
Noisy Chinese Remaindering in the Lee Norm

Igor E. Shparlinski

Department of Computing
Macquarie University, Sydney, NSW 2109, Australia

igor@ics.mq.edu.au

Ron Steinfeld
Department of Computing

Macquarie University, Sydney, NSW 2109, Australia

rons@ics.mq.edu.au

May 5, 2004

Abstract

We use lattice reduction to obtain a polynomial time algorithm
for recovering an integer (up to a small interval) from its residues
modulo sufficiently many primes, when the residues are corrupted by
a small additive noise bounded in the Lee norm. Our results are similar
to those obtained for Hamming norm, but based on rather different
arguments.

1 Introduction

For integers s and m ≥ 1 we denote by bscm the remainder of s on division
by m and by 〈s〉m the smallest (by absolute value) residue of s modulo m,
that is

〈s〉m =

{

bscm if 0 ≤ bscm ≤ m/2
bscm −m if m/2 < bscm < m

Also, for an integer m ≥ 2 we denote by ZZm the residue ring modulo
m. Finally for an integer K ≥ 1 we denote by Z[K] the set integers in

1

the interval [0, K − 1]. We assume that ZZm is represented by the elements
of Z[m] but we do not identify them. In particular, for any a, b ∈ ZZm we
certainly have ab ∈ ZZm while the similar property does not obviously hold
for Z[m].

The Chinese Remainder Code encodes an integer a ∈ Z[K] as the vector

am = (bacm1
, . . . , bacmn

)

of its residues modulo n pairwise relatively prime integers m = (m1, . . . , mn).
Then the Chinese Remainder Theorem (CRT) states that the encoding am

uniquely determines a in Z[K] as soon as m1 · · ·mn ≥ K, and moreover,
using the Euclid algorithm, gives an efficient algorithm for recovering the
unique a from am and m = (m1, . . . , mn).

By choosing the product m1 · · ·mn sufficiently large compared to K one
can hope to use the resulting redundancy in am to recover a even in the
presence of some noise, that is, to use the Chinese Remainder Code as an
error correcting code. In this setting, one is given the vector y = am + e for
some sufficiently ‘small’ noise vector e, and tries to recover a. The precise
meaning of ‘small’ noise can be quantified by defining some norm ‖.‖ on the
space of noise vectors and assuming that the noise vector satisfies ‖e‖ < h
for some noise norm bound h. For some choices of the norm ‖.‖ there exists
a non-zero ‘error-correcting bound’ h∗ such that a ∈ Z[K] is always uniquely
determined from y when h < h∗. For h ≥ h∗ we may not be able to uniquely
determine a from y, but we may still be able to find a small list containing
all possible candidates for a in Z[K], that is, a list of all a ∈ Z[K] such that
‖am − y‖ < h — this is called a List Decoding Problem.

Recently, there has been a series of interesting results (see [3, 8, 11, 32])
on efficient algorithms for list decoding of the Chinese Remainder Code and
other codes as well. However, these results assume a noise vector e bounded
in the Hamming weight norm, that is, e is assumed to have zero coordinates
except for less than h non-zero ones, which are allowed to be arbitrary. In
this paper we consider the case when all n coordinates of the noise vector
e may be non-zero, but are all assumed to be smaller in magnitude than h
— that is, we are assuming a noise vector bounded in the Lee norm; the
precise formulation is presented in Section 3 below. We use lattice reduction
techniques to construct a polynomial-time decoding algorithm for the Chinese
Remainder Code in this setting, and give rigorous conditions under which
the algorithm successfully recovers an interval I ⊆ Z[K] of width at most 2h
consisting of all solutions to our decoding problem.

2

We remark that our algorithm for the Lee norm uses lattice basis re-
duction techniques more directly than the list decoding algorithm for the
Hamming norm [8], which first transforms the problem to an algebraic inter-
polation problem and then applies lattice techniques to the algebraic prob-
lem. Moreover, in these list decoders, the number of solutions (size of the
list) is small , that is, bounded by a polynomial in the length of the input,
so the decoder can explicitly list the solutions in polynomial time. In our
case, the number of solutions is in general exponential in the length of the
input, so we cannot hope to explicitly list them. Instead, we use the fact
that this large set of solutions is compactly representable as an interval, and
our algorithm computes the endpoints of this interval in polynomial time.

The problem which we consider in this paper as well as our approach
has taken some motivation from the hidden number problem introduced by
Boneh and Venkatesan in [4, 5], see also [30] for a survey of several recent
developments and new applications.

Indeed, in the hidden number problem we are given approximations to
the residues of ati, i = 1, . . . , n, modulo a given prime p for randomly se-
lected multipliers t1, . . . , tn ∈ ZZp (and we also know that a ∈ Z[p]). In our
situations, we are given approximations to the residues of a, i = 1, . . . , n,
modulo randomly selected primes pi (and we also know that a ∈ Z[K], for a
given bound K). Surprisingly enough, even though the algorithms and their
analysis have very little in common (except for the general set up of the asso-
ciated lattices), the obtained results are somewhat similar. It is shown in [4]
that about log1/2 p most significant bits for each of the residues ati (mod p)
are enough to recover a. Our algorithm works if we are given about log1/2 K
most significant bits for each of the residues a (mod pi), see the discussion
after the proof of Theorem 3. In fact, we use a slightly stronger lattice re-
duction algorithm of [1] than that used in [4], so we can reduce the number
of bits to o(log1/2 K). Similar improvements applies to the algorithm of [4]
as well, see [20, 30].

Interestingly, in some cases when the noise bound h is very small and the
solutions can be explicitly listed, the list decoding algorithms for the Ham-
ming norm can be modified to solve our Lee norm decoding problem. Such
an algorithm has been presented (in a more general form) by Boneh [3]. This
algorithm explicitly lists all solutions to our decoding problem in polynomial-
time whenever 2h < n/k, where k = log K/ log pmin, and pmin = min1≤i≤n pi.
Our algorithm is able to work with much larger (for example, exponentially
larger) values of h.

3

We also remark that the result of [29] is a Lee norm analogue of Hamming
norm results of [2, 9, 12, 13, 18, 23, 26, 28, 29, 31, 32] on noisy polynomial
reconstruction problem and algebraic geometry codes list decoding.

Finally, several possible cryptographic applications of noisy polynomial
reconstruction have been outlined in [16, 17]. It would be interesting to study
possible cryptographic applications of noisy Chinese remaindering as well.

2 Preliminaries

For a prime p and an integer z we denote Lee norm of z modulo p as

‖z‖L,p = min
k∈ZZ

|z − kp| = |〈z〉p|.

Accordingly, given a basis set of n primes p = (p1, . . . , pn), and a residue
vector z = (z1, . . . , zn) ∈ ZZp1

× . . .ZZpn , we define the associated Lee norm of
z modulo p by

‖z‖L,p = max
1≤i≤n

‖zi‖L,pi
.

Given two vectors x and y in ZZp1
× . . . ZZpn we then define the corresponding

Lee metric as dL,p(x,y) = ‖x−y‖L,p, where the difference x−y is computed
componentwise.

Given a set S, we denote by |S| its cardinality.
We also use ‖x‖ to denote the Euclidean norm of a finitely dimensional

vector x with real components.
As we have mentioned, our algorithm is based on lattice reduction. Here

we recall some definitions and relevant results.
Let {b1, . . . ,bs} be a set of linearly independent vectors in IRs. The set

of vectors

L =

{

s
∑

i=1

nibi | ni ∈ ZZ

}

,

is called an s-dimensional full rank lattice. The set {b1, . . . ,bs} is called a
basis of L, and L is said to be spanned by {b1, . . . ,bs}. We refer to [10] for
the general background on lattices.

A basic lattice problem is the shortest vector problem (SVP): given a
basis of a lattice L in IRs, find a nonzero lattice vector v ∈ L of the smallest
possible Euclidean norm ‖v‖ among all lattice vectors. The shortest vector
problem generally refers to the Euclidean norm, but of course, other norms

4

are possible as well. Although the shortest vector problem appears to be
NP-hard various approximate polynomial time algorithms can be designed,
see [14, 21, 22] for references.

In this paper we actually need to solve a variation of SVP called the
closest vector problem (CVP): given a basis of a lattice L in IRs and a “target”
vector t ∈ IRs, find a lattice vector v which is closest in the Euclidean metric
to t. Fortunately, Kannan [15] has shown how to convert any polynomial-
time approximation algorithm for SVP into a polynomial-time approximation
algorithm for CVP. Namely, given an SVP algorithm which, given a basis of
a lattice of dimension s finds a non-zero lattice vector of length within an
approximation factor γ(s) > 0 (where γ(s) is a non-decreasing function of
s) of the shortest vector in L, the Kannan reduction transforms it into a
polynomial-time CVP algorithm which given a basis of L in IRs and vector
t ∈ IRs finds a lattice vector whose distance from t is within approximation
factor s3/2γ(s)2 of the distance of the closest vector in L to t. For example,
one can combine the reduction [15] from CVP to SVP with the pioneering
SVP algorithm of Lenstra, Lenstra and Lovász [19]. However, here we use [15]
together with the best known approximation polynomial-time result for SVP
given in Corollary 15 of [1] to get the following statement (which is slightly
stronger than that implied by [15] and [19]).

Lemma 1. For any constant τ > 0, there exists a randomised polynomial-
time algorithm which, given an s-dimensional full rank lattice L, and a vector
t ∈ IRs, finds a lattice vector v satisfying with probability exponentially close
to 1 the inequality

‖v − t‖ < 2τs log log s/ log s min {‖z − t‖ : z ∈ L} .

Proof. By taking k = dc log ne in Corollary 15 of [1] where c > 0 is a suf-
ficiently large constant, we obtain a randomised polynomial-time algorithm
which approximates the shortest vector within 20.25τs log log s/ log s for any con-
stant τ > 0. If s is sufficiently large such that

s3/220.5τs log log s/ log s ≤ 2τs log log s/ log s,

the result follows by using this algorithm as a shortest vector approximation
oracle in the Kannan reduction [15] from the closest vector problem to short-
est vector problem. For smaller values of s (that is, fixed s) we can use any
of the exact polynomial-time algorithms of [1, 15] to find the closest vector
in fixed-dimension lattices. ut

5

The best deterministic polynomial-time algorithm known for the SVP
problem, which can be also used in Lemma 1, has a slightly larger approxi-
mation factor 2τs log2 log s/ log s, see [27].

3 Decoding Problem

Let P` be a set of primes which exceed 2` for some integer length parameter
` ≥ 1.

Choose a basis of n distinct primes p = (p1, . . . , pn) ∈ Pn
` . Fix the

message space as Z[K]. The pair (p, K) determines a Chinese Remainder
Code as follows: an integer a ∈ Z[K] is encoded as its residue vector ap.

We consider the following decoding problem for the above Chinese Re-
mainder Code (p, K). We are given the code parameters (p, K) and a vector

y = (y1, . . . , yn) ∈ ZZp1
× . . .ZZpn

defined as y = ap + e, where e = (e1, . . . , en) ∈ ZZp1
× . . .ZZpn is an additive

noise vector of bounded Lee norm relative to prime basis p, that is, ‖e‖L,p <
h for some h ∈ IN. Our goal is to find an interval I = [A, B] ⊆ Z[K] of a
small length containing all the integers b ∈ Z[K] such that

dL,p(bp,y) < h. (1)

Note that by construction of the given vector y, we know that an interval
in Z[K] of width less than 2h consisting of integers b satisfying (1) always
exists. Namely, the interval

I(a, h) = [αI , βI], (2)

where
αI = max(0, a− (h− 1)− min

1≤i≤n
〈a− yi〉pi

)

and
βI = min(K − 1, a + (h− 1)− max

1≤i≤n
〈a− yi〉pi

),

which contains at least one integer a, is such an interval. The interval I(a, h)
can contain up to 2h− 1 integers. Hence our problem has multiple solutions
in general and the unique recovery of a is not possible. However, in the proof

6

of Theorem 3 we show that under certain conditions the interval I(a, h) (of
length at most 2h) is in fact the set of all solutions to our problem in Z[K].

We note that there exist instances of our decoding problem when the
interval I(a, h) consists of exactly one integer a. Namely, this is readily seen
to be the case when the error vector e = (e1, . . . , en) satisfies ei = h− 1 and
ej = −(h − 1) for some coordinate positions i and j in {1, . . . , n} such that
h− 1 < bpi/2c and h− 1 < bpj/2c.

4 Localization of Solutions

For a given CR code (K,p) and a given vector y approximating the residue-
vector of integer a ∈ Z[K], our problem is to find all solution integers in
Z[K] whose residue-vectors are “close” (within a distance h) to y in the Lee
Metric (namely are in the ball Bh(y) ⊆ ZZ

n consisting of all vectors within
distance h of y). We know that the residue-vector of the integer a ∈ Z[K]
is in the ball Bh(y), and so are the residue-vectors of all integers in some
neighbourhood of a, namely the interval I(a, h) of Section 3 — all these
solutions differ from a by less than h. The question we address here is the
existence of solution integers outside the vicinity interval [a− h, a + h] of a:
are there any integers in Z[K]\[a−h, a+h] whose residue-vectors are in the
ball Bh(y)? We show that there are none, except for some exceptional “bad”
choices of the code, namely those for which the prime base p is in some “bad
subset” of Pn

` denoted B`,n(h, K). This means that as long as p is not ”bad”
in the sense that p /∈ B`,n(h, K), any residue-vector in the ball Bh(y) must
be the residue-vector of an integer in [a − h, a + h]. We actually use this
result in two ways in analysing our decoding algorithm in Section 5:

1. Uniqueness of Solution: We assume that the code is not “bad” (in
the sense p /∈ B`,n(h, K)), and as explained above under this condition
the vicinity interval [a − h, a + h] contains all integer solutions to our
problem (note that in our proof we show with an additional assumption
that actually the interval I(a, h) ⊆ [a−h, a + h] defined in Section 3 is
the set of all solutions to our problem in Z[K]).

2. Correctness of Efficient Algorithm: To make our decoding algorithm
for finding the interval I(a, h) efficient (poly-time), we make use of an
efficient but approximate (non-exact) lattice algorithm for the Closest
Vector Problem (CVP) to compute an integer c “close” to the vicinity

7

interval [a − h, a + h]. Ideally, we would like that c actually falls in
[a − h, a + h], which by the uniqueness result above is the case if the
code is not “bad” in the sense p /∈ B`,n(h, K), and if we can guarantee
that c < K and the residue vector of c is within distance h of y (namely
in the ball Bh(y)). However, because of the approximate nature of the
CVP algorithm, we are only able to guarantee instead that c < γ ·K
and that the residue-vector of c is within distance γ ·h of y (namely in
the ball Bγh(y)), for some approximation constant γ > 1. By applying
the above uniqueness result with K replaced by γ ·K and h replaced
by γ · h, we are able to conclude that if the code is not “bad” in the
stronger sense p /∈ B`,n(γ · h, γ ·K), then the integer c is in the interval
[a−γ ·h, a+γ ·h] and hence is “close” to the desired [a−h, a+h] interval
(note that our actual proof is slightly more complicated than the above
description because of the technical fact that the CVP algorithm may
output a negative c with |c| < K).

Summarising, we show that our algorithm succeeds to compute I(a, h)
under the assumption that p is not in a “bad” subset B`,n(H, M) of Pn

` , for
some integers H and M . The purpose of the following lemma is to upper
bound the size of B`,n(H, M), so that we can upper bound the probability
that our algorithm fails over a random choice of p.

To bound the size of B`,n(H, M), we note that if p ∈ B`,n(H, M), then
there exist two integers a and b in Z[M] whose residue-vectors are both at
distance less than H from a given vector y (that is, dL,p(ap,y) < H and
dL,p(bp,y) < H) but b differs from a by at least 2H (that is, |b− a| ≥ 2H).
Then by the triangle inequality and the linearity of the encoding function
x→ xp it follows that the integer z = |b−a| in Z[M] is of magnitude at least
2H but has residue-vector of Lee norm less than 2H . Therefore B`,n(H, M)
is a subset of E`,n(2H, M), which we define as the set of “bad” p for which
there exists an integer z in Z[M] which exceeds 2H but its residue-vector has
Lee norm less than 2H . We have reduced the problem of bounding the size of
B`,n(H, M) to the simpler problem of bounding the size of E`,n(2H, M), which
we do directly in the following lemma. It may be of independent interest.

Lemma 2. Fix H ∈ Z[M]. There exists a set E`,n(H, M) of cardinality

|E`,n(H, M)| ≤M

(

2H log 2M

`

)n

8

such that for p = (p1, . . . , pn) ∈ Pn
` \E`,n(H, M) there is no integer z ∈

[H, M − 1] with ‖zp‖L,p < H.

Proof. Suppose that p = (p1, . . . , pn) ∈ P
n
` is such that there exists z ∈ ZZ

such that
H ≤ z < M and ‖zp‖L,p < H.

Hence, for each i ∈ {1, . . . , n}, there exists δi ∈ ZZ such |δi| < H and pi

divides z + δi. It follows that pi ∈ Sz for all i ∈ {1, ..., n}, where Sz is the set
of prime divisors of all integers in the interval I(z, H) = [z−H+1, z+H−1].
Observe that I(z, H) contains less than 2H integers, all upper bounded by
M + H < 2M , and we also know that 0 /∈ I(z, H). Hence each integer
in I(z, H) is divisible by at most `−1 log 2M primes p ∈ P`, and we have
|Sz| < 2H`−1 log 2M . So for each possible choice of z ∈ [H, M −1], there are
less than (2H`−1 log 2M)n “bad” choices for p = (p1, . . . , pn) ∈ Pn

` .
Since there are less than M possible values for z ∈ [H, M − 1], we get

desired results. ut

Certainly the result of Lemma 2 depends on our upper bounds for the
number of prime divisors of the integers in the interval I(z, H). For exam-
ple, for very small values of ` the results can slightly be improved if one
notices that in fact the number of prime divisors ν(m) of an integer m ≥ 2 is
O(log m/ log(1 + log m)) (because ν(m)! ≤ m). We remark that estimation
of the total number of prime divisors of the integers in a given interval is
classical number theoretic problem [7, 24]. Thus, for values of H and M in
certain ranges much stronger bounds can be obtained, which however do not
improve our final results.

5 Algorithm

We are now ready to describe our main Algorithm LeeDecode which computes
the endpoints of the solution interval I(a, h) defined in (2) in time polynomial
in log p1, . . . , log pn, log K and n. The algorithm depends on K, h, the choice
of base p = (p1, . . . , pn) ∈ Pn, the approximating vector y = (y1, . . . , yn) ∈
ZZ

n and a certain real parameter ρ > 0 which controls the cardinality of
the set of bases for which the algorithm may produce a wrong result, see
Theorem 3.

To aid the understanding of our algorithm and proof we first give a rough
outline of the steps of the algorithm. Given the code parameters (K,p),

9

the approximation vector y = ap + e and the error Lee norm bound h,
the algorithm proceeds as follows to find endpoints of the solution interval
I(a, h) = [α∗, β∗] ⊆ [a−h, a+h] of all integers b ∈ Z[K] with dL,p(bp,y) < h.

The algorithm is divided in two stages.
The first stage (Steps 1 to 4) is lattice-based and its purpose is to compute

an approximation α ∈ ZZ (from below) to the lower end-point α∗ of I(a, h). If
the first stage is successful, then α is smaller than α∗ by an error not exceeding
(γ + 1)h, where γ = (n + 1)1/2 · 2ρn log log(n+1)/ log(n+1) is the approximation
factor of the CVP lattice algorithm (with an additional polynomial factor
(n + 1)1/2).

The second stage (Step 5) consists of a loop which maintains an integer
(initialized to α) and increments it by some positive amount at each iteration.
The purpose of this loop is to remove the error of up to (γ + 1)h of the
first stage by stepping towards the smallest integer greater than α whose
residue-vector is within distance h of y, namely α∗, at which point the loop
terminates. Then Step 6 computes the other endpoint β∗ of I(a, h), which
completes the determination of I(a, h).

We now give some insight into the operation of the two stages and our
analysis of them in the proof of Theorem 3.

The first stage works as follows. First we construct a basis for a lattice
L in ZZ

n+1 (see matrix in (3)). The lattice L is constructed so that for each
integer z ∈ ZZ there is a corresponding lattice vector of the form (zp, (z/K)h)
having its first n coordinates equal to the residue-vector zp of z. Therefore
the (unknown) lattice vectors corresponding to the solution integers in I(a, h)
are close to the (known) vector ȳ = (y, 0) having its first n coordinates equal
to the target vector y (within Lee distance h). So one may hope to recover an
integer “close” to I(a, h) by finding a corresponding lattice vector “close” to
the known vector ȳ. Accordingly, the first stage runs the CVP algorithm with
approximation factor γ on the lattice L with target vector ȳ and recovers an
integer c less than γK such that the residue-vector of c is within distance
γ · h of y. Then, assuming that p is not in a certain ”bad” set in the sense
explained in Section 4, we can apply the uniqueness Lemma 2 to conclude
that indeed c is “close” to I(a, h) within error at most (γ + 1)h, as required.
The bound on the size of the “bad” set of vectors p given by Lemma 2
therefore gives us a bound on the number of vectors p for which the first
stage of our algorithm may fail, as stated in Theorem 3 below.

The loop in the second stage (Step 5) works as follows. It maintains an
integer variable whose value at the start of the jth iteration is denoted by

10

αj and is initialized to α0 = α. Recall that if the first stage is successful
then α0 = α approximates the desired α∗ from below by an error less than
(γ + 1)h. At the jth iteration, the loop checks if αj has reached the desired
α∗ (by checking if the Lee distance between the residue vector of αj and y is
less than h). If so, the goal is achieved and the loop terminates. If not, it is
because at least one of the residues of αj , say the ith one 〈αj〉pi

, differs from
the corresponding residue yi of y by more than h. In that case, the loop
increments αj+1 to the smallest integer greater than αj such that the ith
residue difference 〈αj+1 − yi〉pi

is restored to be less than h in magnitude—
this is achieved by the “if” statements 5a and 5b. It is easy to see that this
implies that αj+1 − yi ≡ −(h − 1) (mod pi). For all the ‘skipped’ integers
between αj and αj+1, the ith residue difference with yi modulo pi exceeds h
in magnitude, so we are certain that none of these integers can be α∗. There
is a potential danger that the loop can run too many times before finding
α∗ (that is, not a polynomial in n and log pi). However, assuming that all
the primes in p exceed 2(γ + 1)h (note the restriction ` ≥ 2(γ + 1)h in the
statement of Theorem 3), the loop runs for at most n iterations and hence
its running time is polynomial in n. The reason is that if the loop would
run for even n + 1 iterations, this would already imply (see below) that it
‘skipped over’ α∗, which is impossible because as explained above the loop
cannot ‘skip over’ α∗. This implication arises because if the loop runs for
n+1 iterations then αn+1−yi ≡ αk−yi ≡ −(h−1) (mod pi) for some i which
means we have already moved up by more than |αn+1−α0| ≥ pi ≥ 2(γ +1)h
from the original approximation α, which was guaranteed to be smaller than
α∗ by at most (γ + 1)h.

Algorithm LeeDecode(p = (p1, . . . , pn),y = (y1, . . . , yn), K, h, ρ)

1. Build the following (n+1)× (n+1) matrix B, whose rows form a basis
for a full-rank lattice L in Qn+1:

B =

p1 0 . . . 0 0
0 p2 . . . 0 0
...

...
. . .

...
...

0 0 . . . pn 0
1 1 . . . 1 h/K

. (3)

2. Define y = (y1, . . . , yn, 0) ∈ ZZ
n+1.

11

3. Run the algorithm of Lemma 1 for lattice L given by B and the
target vector y, with the precision parameter τ = ρ/2. Denote by
c = (c1, . . . , cn, cn+1) ∈ Qn+1 the output vector returned by the algo-
rithm, which approximates the closest vector to y in the lattice L.

4. Compute c = (K/h)cn+1, and

α = max {0, bc− (γ + 1)hc} ,

where γ = (n + 1)1/2 · 2ρn log log(n+1)/ log(n+1).

5. While dL,p(αp,y) ≥ h repeat

(a) If there exists i ∈ {1, . . . , n} such that 〈α− yi〉pi
≥ h, then set

α← α + pi − (h− 1)− 〈α− yi〉pi
for the smallest such i.

(b) Else if there exists i ∈ {1, . . . , n} such that 〈α− yi〉pi
≤ −h, then

set α← α− (h− 1)− 〈α− yi〉pi
for the smallest such i.

6. Compute

β = min

{

K − 1, α + (h− 1)− max
i=1,...,n

〈α− yi〉pi

}

and output the interval I = [α, β].

In the following statement we give sufficient conditions under which the
interval I output by Algorithm LeeDecode actually consists of all solutions
to our decoding problem.

Theorem 3. Fix natural numbers K, `, h, n and real ρ > 0 such that n ≥ 2
and 2` ≥ 2(γ + 1)h, where:

γ = (n + 1)1/2 · 2ρn log log(n+1)/ log(n+1).

There exists a “bad” prime base set F`,n(h, K, ρ) ⊆ Pn
` of cardinality bounded

as

|F`,n(h, K, ρ)| ≤ (γ + 1)K

(

2(γ + 1)h log (2(γ + 1)K)

`

)n

,

such that for any prime base p which is not “bad”, that is, p ∈ Pn
` \F`,n(h, K, ρ)

and any approximation y ∈ ZZp1
× . . .ZZpn to a ∈ Z[K] with dL,p(ap,y) < h

the Algorithm LeeDecode runs in time polynomially bounded in log p1, . . . , log pn,

12

log K and n and, with probability exponentially close to 1, outputs an inter-
val I of length |I| ≤ 2h and such that I consists of all b ∈ Z[K] satisfying
dL,p(bp,y) < h (namely I coincides precisely with the interval I(a, h) defined
in (2)).

Proof. As explained informally above, we show that the algorithm succeeds
when the prime base is not in some “bad” set F`,n(h, K, ρ) ⊆ Pn

` . Let us
define this “bad” set in terms of the “bad” set E`,n(H, M) of Lemma 2, as
follows: F`,n(h, K, ρ) = E`,n((γ + 1)h, (γ + 1)K). Thus the stated upper
bound on |F`,n(h, K, ρ)| is immediate from Lemma 2, and it remains to show
that the algorithm indeed succeeds when p is not “bad” (that is, when p ∈
Pn

` \F`,n(h, K, ρ)). Note that we use the ‘uniqueness’ statement of Lemma 2
that if p is not “bad’ then any integer z in Z[(γ +1)K] whose residue-vector
has Lee norm ‖zp‖L,p less than (γ + 1)h must be an integer smaller than
(γ + 1)h.

Therefore, for the rest of the proof we assume that p is not “bad’ (p ∈
Pn

` \F`,n(h, K, ρ)). First we show that this implies that the set J of solution
integers to our problem forms an interval in Z[K]. Since we have already
exhibited in Section 3 an interval of solutions I(a, h) ⊆ [a−h, a+h], it follows
that J = I(a, h). Then we show that the interval I output by our algorithm
coincides with the solution interval J = I(a, h).

Suppose that J is not an interval. Then, by existence of a solution, there
must exist two distinct solutions a and b in Z[K], thus

dL,p(ap,y) < h and dL,p(bp,y) < h, (4)

with b > a + 1 and such that

dL,p(cp,y) ≥ h (5)

for all c ∈ [a + 1, b − 1]. Applying (5) to c = a + 1 we see that there exists
i ∈ {1, . . . , n} such that 〈a− yi〉pi

= h − 1, hence ‖c− yi‖L,pi
≥ h and thus

also dL,p(cp,y) ≥ h for all c ∈ [a + 1, a + 1 + (pi − 2h)]. Therefore we have
that b > a + 1 + (pi− 2h), so z = b− a satisfies z ∈ [pi − 2h, K − 1]. On the
other hand, using (4) and the triangle inequality, we derive the upper bound
‖zp‖L,p < 2h ≤ (γ + 1)h, since γ ≥ 1. So the existence of z contradicts the
assumption p ∈ Pn

` \F`,n(h, K, ρ), because

pi − 2h > 2` − 2h ≥ 2(γ + 1)h− 2h ≥ (γ + 1)h

13

and K ≤ (γ + 1)K using γ ≥ 1. Hence J is an interval, as required.
Now we show that Algorithm LeeDecode finds the interval J , that is, that

I = J .
First observe that from the assumption on the existence of at least one

solution a ∈ Z[K] satisfying ‖e‖L,p = ‖y − ap‖L,p < h, we know that there
exist modular reduction coefficients ki ∈ ZZ such that |a−yi−kipi| < h for all
i ∈ {1, . . . , n}. Consequently, the vector u = (a− k1p1, . . . , a− knpn, ha/K),
which is clearly in the lattice L, satisfies

‖u− y‖ = ‖(a− k1p1 − y1, . . . , a− knpn − yn, ha/K)‖ < (n + 1)1/2h,

(because ha/K < h). So

min
v∈L
‖v − y‖ < (n + 1)1/2h,

and from Lemma 1 the vector c, returned by the CVP algorithm of Lemma 1
in Step 3 of Algorithm LeeDecode satisfies, with probability exponentially
close to 1, the inequality

‖c− y‖ < 2τ(n+1) log log(n+1)/ log(n+1)(n + 1)1/2h < γh,

since τ(n + 1) < 2τn = ρn for n ≥ 2.
Since c ∈ L, it has the form c = (c + t1p1, . . . , c + tnpn, ch/K) for some

t1, . . . , tn and c in ZZ, so the above bound on ‖c− y‖ implies |c + tipi− yi| <
γh for all i ∈ {1, . . . , n} and |ch/K| < γh. Hence the integer c (which is
computed in Step 4 of Algorithm LeeDecode using c = (K/h)cn+1) has a
residue vector cp satisfying dL,p(cp,y) < γh while |c| < γK. So for any
solution b ∈ Z[K] satisfying dL,p(bp,y) < h, if we define z = |c− b| then we
get from the triangle inequality, that 0 ≤ z < (γ + 1)K and

‖zp‖L,p = ‖cp − bp‖L,p ≤ dL,p(cp,y) + dL,p(bp,y) < (γ + 1)h.

But since p ∈ Pn
` \F`,n(h, K, ρ), we conclude from Lemma 2 that z = |c−b| <

(γ + 1)h for any solution b ∈ Z[K]. This shows that if p ∈ Pn
` \F`,n(h, K, ρ)

then the first stage of our algorithm (Steps 1 to 4) succeeds to compute an
integer c which approximates the lower endpoint α∗ of the desired solution
interval J (from below) with an error at most (γ + 1)h.

To proceed further we first need to establish some properties of the loop in
the second stage the algorithm LeeDecode(Step 5), as follows. Let α0 denote

14

the value of α before entering the loop, and for k ≥ 1, let αk denote the
value of α at the end of the kth iteration of the loop. Let J = [α∗, β∗] be the
desired interval of all b ∈ Z[K] with dL,p(bp,y) < h. We show by induction
that for all k ≥ 1, αk−1 ≤ α∗, αk > αk−1 and there exists ik ∈ {1, . . . , n}
such that 〈αk − yik〉pik

= −(h − 1). For the basis case k = 1, we know

by definition that α0 = max(0, bc − (γ + 1)hc), and using the above bound
α∗ > c − (γ + 1)h and α∗ ≥ 0 we get α0 ≤ α∗. For the induction step,
we suppose for some k ≥ 1 that αk−1 ≤ α∗. We assume that αk−1 satisfies
the ‘while’ loop condition dL,p((αk−1)p,y) ≥ h since otherwise αk does not
exist. So there are two possible cases: either there exists i ∈ {1, . . . , n} such
that 〈αk−1 − yi〉pi

≥ h (we let ik denote the smallest such i), or else there
must exist i ∈ {1, . . . , n} such that 〈αk−1 − yi〉pi

≤ −h (we let ik denote the
smallest such i). We consider these two cases in turn. In the first case, the
‘if’ condition in Step 5a of LeeDecode is satisfied, and consequently

αk = αk−1 + pik − (h− 1)− 〈αk−1 − yik〉pik
.

Using pik > 2` ≥ 2(γ + 1)h and 〈αk−1 − yik〉pik
≤ pik/2 we have pik − (h −

1)− 〈αk−1 − yik〉pik
> 0 and hence αk > αk−1. Also,

〈αk − yik〉pik
=

〈

αk−1 − yik + pik − (h− 1)− 〈αk−1 − yik〉pik

〉

pik

= −(h− 1),

while there are no solutions in [αk−1, αk − 1] because for any integer a ∈
[αk−1, αk − 1] either

h ≤ 〈αk−1 − yik〉pik
≤ 〈a− yik〉pik

≤ pik/2

or
−pik/2 < 〈a− yik〉pik

≤ −h.

Using the induction hypothesis αk−1 ≤ α∗ we thus obtain αk ≤ α∗, as re-
quired. It remains to consider the second case, when the ‘if’ condition in
Step 5b of LeeDecode is satisfied. In this case

αk = αk−1 − (h− 1)− 〈αk−1 − yik〉pik
.

Using 〈αk−1 − yik〉pik
≤ −h we immediately have αk > αk−1. Also,

〈αk − yik〉pik
=

〈

αk−1 − yik − (h− 1)− 〈αk−1 − yik〉pik

〉

pik

= −(h− 1),

15

while there are no solutions in [αk−1, αk − 1] because

〈αk−1 − yik〉pik
≤ 〈a− yik〉pik

≤ −h

for all a ∈ [αk−1, αk−1], and again using the induction hypothesis αk−1 ≤ α∗

we get αk ≤ α∗, as required.
We are now ready to show that the interval I = [α, β] output by Algo-

rithm LeeDecode coincides with the desired interval J = [α∗, β∗]. Suppose
first that the loop in Step 5 terminates after N iterations. Using the property
αk ≤ α∗ for all k we have in particular that αN ≤ α∗, while αN ≥ α∗ by the
loop termination condition. So α = αN = α∗. The upper end point β∗ of J
is the smallest integer greater or equal to α∗ such that 〈β∗ − yi〉pi

= h − 1
for some i ∈ {1, . . . , n}, (or β∗ = K − 1), namely

β∗ = min

{

K − 1, α∗ + (h− 1)− max
i=1,...,n

〈α∗ − yi〉pi

}

= β,

as defined in Step 6 of Algorithm LeeDecode. This shows that LeeDecode

outputs J if the loop terminates. We now claim that the loop terminates after
at most n iterations. Suppose, towards a contradiction, that the loop runs
for n+1 or more iterations. Recall that for all k ≥ 1, 〈αk − yik〉pik

= −(h−1)

for some ik ∈ {1, . . . , n}, but αk > αi when k > i because αk > αk−1 for
all k ≥ 1. By the Pigeonhole Principle, there must exist k and m such that
1 ≤ k < m ≤ n + 1 and ik = im = i for some i ∈ {1, . . . , n}. This means
〈αm − yi〉pi

= 〈αk − yi〉pi
= −(h − 1) so αm ≡ αk (mod pi) but αm > αk.

Hence αm − αk ≥ pi ≥ 2` + 1 ≥ 2(γ + 1)h + 1, so, using αk ≥ α0 and
α0 = max(0, bc− (γ + 1)hc), we have that

αm ≥ αk + 2(γ + 1)h + 1 ≥ α0 + 2(γ + 1)h + 1 > c + (γ + 1)h.

But since αm ≤ α∗, there are no solutions smaller than αm, which contradicts
the existence of a solution, using the earlier result that |c − b| < (γ + 1)h
for any solution b. This proves that the loop terminates after at most n
iterations.

The running time claim is readily obtained from Lemma 1 and the fact
that all other steps in the algorithm take time polynomial in n and the bit
length of the input parameters K and p1, . . . , pn. ut

It is natural to assume that the primes p1, . . . , pn are randomly chosen
from the set S` of primes in the interval [2`, 2`+1]. It is known [25] that a

16

lower bound on the size of this set is

|S`| > 0.6
2`

` ln 2
>

2`−1

`

for all ` ≥ 5. Plugging this in the probability bound of Theorem 3 and
simplifying, we find that our Algorithm LeeDecode succeeds with probability
at least 1 − δ over the random choice of (p1, . . . , pn) ∈ S

n
` in recovering an

interval containing all solutions to the decoding problem whenever

(γ + 1)K

(

2(γ + 1)h log (2(γ + 1)K)

`

)n

≤ δ

(

2`−1

`

)n

or
2`−1 ≥

(

δ−1(γ + 1)K
)1/n

2(γ + 1)h log (2(γ + 1)K) .

This condition can be satisfied with some

` =
log δ−1K

n
+ log h + log log K + O

(

n log log(n + 1)

log(n + 1)

)

.

For example, if we set log h = ` −
⌊

`ϑh
⌋

, n =
⌊

3`ϑn
⌋

, log K = `1+ϑK , and
δ = 1/K for some constants ϑh, ϑn and ϑK (this means that we are given only
approximately `ϑh most-significant bits of each residue, which has length at
least ` bits). Then, fixing ϑK > 0, we can satisfy the above sufficient success
condition for sufficiently large ` with ϑh = 1/2 + ϑK/2, achieved by setting

ϑn = 1/2 + ϑK/2. One of these possible choices could be h = 2`−b`3/4c

(which means that we are given very rough approximations), n =
⌊

3`3/4
⌋

,

K =
⌊

2l3/2

⌋

and δ = K−1. This means that for each `-bit prime pi we are

given about
log (pi/h) ∼ l3/4 ∼ log1/2 K

most significant bits of a (mod pi), i = 1, . . . , n.

References

[1] M. Ajtai, R. Kumar and D. Sivakumar, ‘A sieve algorithm for the
shortest lattice vector problem’, Proc. 33rd ACM Symp. on Theory of
Comput., Crete, Greece, July 6-8, 2001, 601–610.

17

[2] S. Ar, R. Lipton, R. Rubinfeld and M. Sudan, ‘Reconstructing alge-
braic functions from erroneous data’, SIAM J. Comput., 28 (1999),
487–510.

[3] D. Boneh, ‘Finding smooth integers in short intervals using CRT de-
coding’, J. Comp. and Syst. Sci., 64 (2002), 768–784.

[4] D. Boneh and R. Venkatesan, ‘Hardness of computing the most signif-
icant bits of secret keys in Diffie–Hellman and related schemes’, Lect.
Notes in Comp. Sci., Springer-Verlag, Berlin, 1109 (1996), 129–142.

[5] D. Boneh and R. Venkatesan, ‘Rounding in lattices and its crypto-
graphic applications’, Proc. 8th Annual ACM-SIAM Symp. on Discr.
Algorithms, ACM, 1997, 675–681.

[6] C. Ding, D. Pei and A. Salomaa, Chinese Remainder Theorem: Ap-
plications in computing, coding, cryptography , World Scientific, Sin-
gapore, 1996.

[7] P. Erdös and J. Turk, ‘Products of integers in short intervals’, Acta
Arith., 44 (1984), 147–174.

[8] O. Goldreich, D. Ron, and M. Sudan, ‘Chinese remaindering with
errors’, IEEE Transactions on Information Theory , 46 (July 2000),
1330–1338.

[9] O. Goldreich, R. Rubinfeld and M. Sudan, ‘Learning polynomials with
queries: the highly noisy case’, Electronic Colloq. on Comp. Compl.,
Univ. of Trier, TR1998-060 (1998), 1–34.

[10] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and
combinatorial optimization, Springer-Verlag, Berlin, 1993.

[11] V. Guruswami, A. Sahai and M. Sudan, ‘“Soft-decision” decoding of
Chinese remainder codes’, Proc. 41st IEEE Symp. on Found. of Comp.
Sci., Redondo Beach, California, 2000, 159–168.

[12] V. Guruswami and M. Sudan, ‘Improved decoding of Reed-Solomon
codes and algebraic-geometric codes’, IEEE Transactions on Infor-
mation Theory , 45 (1999), 1757–1767.

18

[13] T. Hoholdt and R. R. Nielsen, ‘Decoding Hermitian codes with Su-
dan’s algorithm’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin,
1719 (1999), 260–270.

[14] A. Joux and J. Stern, ‘Lattice reduction: A toolbox for the cryptan-
alyst’, J. Cryptology , 11 (1998), 161–185.

[15] R. Kannan, ‘Algorithmic geometry of numbers’, Annual Review of
Comp. Sci., 2 (1987), 231–267.

[16] A. Kiayias and M. Yung, ‘Secure games with polynomial expressions’,
Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2076 (2001), 939–
950.

[17] A. Kiayias and M. Yung, ‘Polynomial reconstruction based cryptogra-
phy’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2259 (2001),
129–133.

[18] M. Kiwi, F. Magniez and M. Santha, ‘Exact and approximate test-
ing/correcting of algebraic functions: A survey’, Lect. Notes in Comp.
Sci., Springer-Verlag, Berlin, 2292 (2002), 30–83.

[19] A. K. Lenstra, H. W. Lenstra and L. Lovász, ‘Factoring polynomials
with rational coefficients’, Mathematische Annalen, 261 (1982), 515–
534.

[20] P. Q. Nguyen and I. E. Shparlinski, ‘The insecurity of the digital
signature algorithm with partially known nonces’, J. Cryptology , 15

(2002), 151–176.

[21] P. Q. Nguyen and J. Stern, ‘Lattice reduction in cryptology: An
update’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1838

(2000), 85–112.

[22] P. Q. Nguyen and J. Stern, ‘The two faces of lattices in cryptology’,
Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2146 (2001), 146–
180.

[23] R. R. Nielsen, ‘A class of Sudan-decodable codes’, IEEE Transactions
on Information Theory , 46 (2000), 1564–1572.

19

[24] K. Ramachandra, T. N. Shorey and R. Tijdeman, ‘On Grimm’s prob-
lem relating to factorisation of a block of consecutive integers’, J.
Reine Angew. Math., 273 (1975), 109–124.

[25] J.B. Rosser and L. Schoenfeld, ‘Approximate Formulas for some func-
tions of Prime Numbers’, Illinois. J. Math., 6 (1962), 64–94.

[26] S. Sakata, ‘On fast interpolation method for Guruswami-Sudan list
decoding of one-point algebraic-geometry codes’, Lect. Notes in Comp.
Sci., Springer-Verlag, Berlin, 2227 (2001), 36–45.

[27] C. P. Schnorr, ‘A hierarchy of polynomial time basis reduction algo-
rithms’, Theor. Comp. Sci., 53 (1987), 201–224.

[28] M.A. Shokrollahi and H. Wasserman, ‘List decoding of algebraic-
geometric codes, IEEE Transactions on Information Theory , 45

(1999), 432–437.

[29] I. E. Shparlinski, ‘Sparse polynomial approximation in finite fields’,
Proc. 33rd ACM Symp. on Theory of Comput., Crete, Greece, July
6-8, 2001, 209–215.

[30] I. E. Shparlinski, ‘Playing “Hide-and-Seek” in finite fields: Hidden
number problem and its applications’, Proc. 7th Spanish Meeting on
Cryptology and Information Security, Vol.1 , Univ. of Oviedo, 2002,
49–72.

[31] M. Sudan, ‘Decoding of Reed Solomon codes beyond the error-
correction bound’, J. Complexity , 13 (1997), 180–193.

[32] M. Sudan, ‘Ideal error-correcting codes: Unifying algebraic and
number-theoretic algorithms’, Lect. Notes in Comp. Sci., Springer-
Verlag, Berlin, 2227 (2001), 36–45.

20

