV of 256-bit Grøstl-0. Overall, the success probability of the
outbound phase is 2−80. Therefore, the total complexity of the attack is 280 time and 264 memory.
Note that the complexity of the generic attack to find a preimage for one of 264 targets is 2192.
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Figure 6: Internal differential trail for 264-target preimage attack on 5-round 256-bit Grøstl-0

This trail can be extended to 6 rounds as shown in Figure 9 in Appendix C to obtain a 216-target
preimage attack. The extended round adds a factor of 256 to the time complexity of the attack and
makes it 2136 computations (the success probability of the forward outbound trail is 2−56 regarding
8 7→ 2 propagation through MB4 and one byte difference cancellation by AC5). Also MB5 is a
linear function which transforms 216 input possible differences to 216 possible outputs, therefore
there are 216 values for h′ and the hash targets.

Some remarks.

– Although truncation in OT (.) may produce less than K target hash values of size K∗ in the set
Y , it does not decrease the importance of our attacks on the hash function because when the
number of targets are reduced, the complexity of the generic attack increases. That is, K∗ ≤ K.
Anyhow, our experiments show that the compression function and output transformation when
evaluated with all possible 28 and 216 chaining values as illustrated in the output state of
Figures 7 and 9 respectively would also produce sets (Y ) of hash values of the same size after
the truncation step.

– In our chosen-K-target preimage attacks on the reduced round variants of the compression
function from Section 4, the set of allowed outputs of size K that were committed to finding
at the beginning of the attack is independent of P and Q since the values of the bytes in the
non-zero positions of the output state in some attacks (e.g. Figure 4 and 6) and in the state
before the final MB transform in other attacks (e.g. Figure 5) are allowed to be arbitrary. In
the attacks on the reduced round variants of the hash function, the set of target hash values
are determined by the target outputs of the first compression function which are computed
independent of P and Q. However, the target hash value set is partially dependent on P and Q
due to the computation of the second compression function and P in the output transformation.
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Note that these attacks are distinct from the trivial scenarios where one can compute a set of
hash values for some arbitrary messages and later show a preimage for one of the hash values. In
Appendix B we show that a chosen-K-target preimage attack on Grøstl-0 compression function
extends to a K∗-target preimage attack on hash function in at least 2n/K complexity.

6 Preimage attacks on the reduced hash function and compression function

We can convert a chosen-K-target preimage attack on Grøstl-0 to a preimage attack if there is
sufficient degrees of freedom available from the inbound phase of the attack. It is achieved by using
the freedom to repeat the inbound phase and therefore the Chosen-K-target attack itself until
we hit the challenged hash value. Hence, the 264-target preimage attack on 5-round hash function
described in Section 5.1 can be converted to a preimage attack. Since there are 264 targets according
to the differential trails illustrated in Figure 6, we have to repeat the attack 264 times to hit the
desired hash value. The success probability of the attack depends on the outbound phase which is
equal to 2−80. Consequently, the overall complexity of the attack on the 5-round hash function is
2144 time and 264 memory. Fortunately the inbound phase provides enough freedom for solving the
outbound phase and repeating the attack to find the preimages. One may argue that we in fact
do not find 2144 solutions for the inbound phase, because we use differentials to solve the inbound
phase and it counts each pair of solution twice (e.g. there might be two pairs of (A,B) and (B,A)
in the solutions). However, we do not consider this argument against our Super-Sbox attacks. Since
we use internal differential trails between different permutations P and Q, two pairs of values in
different orders result in different outputs after the outbound phase. Therefore, the inbound phase
in Figure 6 generates 2144 starting points for the other parts of the attack. Note that by applying
this attack we can find preimages of all the 264 possible hash values. Similarly, we also extend the
216-target preimage attack on the 6-round hash function, illustrated in Figure 9 in Appendix C, to
a preimage attack on 6 rounds. Since the complexity of the 216-target preimage attack is 2136 and
we have to repeat the attack 216 times to hit the desired hash value, the overall complexity of the
preimage attack would be 2144 time and 264 memory.

Likewise, the 264- and 28-target pseudo preimage attacks on the 6-round hash function, illus-
trated respectively in Figures 4 and 7, are extended to pseudo preimage attack on 6 rounds. In
both attacks the overall complexity is 2128 time and 264 memory. While in the former the adversary
generates preimages for all 264 target hash values.

In a preimage attack on a compression function cf , for a specific output h′ we find a pair
(h,m) such that cf(h,m) = h′. Obviously the chosen-multi-target preimage attacks on the 6-round
compression function in Section 4.1, provide preimage attacks on the compression function. By
repeating the 28-target preimage attack of Figure 7 or the 264-target preimage attack of Figure 4,
we can obtain preimage attacks on the 6-round compression function in 2128 time and 264 memory.

7 Conclusion

We used internal differential trails in the compression function of Grøstl-0 to present chosen-multi-
target preimage attacks for up to 9 rounds of the compression function and extend some of these
attacks to find chosen-multi-target (pseudo) preimages and preimages for the hash function. The
best preimage attack was presented on 6 rounds of 256-bit Grøstl-0. The more distinct permutations
used for Grøstl thwart internal differential attacks even for fewer rounds and hence our attacks do
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not apply to Grøstl. We also applied our analytical techniques on the 512-bit version of Grøstl-0
and we present these results in the full version of this paper. In future, we consider improving the
complexities of our attacks by considering the improvements to the rebound attacks.
Acknowledgments: We are thankful to Florian Mendel and Christian Rechberger for discussions
and comments on this paper.
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A Security bounds for Grøstl-0 compression function against (K-target)
preimage attacks

In Theorem 1 we prove two results for Grøstl-0 compression function under the assumption that
the permutations P and Q are ideal and our results are also applicable to Grøstl compression
function. The first result of Theorem 1 shows that for an adversary who makes q queries to the
permutations, the success probability of a preimage attack on l-bit Grøstl-0 compression function
is upper bounded by (q2+q)

2l where q2 + q ≤ 2l. This proof is a more accurate compared to the one
in [2] for the reasons mentioned in Section 3 and the results of both proofs are almost similar. The
second result of Theorem 1 shows that the success probability of a K-target preimage attack on
Grøstl-0 compression function after q queries is upper bounded by K.((q2 +q)/2l), where q2 +q ≤ 2l

by assuming that the permutations P and Q are ideal. Therefore, an adversary must make at least
2l/2/

√
K queries to find a preimage of one of the K targets.

Theorem 1. Consider an l-bit Grøstl-0 compression function based on ideal permutations P and
Q. For a computationally unbounded adversary A making at most q queries to the permutations
P and Q and their inverses, the advantage to find a preimage for Grøstl-0 compression function
is upper bounded by (q2 + q)/2l where q2 + q ≤ 2l. When A is supplied with K-target hash values,
the advantage to find a preimage for one of these hash values is upper bounded by K.((q2 + q)/2l)
where q2 + q ≤ 2l.

Proof:
Let x be the value whose preimage we desire for Grøstl-0 compression function, i.e., we want to

find α, α′ such that x⊕ P (α)⊕ α⊕Q(α′)⊕ α′ = 0.
Suppose that A has made:

1. A total of i1 queries to P , P−1 oracles and stored the input/output pairs (αj , βj = P (αj)) (for
j = 1, ..., i1) for these i1 queries in a list L1.

2. A total of i2 queries to Q, Q−1 oracles and stored the input/output pairs (α′j , β′j = Q(α′j)) (for
j = 1, ..., i2) for these i2 queries in a list L2.

Now we claim that the probability that the next query of A will result in an answer that leads to
a preimage with at most probability of:

pnext ≤
{
i2/(2l − i1) if the next query is to P or P−1

i1/(2l − i2) if the next query is to Q or Q−1

The justification for the first bound is as follows: Suppose that A’s next query is to P at the
value α, where α is not equal to one of the αj ’s already in the list L1. The value returned β = P (α)
is chosen uniformly at random from the set of all 2l − i1 l-bit strings which are not equal to one of
the βj values in L1. In order to give a preimage, the β must be such that for some j ∈ {1, ..., i2},

x⊕ β ⊕ α⊕Q(α′j)⊕ α′j = 0 (2)

However, for each value of j, there is at most one value of β such that Eq.(2). is satisfied. Therefore,
there are at most i2 “good” values of β that will give a preimage, and since β is chosen uniformly
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among 2l − i1 possible values, the probability that β will be “good” is at most i2/(2l − i1), as in
the bound above. A similar argument applies to P−1 queries and a symmetric argument applies for
queries made to Q or Q−1 giving the bound i1/(2l − i2) .

Therefore, we conclude that if A makes i1 + i2 = q− 1 queries in total to all oracles so far, then
its next qth query will provide a preimage with probability pq ≤ q/(2l − q), since both bounds for
pnext above are below this value. Therefore, the probability of a preimage being found in any of q
queries is at most

ppreimage ≤
∑

i=1,...,q

pq ≤
∑

j=1,...,q

j/(2l − j) ≤ q2/(2l − q) ≤ q2 + q/2l (3)

if q2 + q ≤ 2l. This result is almost the same as the one claimed in [2].

Now assume that A is challenged with K = 2sK -target hash values, of which it needs to find a
preimage for one of them. Equivalently, A has to find a preimage to a subset of (l−sK) output bits
of the compression function. Therefore, Equation (2) can be modified to only look at the equality
on these l−sK output bits. Let that l-bit state of Grøstl-0 is viewed as a byte oriented b×b matrix,
that is l = b× b× 8 with matrix indices 1, . . . c where c = b× b. Now Equation (2) can be modified
as follows: Let Z denote the subset of {1, . . . , c} corresponding to the indices of (l− sK)/8 bytes in
the b× b matrix, i.e the size of Z is (l − sK)/8 bytes. For an b× b byte variable x, let (x)Z denote
the restriction of x to the bytes in indices contained in Z. Then the modified Equation (2) is:

(x)Z ⊕ (β)Z ⊕ (α)Z ⊕ (Q(α′j))Z ⊕ (α′j)Z = 0 (4)

This equation determines (β)Z uniquely, once x, α, α′k and Q(α′k) are determined. Since the
values of α and β are still l bits long, for each value of j = 1, ..., i2, there now at most K = 2sK

(instead of at most one) “good” values of β that satisfy Equation 4, hence overall at most i2.K for
all values of j. Therefore, the bounds for pnext, and the final result in Equation 3 gets multiplied
by K. Therefore, the advantage of A to find a preimage for one among K = 2sK target hash values
is at most K.(q2 + q)/2l. �

Remark 1. The security bound derived for Grøstl-0 compression function againstK-target preimage
attacks in Theorem 1 does not depend on the details of P and Q permutations. Hence, it is
reasonable to use this bound also for the generic security of the construction against chosen-K-
target preimage attacks. Therefore, the complexities of chosen-K-target preimage attacks on Grøstl-
0 compression function discussed in Section 4 are compared with respect to the generic bound of
K-target preimage attacks derived in Theorem 1.

B Security bounds for Grøstl-0 hash function against K∗-target preimage
attacks

In Theorem 2 we prove that finding a preimage for one of K∗ hash values of Grøstl-0 hash
function built from K targets of the 2n-bit compression function has a probability less than

q.2n·K
22n−(K+s−1) + (q2+q)·K

22n where q is the number of queries and q2 + q ≤ 22n. The probability
q.2n·K

22n−(K+s−1) is approximately upper bounded by q.K/2n when K + q is much smaller than 22n.
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Therefore, the total success probability is less than q·K
2n + (q2+q)·K

22n . Since the first term dominates
the second term, the adversary has to make at least 2n/K queries to find a preimage of one of
the K∗ target hash values. Since permutations are assumed ideal, this analysis is also applicable to
Grøstl hash function.
Theorem 2. Consider an n-bit Grøstl-0 hash function with the compression function based on
ideal permutations P and Q, and output transformation OT as OT (x)= truncn(P (x)⊕ x). If Y is
a set of the compression function outputs selected independent of P and Q, and Y ∗ is the target
hash value set such that Y ∗ = {OT (x) : x ∈ Y }; the probability of finding a preimage of one of the
elements of Y ∗ is upper bounded by q.2n·K

22n−(K+s−1) + (q2+q)·K
22n , assuming that q2 + q ≤ 22n (Whereas

K∗ and K are respectively the number of elements of the sets Y ∗ and Y ).
Proof:

Let x be the preimage for one of the hash targets in set Y ∗. We can split the results into two
independent cases as follows:
– Case I: x is the preimage of one of the targets in set Y ∗ such that cf(x) ∈ Y .
– Case II: x is the preimage of one of the targets in set Y ∗ such that cf(x) /∈ Y .
The success probability of finding x as the preimage of one of the targets in Y ∗ is P (I) + P (II).
We know from Theorem 1 that P (I) ≤ (q2 + q) ·K/22n. Case II implies that there exists a query
number s to P or to P−1, such that, if (z∗s , P (z∗s )) denotes the input, output of P for the s’th query,
and z1, ..., zK denote the elements of Y , then there exists i ∈ {1, ...,K} such that:

z∗s /∈ Y and Truncn(P (z∗s )⊕ z∗s ) = Truncn(P (zi)⊕ zi) (5)
Let’s consider the case that the s’th query is a query to P (Note that the case when it is

a query to P−1 is similar). Given any fixed values for z∗s , zi and P (zi), there are 2n values of
P (z∗s ) ∈ {0, 1}2n that satisfy Equation (5). Since there are K possible values for i, there are at most
2n ·K "bad" values of P (z∗s ) that satisfy Equation (5) for some i. We call this set of "bad" P (z∗s )
values Bads. Now, conditioned on the already fixed values of P (zr) for r = 1, ...,K and P (z∗r ) for
r = 1, ..., s − 1, the value P (z∗s ) returned by as answer to the adversary’s s’th query z∗s to P is
uniformly random in a set of size 22n − (K + s− 1). Therefore, the probability that P (z∗s ) ∈ Bads

is at most ps = |Bads|
22n−(K+s−1) ≤

2n·K
22n−(K+s−1) . Taking a union over all possible s = 1, ..., q, we obtain

that P (II) ≤
∑

s=1,...,q
ps ≤ q·2n·K

22n−(K+q) . Hence, the success probability of finding preimage of one

of the elements of Y ∗ is P (I) + P (II) which is upper bounded by q.2n·K
22n−(K+s−1) + (q2+q)·K

22n where
q2 + q ≤ 22n.�

Remark 2. In Theorem 2 we applied a more general approach to derive a security bound for finding
a preimage of one of K∗ hash function targets that are computed from K compression function
targets instead of specifically deriving a security bound in the chosen-K∗-target preimage attack
setting. Recall that in the chosen-K∗-target preimage attacks on the hash function, K∗ targets
partly depend on P and Q and computed from K-target compression function values. Since the
set Y of K compression function outputs are selected independent of P and Q, the security bound
derived in Theorem 2 is also applicable to chosen-K∗-target preimage attack on the hash function
where K∗ targets are determined by the K targets of the compression function. As a planned
addition in the full version, we consider proving a more accurate generic complexity with ideal P
and Q for the attacks where the chosen targets partially depend on P and Q.
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C Additional truncated differential trails

 

    

      

   

SH4 

AC4 

SB4 MB4 

SH0 

AC0 

SB0 MB0 

SH1 

AC1 

SB1 MB1 

SH2 

AC2 

SB2 MB2 

SH3 

AC3 

SB3 MB3 

SH5 SB5 MB5 

  

: Uncontrolled value 

: Controlled value 

: Non zero difference 

: Zero difference 

AC5 

Figure 7: Internal differential trail for 28-target pseudo preimage attack on 6-round Grøstl-0
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Figure 8: Extension of the internal differential trail of Figure 7 for chosen-K-target preimage attacks
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Figure 9: Internal differential trail for 216-target preimage attack on 6-round 256-bit Grøstl-0
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Figure 10: Internal differential trail for 2192-target preimage attack on 9-round 256-bit Grøstl-0

19


	(Chosen-multi-target) preimage attacks on reduced Grøstl-0

