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Abstract

The thermally pulsing asymptotic giant branch (TP-AGB) is a computa-

tionally demanding phase of evolution. This work presents a set of models

that have been computed fully simultaneously – i.e. by solving the equations

of stellar structure, nuclear burning and mixing together for each iteration

of each timestep. It details the development of a viscous mesh technique in

order to deal with some of the numerical problems that occur during the

TP-AGB.

Models have been created at solar metallicity (Z = 0.02) and metallici-

ties appropriate to the Large and Small Magellanic Clouds (Z = 0.008 and

Z = 0.004). These are evolved without mass loss. The solar metallicity

models display important differences from those computed using other codes

including deeper third dredge-up. The Large and Small Magellanic Cloud

models are used to investigate the problem of the carbon star luminosity

function.

TP-AGB stars are also important sites for stellar nucleosynthesis. In or-

der to investigate nucleosynthesis on the TP-AGB a set of subroutines have

been developed to track the evolution of isotopes from deuterium to sulphur

plus important iron group elements. These have been used to calculate the

evolution of minor isotopes in TP-AGB stars of 1.5, 3 and 5 M� at metal-

licities of Z = 0.02, 0.008 and 0.004 evolved with mass loss. The results

of these calculations are compared to known constraints from spectroscopic

observations and measurements of pre-solar grains.

At the end of the TP-AGB the star makes the transition to a white dwarf.

In the course of trying to calculate this evolution it was found that numerical

diffusion could substantially affect the evolution and that this phase has to

be treated with great care.
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Chapter 1

Introduction

The asymptotic giant branch (AGB) is a fascinating and complex phase of

stellar evolution that some stars pass through towards the end of their lives.

An unstable arrangement of two thin burning shells, one of helium and one

of hydrogen, leads to interesting periodic behaviour and rich nucleosynthesis,

making these objects a valuable area of study.

1.1 Stellar Evolution

This work is concerned with stars of between 1 and 8 M�. Low-mass stars

shall be defined as those stars less massive than 4 M� while those of be-

tween 4 and 8 M� will be refered to as intermediate-mass stars. The def-

inition is somewhat arbitrary but is convenient and has been chosen so

that intermediate-mass stars undergo hot-bottom burning (see below, sec-

tion 1.2.2) whilst they are on the thermally pulsing asymptotic giant branch;

low-mass stars do not experience this process.

1.1.1 The Main-sequence

Stars form out of clouds of gas in a process that is not well understood. These

clouds of gas are about three-quarters hydrogen and one-quarter helium along

with smaller quantities of carbon, nitrogen, oxygen and heavier elements.

From the point of view of stellar evolution, we may begin our studies from

what is referred to as the pre-main sequence. Here we envisage a cloud of

gas that has already begun to collapse under its own gravity, but is not hot

1



Chapter 1: Introduction 2

enough for nuclear reactions to take place. As the cloud of gas contracts

under its own weight, its core begins to heat up until its central temperature

has reached around 107 K. At this point proton-burning reactions begin to

occur. This is the beginning of the main sequence – a long, quiescent phase

of evolution that our Sun is currently undergoing.

During its time on the main sequence a star converts hydrogen1 into

helium. There are several pathways by which this may happen. The first are

the three pp chains which are the dominant source of energy below 2×107 K.

The ppI chain involves the sequences of reactions

p + p → D + e+ + ν

p + D → 3He + γ

3He + 3He → 4He + 2p. (1.1)

For each 4He nucleus produced by this sequence of reactions, 26.7 MeV of

energy is liberated. There are two alternate paths for producing 4He other

than that outlined above. First, the ppII chain involves the conversion of
3He via the reactions

3He + 4He → 7Be + γ

7Be + e− → 7Li + ν

7Li + p → 2 4He (1.2)

which liberates 19.8 MeV of energy. Second, the ppIII chain produces 4He

from 7Be:

7Be + p → 8B

8B → 8Be + e+ + ν

8Be → 2 4He (1.3)

which produces 18.2 MeV of energy.

Above temperatures of 2× 107 K, and in the presence of carbon, nitrogen

and oxygen, a different set of reactions dominates energy production from

hydrogen. This is the CNO bi-cycle which uses carbon, nitrogen and oxygen

1Or rather protons, because the temperatures in the core are so high that electrons are
no longer bound to their parent atoms.



3 1.1 Stellar Evolution

as catalysts to produce 4He. The CN-cycle involves the reactions

12C + p → 13N + γ

13N → 13C + e+ + ν

13C + p → 14N + γ

14N + p → 15O + γ

15O → 15N + e+ + ν

15N + p → 12C + 4He. (1.4)

At higher temperatures, the NO-cycle becomes active. Here, instead of 15N

capturing a proton to form 12C and 4He, the following sequence of reactions

takes place

15N + p → 16O + γ

16O + p → 17F + γ

17F → 17O + e+ + ν

17O + p → 14N + 4He. (1.5)

The main sequence eventually terminates when all the hydrogen in the

core has been processed into helium. As helium burning reactions require

much higher temperatures than those for hydrogen burning reactions, nuclear

reactions temporarily cease in the core.

1.1.2 The Red Giant Branch

While the core of the star remains inert after hydrogen burning has ceased

there, burning reactions continue to occur in a shell around it. It is at

this point that the star makes the transition to what is know as the red

giant branch (RGB). The envelope of the star begins to expand, eventually

reaching radii over one hundred times that of the Sun. The star becomes

substantially more luminous and its surface temperature drops as shown in

Figure 1.1. The reason for this transition is poorly understood.

As the star ascends the red giant branch the convective envelope deepens,

reaching into layers that have been partially processed by hydrogen burning.

This pulls material to the surface, altering the surface composition. The
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Figure 1.1: Hertzsprung-Russell diagram for a 1 M� star of Z=0.008, showing
its transition from the main sequence to the red giant branch. This model is
evolved without mass loss.

surface becomes enhanced in 4He and 14N while the abundance of carbon

drops. Proceeding up the RGB, the core of the star grows in mass and, as it

does so, it becomes hotter and denser. In stars of mass greater than about

2.3 M� (the exact dividing line depends on metallicity) helium ignites in

conditions where the core is supported by pressure owing to thermal motions

and the star makes the transition to core helium burning.

In stars less massive than 2.3 M� the situation is more complex. For

these stars pressure owing to thermal motions is insufficient to prevent the

core from collapsing. The core contracts until it is so dense that its electrons

are competing for the same space. The core is now said to be degenerate and

this degeneracy pressure prevents further collapse. Under such conditions the

pressure is no longer dependent on the temperature of the material which

is what usually keeps burning steady - if the temperature of the material

rises, so does its pressure, causing an expansion which subsequently cools

the material. When the helium ignites (at a temperature of around 108 K)

it does so in a violent manner in what is referred to as a helium flash.

Because the core of the star has no thermostatic control as helium burns

the temperature rises. Helium burning requires three 4He nuclei (α-particles)

to meet for a reaction to occur which is unusual and means that the reaction
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has a particularly high temperature dependence. As the core heats up the

rate of helium burning, or the triple-α reaction increases rapidly and leads to

a further increase in the temperature. During the helium flash luminosities

from helium burning can reach over 109 times the luminosity of our Sun.

Eventually the core becomes hot enough to restore thermal pressure support

to the star and quiescent core helium burning can begin.

1.1.3 The Asymptotic Giant Branch

Once helium burning has been established, the star enters the core helium

burning phase. This is the helium burning equivalent of the main-sequence

and it lasts for about one tenth of the star’s life on the main-sequence. As the

core of the star runs out of helium it begins to ascend the asymptotic giant

branch (AGB), so-called because in low-mass stars it runs almost along the

RGB and beyond as can be seen in Figure 1.2. The evolution up the AGB

is marked by the solid line, starting from the lower left. There is a very

rapid transition from the tip of the RGB (top right of the dashed line) to

core helium burning (lower left of the solid line) which is unmarked in this

diagram.

As the star ascends the AGB it expands once again and it cools. The effect

is even more extreme than on the RGB. The convective envelope deepens in

the same way as on the RGB. If the star is more massive than about 4 M�

then the envelope may reach down as far as the hydrogen burning shell, again

pulling material to the surface and altering the surface composition of the

star. This process is known as second dredge-up. The composition changes

are similar to those during first dredge-up except that the envelope reaches

even deeper into the star so that the products of complete CNO cycling (as

opposed to just partial cycling in the case of the RGB) are brought to the

surface.

As the star ascends the AGB, the helium burning shell slowly moves

outwards in mass and the region between it and the hydrogen burning shell

narrows. Eventually, the star reaches a configuration where the intershell is

too narrow to remain stable and thermal pulses may occur. At this point, the

star has an inert carbon-oxygen core surrounded by a thin helium burning

shell. Above this lies an intershell region, on top of which is a hydrogen

burning shell. The bulk of the star’s mass rests in a deep convective envelope.
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Figure 1.2: Hertzsprung-Russell diagram for a 1 M� star of Z=0.008, showing
its transition from core helium burning to the AGB. The solid line marks the
evolution from core He-burning to the AGB, while the dashed line is the
prior evolution up the RGB.

Figure 1.3 shows a schematic diagram of the star’s interior. It is this phase

of evolution and the occurrence of thermal pulses with which this work is

concerned.

1.2 A Brief History of the Thermally Pulsing

Asymptotic Giant Branch

1.2.1 The Discovery of Thermal Pulses

Like much of the scientific canon, the story of the discovery of the ther-

mally pulsing asymptotic giant branch (TP-AGB) is one of serendipity. In

1965 Schwarzschild and Härm were attempting to calculate the evolution

of a 1 M� star when they encountered what they described as “a new type

of difficulty” (Schwarzschild & Härm, 1965). Once their helium shell be-

came sufficiently thin, oscillations in the luminosities of the hydrogen and

helium burning shells were found. These became progressively more and

more violent. Naturally2 they assumed this to be a numerical instability but

2At least for those with experience in computational stellar evolution, that is.
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Figure 1.3: The interior structure of a typical AGB star. The figure is not
to scale in order to clearly show the intershell region which is of particular
interest to this work. The extended convective envelope dominates in both
mass and radius.

subsequent analysis showed that it was indeed a true, physical consequence

of the star’s configuration.

The occurrence of thermal pulses (TPs), or shell flashes as they were

called in the early literature, is a consequence of the thinness of the helium

burning shell and the high temperature sensitivity of the triple-α reaction.

The theory is described, for AGB stars, by Schwarzschild & Härm (1965)

and more recently has been generalized to apply to all shell sources by Yoon

et al. (2004).

In order for a shell source to become thermally unstable two things must

happen. First, if energy from nuclear burning is dumped into the shell, then

the temperature must rise. Secondly, the increased radiative loss due to

the raising of the shell temperature must not carry energy away from the

shell faster than it is being generated. If both these conditions are satisfied

then the temperature in the shell continues to build up and a thermonuclear

runaway results. The former of these conditions can be expressed by the

equation

dq = c∗dT, (1.6)
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where dq is change in energy per unit mass, dT the change in temperature

of the shell and c∗ is the gravothermal specific heat capacity3, defined by

c∗ = cP

(
1−5ad

αsαT

αsαP − 1

)
(1.7)

where, for a burning shell of thickness D with its upper boundary at rs, we

have

αs =
4

3
(3D/rs − 3(D/rs)

2 + (D/rs)
3), (1.8)

αP =

(
∂ ln ρ

∂ lnP

)
T

, (1.9)

αT = −
(
∂ ln ρ

∂ lnT

)
P

and (1.10)

5ad =

(
∂ lnT

∂ lnP

)
ad

. (1.11)

In order for a system to favour thermal instability c∗ must be positive so that

as heat is added to the system, the temperature rises. However, this alone

is insufficient to guarantee thermal instability. We must also consider the

shell’s interaction with its surroundings. The following derivation is taken

from Yoon et al. (2004). The equation of energy conservation in a star is

given by
∂Lr

∂Mr

= εN −
dq

dt
(1.12)

where εN is the rate of nuclear energy generation. Integrating over our shell

source of thickness D and mass ∆Ms, this becomes

Lrs − Lr0 = LN − Lg (1.13)

where rs and r0 denote the upper and lower boundaries of the shell re-

spectively, LN =
∫

∆Ms
εNdMr is the luminosity due to nuclear burning and

Lg =
∫

∆Ms

dq
dt

dMr. But most of the energy flows out of the upper boundary

of the shell and so Lrs � Lr0 . Perturbing equation 1.13 gives

δLrs = ∆MsδεN −∆Ms
dδq

dt
(1.14)

3See Appendix A.1 for a derivation.
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where δLrs , δεN and δq are the perturbations in the luminosity at the top

of the shell, the energy generation rate and the energy per unit mass respec-

tively. Combining this with thermodynamic relations and assuming radiative

heat transfer,we may arrive4 at:

τthθ̇ = σθ (1.15)

where θ = δT/T , τth = ∆MsTcP/Lrs and

σ =
ν − 4− κT + αT

αsαP−1
(λ+ αs + κP )

c∗/cP
(1.16)

with κT = (∂ lnκ/∂ lnT )ρ, κρ = (∂ lnκ/∂ ln ρ)T , ν = (∂ ln εN/∂ lnT )ρ and

λ = (∂ ln εN/∂ ln ρ)T . If σ > 0 then a positive perturbation to the temper-

ature grows and thermal instability results. In an AGB star the relevant

burning shell is processing helium via the triple-α reaction which has a very

high temperature dependence (ν may be around 40 or more) and so it is

possible for thermal instability to occur and lead to a thermal pulse.

With the thermal pulses known to occur in low-mass stars, the confirma-

tion of their occurrence in intermediate-mass stars soon followed (Weigert,

1966). The details of what happens during a thermal pulse were gradually

fleshed out. It was found that, over a few pulses, the helium burning lumi-

nosity could reach over 107 L� (Schwarzschild & Härm, 1967).

The effect of a thermal pulse on the structure of a star is dramatic. The

runaway helium burning, owing to the phenomenal rate at which energy

is generated, drives a convection zone between the helium and hydrogen

burning shells, mixing the ashes of helium burning (predominantly carbon-

12, but also some oxygen-16) throughout this region (Schwarzschild & Härm,

1967). Eventually conditions in the helium shell force it to expand pushing

all the material above it outward and hence forcing it to cool. The hydrogen

burning shell cools so much that it is extinguished. In fact, the only thing

that an observer would see happen would be a drop in the star’s luminosity

– the vast amount of energy generated by the helium burning is all used up

in driving the expansion of the material above it (Iben, 1975).

Eventually the helium shell cools after burning intensely for tens of years.

4See Appendix A.2 for the full derivation.
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The star then begins to recover from the trauma. The outer layers contract,

heating up as they go. Eventually the hydrogen shell becomes sufficiently hot

that it can begin burning hydrogen again. This marks the beginning of the

quiescent interpulse period (IP) which lasts for the order of 105 years before

the helium shell reignites and the star goes into another thermal pulse.

1.2.2 Third Dredge-up

Unsurprisingly the expansion caused by a thermal pulse has important ef-

fects on the structure of a star. As the pulses become more and more vio-

lent, the convective envelope of the star moves deeper and deeper into the

star as it recovers from each thermal pulse. It was initially believed that,

under appropriate conditions, the separation between the envelope and the

hydrogen-helium discontinuity would tend towards a minimum or asymptotic

limit (Sweigart, 1974). However, it was subsequently found, in a 7 M� model

of solar metallicity, that the envelope could penetrate into regions where the

intershell convection zone had been active (Iben, 1975). This meant that the

carbon that had been produced during helium burning was pulled into the

envelope. This process is depicted in Figure 1.4 and came to be known as

third dredge-up (TDUP). Third dredge-up is an extremely important pro-

cess as it allows material processed by nuclear reactions in the depths of a

star to reach the surface where they can be observed and also returned to

the interstellar medium via mass loss. On account of the recurring nature of

thermal pulses TDUP can happen many times over and so greatly influence

the composition of the star.

The occurrence of TDUP in intermediate-mass stars is intimately con-

nected with another process that affects the surface composition of stars. If

the convective envelope can penetrate sufficiently deeply into the star the H-

shell will reignite at a temperature high enough for the CN-cycle to operate.

The shell continues to burn at the base of the convective envelope during

the interpulse period. This converts freshly dredged-up 12C into 14N. This

requires a temperature greater than 8 × 107 K (Iben, 1976) and was found

to occur when TDUP was discovered (Iben, 1975). The process eventually

acquired the label of hot-bottom burning (HBB).

The issue of TDUP proved to be a thorny one for the AGB community.

Initially, only the intermediate-mass stars were found to give dredge-up. At-
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Figure 1.4: Representation of the evolution of the interior of a TP-AGB star,
showing thermal pulses and third dredge-up. Convective regions are in green.
The hydrogen burning shell is the red line and the helium burning shell is
the yellow line.

tempts to find dredge-up at lower core masses were for the most part unsuc-

cessful (e.g. Sackmann, 1980; Wood & Zarro, 1981), though Wood (1981) had

succeeded in producing a 2 M� model at Z = 0.001 with dredge-up. Obser-

vations suggested that TDUP should be occurring at lower core masses than

the models were predicting (see 1.4 below). In the late 1980’s some reconcil-

iations between theory and observations were made, with notable successes

being scored by Boothroyd & Sackmann (1988) and Lattanzio (1989) but

models could still not be produced with sufficiently low core masses.

It was pointed out that there was a problem with the way in which con-

vective boundaries are formally located. According to the Schwarzschild

Criterion (see e.g. Ostlie & Carroll, 1996), a convective boundary is located

at the point where the radiative and adiabatic temperature gradients are

equal. However, this only states the point at which the acceleration on a

moving blob of material goes to zero – it does not necessarily follow that the

velocity of the blob at that point is also zero. This led some to propose that

convective overshooting could occur. It was envisioned that material could

still be in motion after passing through the formal Schwarzschild boundary.

Such a mechanism would extend the depth of mixing and could potentially
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produce deeper dredge-up.

It was pointed out by Frost & Lattanzio (1996) that some additional

form of mixing, such as overshooting, might be necessary to resolve some

numerical issues. As TDUP occurs the convective envelope – rich in hydrogen

– penetrates into layers of the star that are depleted in hydrogen. The

resultant discontinuity in the chemical composition results in a discontinuity

in the opacity and produces a discontinuity in the radiative temperature

gradient. This inhibits further penetration as large changes in the state

variables would need to occur for 5r/5ad to exceed unity in the radiative

region. They pointed out that any additional mixing across this boundary

would encourage further penetration. Unless 5r/5ad approached unity at

the convective boundary, the boundary would be unstable. This point was

re-iterated by Mowlavi (1999).

Further examination of numerical effects on the occurrence of TDUP were

performed by Straniero et al. (1997). They found third dredge-up to occur

self-consistently down to masses as low as 1.5 M� for solar metallicity models,

without the need to apply any sort of extra mixing. They found that high

spatial and temporal resolution was required in order to find dredge-up in

low-mass models. Pols & Tout (2001) subsequently showed that by careful

choice of the mixing algorithm 5r/5ad would approach unity at convective

boundaries making them stable and hence circumventing the need for extra

mixing.

The issue of TDUP is still a problematic one. Results for the various

codes in use at the present day differ quite dramatically. Some people favour

the inclusion of convective overshooting (Herwig, 2000), others take a more

phenomenological approach to the issue of extra mixing (Frost & Lattanzio,

1996) while others do not include it at all. It is an area of study that still

requires some effort to resolve its remaining issues.

1.3 TP-AGB Nucleosynthesis and the s-process

Given the occurrence of the TDUP process, AGB stars offer the tantalizing

prospect that material synthesized during thermal pulses could be brought

to the surface where it might be observed. The existence of complex nucle-

osynthesis together with the prospect of substantial mass loss makes AGB
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stars a valuable area of study from the point of view of galactic chemical

evolution.

1.3.1 Light Element Nucleosynthesis

The intershell of an AGB star is a rich site for the nucleosynthesis of light

elements. Aside from the production of carbon-12 via the triple-α reaction

many other elements can be synthesized there. In the hydrogen burning

shell, hydrogen is burned via the CNO cycle which converts some of the

dredged-up carbon into 14N. This acts as a seed for the production of several

species. For example, 22Ne is produced from this by a double α-capture

(Iben, 1975). First, the unstable nucleus 18F is formed via 14N(α, γ)18F and

this then rapidly decays to give 18O. This then captures another α particle

to produce 22Ne.

Goriely et al. (1989) proposed that AGB stars could be a site for the

synthesis of 19F, an element whose origins have long puzzled astronomers.

Again, starting with 14N as a seed, the pathway for the production of 19F is:

14N(α, γ)18F(β+)18O(p, α)15N(α, γ)19F (1.17)

which requires protons to be present. These can be provided by the reaction
14N(n, p)14C, with the neutrons coming from 13C(α, n)16O. Other alternative

sites for 19F production have been proposed including core helium burning

in massive stars (Meynet & Arnould, 1993, 2000) and supernova explosions

(Woosley & Weaver, 1995). However, AGB stars remain the only confirmed

site for fluorine production to date (Jorissen et al., 1992).

In addition to nucleosynthesis in the intershell, the hydrogen burning shell

is also a site for nucleosynthesis. As well as converting dredged-up carbon into

nitrogen, other proton capture reactions may be in operation. The Ne-Na

cycle involves the isotopes 20,21,22Ne and 21,22,23Na and leads to a production

of 23Na from 22Ne at temperatures above about 20 × 106 K (Arnould et al.,

1999). A second cycle, the Mg-Al cycle, becomes operational at temperatures

of about 30 × 106 K and involves the isotopes 24,25,26Mg, 25,26,27Al and also
27Si (Arnould et al., 1999).

Because TDUP brings material from the intershell up through the hydro-

gen burning shell (while it is inactive), the nucleosynthesis of certain species
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can be affected by both regions. For example, 19F is synthesized in the in-

tershell by He burning as outlined above but may also be destroyed in the

H-shell via the reaction 19F(p, γ)20Ne (Forestini et al., 1992).

1.3.2 Nucleosynthesis via the s-process

In addition to the nucleosynthesis of light elements, TP-AGB stars may also

be the site for the production of the s-process elements, some isotopes from

Sr up to lead. The s-process is the capture of neutrons by nuclei in conditions

of sufficiently low neutron density that any unstable products have time to

decay before another neutron is captured (see e.g. Clayton, 1983). This is

in direct contrast to the r-process in which additional neutrons are captured

before the nucleus has a chance to decay and leads to the production of

neutron-rich isotopes.

The earliest calculations suggested that the intershell convection zone

could expand so far as to encroach on the tail of the hydrogen burning shell.

This would lead to the formation of 13C in the intershell and the reaction
13C(α, n)16O could then provide the necessary neutrons for s-process nu-

cleosynthesis (Sanders, 1967; Schwarzschild & Härm, 1967) to occur. Two

mechanisms were proposed as to how protons from the H-burning shell could

find their way into the intershell convection zone. The Ulrich-Scalo mecha-

nism proposed that when the intershell convection zone was at its maximum

extent, protons could be mixed into it via a non-thermal process (Ulrich

& Scalo, 1972). Alternatively, it was thought that the intershell convec-

tion zone could merge with the convective envelope (the Smith-Sackmann-

Despain mechanism, Smith et al., 1973).

Iben (1975) proposed an alternative means of providing neutrons, the re-

action 22Ne(α, n)25Mg. This had the advantage of requiring no additional

mixing: 22Ne could be directly synthesized in the intershell. He subsequently

went on to show that the intershell convection zone could not reach up to

the envelope because the hydrogen burning shell acts as an effective entropy

barrier (Iben, 1976). However, in order for this reaction to become effective

the temperature in the He-burning shell must reach over 3 × 108 K. Obser-

vations of s-process elements in red giants suggested that the s-process was

operational in low-mass stars whose intershell temperatures would not reach

that high. In addition, the 22Ne source produces a high-intensity burst of
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neutrons for a short time – a pattern that does not reproduce the observed

s-process distribution.

For these reasons, the search for a means to introduce protons into the

carbon rich intershell continued. In 1982, Iben & Renzini proposed that

semiconvection could provide the necessary mixing. Cooling caused by the

expansion of the star could lead to recombination of ionized carbon. This

causes an increase in the opacity of the material and hence a semiconvective

zone may develop, mixing carbon and hydrogen to produce 13C (Iben &

Renzini, 1982a,b). Unfortunately, this mechanism was not found to occur in

many models.

The search for a viable mechanism for introducing protons into the

carbon-rich intershell in order to form a 13C pocket is still ongoing. Re-

cent work has centred around the use of convective overshooting (Herwig,

2000), motivated by hydrodynamical simulations (Freytag et al., 1996), ro-

tational mixing (Langer et al., 1999) and internal gravity waves (Denissenkov

& Tout, 2003). Each of these mechanisms has its own particular problems

and a solution to the problem of the formation of the carbon-13 pocket still

eludes us.

1.3.3 Mass Loss

One of the important, and unfortunately poorly understood, aspects of AGB

evolution is that of mass loss. The AGB phase is finally terminated when

mass loss has removed the envelope of the star and a post-AGB object is

formed. Mass loss allows the nucleosynthetic products of AGB evolution

to be returned to the interstellar medium and, because low-mass stars are

formed far more abundantly than those of higher mass (Kroupa et al., 1993),

allows AGB stars to contribute significantly to galactic chemical evolution.

Mass loss also has important effects on the evolution of AGB stars. In

the lowest-mass AGB stars it is possible for mass loss to strip the star of its

envelope before TDUP has a chance to occur (Karakas et al., 2002). If TDUP

does occur its efficiency can still be affected by mass loss. In intermediate-

mass AGB stars the occurrence of mass loss can inhibit the occurrence of hot-

bottom burning in the later stages of evolution, while still allowing TDUP to

occur. This allows the formation of bright carbon stars (Frost et al., 1998).

Of the early calculations of AGB evolution, few used any mass loss. Those
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that did (e.g. Schönberner, 1979) employed the Reimers’ formula (Reimers,

1975)

Ṁ = −4× 10−13η
LR

M
M�yr−1 (1.18)

where L,R and M are the star’s luminosity, radius and mass in solar units.

The value of the free parameter η is usually taken as 0.4 for red giants.

However, it was recognized by Renzini (1981) that the mean mass-loss rate

required to produce a typical planetary nebula was around 3× 10−5 M�yr−1.

He coined the term superwind as this value was significantly greater than

those given by the Reimers formula. Many calculations still use the Reimers

formula, generally with 0.4 < η < 3, although η = 10 may be used in extreme

cases (Straniero et al., 1997, 2003).

In an attempt to produce a more physically consistent picture, Vassil-

iadis & Wood (1993) produced a mass-loss relation based on observations of

OH/IR stars and other pulsating, dust-enshrouded AGB stars. They linked

the mass-loss rate, Ṁ in M�yr−1, of an object to its Mira pulsational period,

P (in days), via the relations:

log Ṁ = −11.4 + 0.0123P (1.19)

and

Ṁ =
L

cvexp

, (1.20)

where vexp = −13.5 + 0.056P is the expansion velocity of the wind far from

the star in km s−1 and c is the speed of light. The mass loss is taken to be

the smaller of the two values calculated with the above expressions. This law

has the advantage of providing for a superwind phase which can remove a

star’s envelope over the course of a few pulses. This mass loss law has been

used in recent computations by Karakas et al. (2002).

One other mass-loss relation has also been used in current calculations,

that of Blöcker (1995). It is grounded in theory, rather than empirically

determined, based as it is on simulations of shock-driven winds in the at-

mospheres of Mira-like stars (Bowen, 1988). It was developed to reflect the

strong increase of mass loss during the AGB and to be applicable to stellar

evolution calculations (Blöcker, 1995). It is similar to the Reimers prescrip-

tion but with a steeper dependence on luminosity and a shallower dependence
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on mass. The formula is expressed as:

Ṁ = 4.83× 10−9

(
M

M�

)−2.1(
L

L�

)2.7

ṀReimers. (1.21)

Because of its use of the Reimers formula, this law also suffers from the prob-

lem of having a free parameter that must be determined (or worse, guessed).

Recent calculations using Blöcker’s relation include those of Herwig & Austin

(2004) and Ventura (2004).

1.4 Observational Constraints

Owing to the long timescales involved for a full thermal pulse cycle, no

direct observation of an AGB star undergoing a thermal pulse has ever been

made. It is theoretically possible given modern day survey techniques that

the dip in a star’s luminosity following the peak of a thermal pulse could be

detected but it seems unlikely (and perhaps not particularly valuable) that

such efforts will be made. The question, “what evidence do we have for the

real, physical existence of TP-AGB stars?” must be asked. It would be a

serious embarrassment for the author if these stars only existed in theory!

1.4.1 Direct Observations

There exist various observations that seem to be well explained if we believe

the objects to be TP-AGB stars. From an observational point of view, AGB

stars can be divided into groups based on low-resolution optical spectra.

Those stars in which TiO bands dominate are classified as M stars; if C2 or

CN bands dominate then the star is a C (carbon) star (Lattanzio & Wood,

2004). This equates to the star having a surface C/O ratio less than unity

for M stars in order that molecules like TiO can form. For C stars C/O must

be greater than unity so that there are excess C atoms to form molecules like

CN. The progression from an M star to a C star can be readily explained

in terms of AGB evolution. The repeated operation of TDUP brings newly

synthesized carbon to the surface, converting a star that was once oxygen-rich

to one that is carbon rich.

The existence of carbon stars provides us with a test for theoretical mod-

els. Owing to the molecular bands described above, carbon stars can be easily
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detected in photometric surveys (see Cook & Aaronson, 1989, for a descrip-

tion of the method). In a population at a known distance it is possible to

create a luminosity function for the observed carbon stars. The Large and

Small Magellanic Clouds have well-determined distances and hence we have

luminosity functions for them (Groenewegen, 2004). AGB models must be

able to reproduce these in order to be considered correct. In fact, it was the

existence of low-luminosity carbon stars in these populations that led Iben

to formulate the carbon star mystery (Iben, 1981). At the time models were

unable to produce low-luminosity carbon stars and the intermediate-mass

models produced luminous carbon stars that were not observed. The lat-

ter problem was solved once it was realized that hot-bottom burning would

convert the dredged-up carbon into nitrogen and prevent intermediate mass

objects forming carbon stars. The formation of low-luminosity carbon stars

is still problematic today (see Chapter 4).

The broad categories of M and C stars can be further subdivided into the

types MS, S and SC. These classifications are again based on low-resolution

optical spectra, this time based on molecular bands involving the s-process

element zirconium. If molecular features associated with ZrO are found to-

gether with TiO bands the star is of type MS. As the C/O ratio tends to

unity and all the available oxygen atoms are locked up in CO, TiO bands

will disappear and ZrO will dominate. The star is then of type S (Keenan &

Boeshaar, 1980). For a star to be of type SC it must display strong sodium

D lines and no ZrO lines. Again, these properties are readily explicable by

the theory of TP-AGB stars as they form a sequence from oxygen-rich to

carbon-rich objects that is readily explained by the dredge-up of carbon in

TP-AGB stars.

The existence of s-process elements also seems to require the existence

of AGB stars. The strongest supporting evidence for this comes from the

detection of technetium in some stars. Merrill (1952) was the first person

to detect technetium in S-stars. Technetium has no stable isotopes but the

element 99Tc is produced via the s-process and has a half-life of 2×105 years.

In order to observe Tc, it must have been produced within a few half-lives of

the isotope observed. If we assume that the isotope observed is 99Tc – which

is by no means certain as it is only the third longest lived of the Tc isotopes –

then its presence can readily be explained by TP-AGB stars. The s-process
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elements are formed in the intershell of an AGB star and then brought to the

surface by TDUP. Recent survey work has been carried out to search for Tc

in AGB stars (Lebzelter & Hron, 2003). Comparing the luminosity of stars

that do or do not show Tc in their spectra with theoretical models allows us

to determine in which stars the s-process and TDUP are active.

1.4.2 Pre-solar Grains

In the last 20 years it has become possible to study individual interstel-

lar grains brought to Earth in meteorites. These grains are generally be-

lieved to have formed as material was returned from stars to the interstellar

medium. A wide variety of such grains have been discovered. The first to be

recovered from meteorites were carbon-rich grains including silicon carbide

(SiC), graphite and diamond (see e.g. Bernatowicz et al., 1987; Lewis et al.,

1987). Grains containing oxygen compounds, for example corundum (Al2O3),

proved more difficult to isolate. The first oxygen-rich grain in which an iso-

topic ratio significantly different from the solar system value was measured

was Orgueil B (Huss et al., 1992). By measuring the isotopic composition of

these grains, we can hope to gain an insight into the environments in which

they might have formed.

In the case of the carbon-rich grains, they must have formed in environ-

ments where the C/O ratio exceeds unity. In the case of SiC grains, they

are found to be carriers of enhanced levels of 128Xe and 130Xe (Srinivasan &

Anders, 1978), which are isotopes associated with the s-processes. Further

measurements of trace heavy elements such as Kr, Ba, Nd and Sm also show

clear evidence of an s-processes signature (Lewis et al., 1990; Ott & Bege-

mann, 1990; Zinner et al., 1991). These features suggest that these grains

are formed in the envelopes of low-mass TP-AGB stars which should be rich

in carbon and s-process elements due to the action of TDUP. Measurements

of isotopic ratios of both light and heavy elements in these grains allows us

to constrain the nature of theoretical models.

In addition, the distribution of s-process elements allows us to probe the

conditions in the interior of AGB stars. Certain s-process elements, such as
85Kr, form isomeric states when they are produced by neutron capture. In

the case of 85Kr one state decays more rapidly that the other. In conditions of

low neutron exposure such as those found in the 13C pocket only the longer-
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lived ground state is able to capture neutrons to feed the formation of 86,87Sr

(Lugaro et al., 2003). If the neutron exposure is of higher intensity, i.e. if

the 22Ne source is activated during a thermal pulse, then the isomeric state

can also capture neutrons. This allows the formation of 86,87Sr to be partly

bypassed (Lugaro et al., 2003). By comparing models of the s-process in

AGB stars with observed s-process element ratios we can hope to constrain

which neutron sources are activated and hence the temperatures reached in

thermal pulses.

Measurements of pre-solar grains have also suggested the requirement for

additional physics not included in standard stellar evolution codes. Some

pre-solar grains have isotopic ratios for 18O/16O and 17O/16O that cannot be

explained by the action of first/second dredge-up, nor can the operation of

hot-bottom burning in intermediate-mass stars account for them (Boothroyd

et al., 1995). Boothroyd, Sackmann & Wasserburg found that data from

grains coming from low-mass S and C stars required that material be trans-

ported from the cool convective stellar envelope to hotter layers of the star

where 18O could be depleted. They dubbed this mechanism cool bottom

processing (Boothroyd et al., 1995). It should be noted that an extra mixing

mechanism is also believed to be necessary in order to generate a 13C pocket

to provide a neutron source necessary for the s-process.



Chapter 2

stars: a Stellar Evolution Code

The calculations made in this work were done using a derivative of the evolu-

tion code developed by Eggleton (1971, 1972). The code and its derivatives

are unique in that they are the only stellar evolution code to solve the equa-

tions of stellar structure and evolution in a fully simultaneous manner. The

code has been extensively modified over the last 35 years (Eggleton et al.,

1973; Han et al., 1994; Pols et al., 1995). The current incarnation has come

to be known as stars. In this section, the input physics, details of the code

and the modifications necessary to allow the code to be used on the TP-AGB

are reviewed.

2.1 Input Physics

Stellar evolution calculations are based on a set of four equations which

govern the structure of a star. For a spherically symmetric star that is non-

rotating, these are

• the equation of hydrostatic equilibrium,

dP

dm
= − Gm

4πr4
, (2.1)

where P, r and m are pressure, radius and the mass contained within

a spherical shell of radius r respectively.

21
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• The equation of mass conservation,

dr

dm
=

1

4πr2ρ
, (2.2)

where ρ is density.

• The equation of energy generation,

dL

dm
= ε, (2.3)

where L is luminosity and ε is the energy generation rate including

nuclear energy generation, energy from gravitational sources and energy

losses from neutrino emission.

• The equation of energy transport, which may be expressed as

d lnT

dm
= −5 d lnP

dm
(2.4)

where 5 depends on whether the region of the star is radiative or

convective.

In regions of the star that are radiative all the energy is transported by

radiation and

5 = 5r =
3κPL

16πacgr2T 4
(2.5)

where κ is the opacity, a is the radiation-density constant and g = Gm/r2.

In convective regions the situation is more complex with part of the energy

flux being carried by convection and part by radiation. In such a situation

the energy flux F is described by F = Frad+Fcon where the subscripts denote

the radiative and convective components. The actual temperature gradient

of the star is determined by the radiative flux via

Frad =
4acgT 4

3κP
5 . (2.6)

In order to determine 5 it is necessary to describe how energy is trans-

ported by convection. This is done using mixing length theory (MLT)(Böhm-

Vitense, 1958) which envisages convection as the motion of blobs of material

that travel a characteristic distance, the mixing length l, before losing their
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identity and mixing with the surrounding material. The mixing length is

a free parameter of the theory and is normally expressed in terms of the

pressure scale height, HP, as

l = αHp, (2.7)

where α is a dimensionless constant that is conventionally set by calibration

to a solar model. The convective flux according to MLT1 is given by

Fcon = ρvcPδT, (2.8)

where cP is the specific heat capacity at constant pressure, v is the speed of

the convective blob and δT is the difference in temperature between the blob

and the surrounding medium. This latter quantity is given by

δT

T
= (5−5e)

l

2HP

, (2.9)

where 5e is the temperature gradient for the moving element and HP is the

pressure scale height.

Work is done on the moving blob by buoyancy forces and, assuming that

half of this goes into the kinetic energy of the blob, the final speed of the

blob may be expressed as

v2 = gδ(5−5e)
l2

8HP

, (2.10)

where δ = −(∂ ln ρ/∂ lnT )P and an equation for the convective flux in terms

of temperature gradients arrived at. It is also possible to compute a fictitious

temperature gradient 5r assuming that all the flux is carried by radiation.

The three expressions for the total, radiative and convective fluxes relate 5
to quantities that can readily be calculated and by obtaining 5e from the

adiabatic temperature gradient (which is also straightforward to calculate)

the actual temperature gradient in the star can be computed.

Equations 2.1-2.4 determine the (static) structure of the star. Henceforth

we shall refer to them as the structure equations. In order to model the star’s

evolution we also need to track the composition of the star. The composition

is altered by nuclear reactions and also by material being mixed throughout

1The derivation that follows is a brief outline of that in Kippenhahn & Weigert (1990)
to which the interested reader is referred to for the full details.
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Reaction Source
1H(p,β+ν)2H REACLIB
12C(p, γ)13N CF88
14N(p, γ)15O CF88
16O(p, γ)17F CF88

4He(αα, γ)12C CF88
12C(α, γ)16O CF88
14N(α, γ)18F G00

16O(α, γ)20Ne CF88
20Ne(α, γ)24Mg CF88
12C(12C,γ)24Mg CF88
16O(12C,γ)30Si CF88
16O(16O,γ)32S CF88

Table 2.1: Reaction rates used by the code. Key: CF88, (Caughlan & Fowler,
1988); G00, (Görres et al., 2000) and REACLIB, 1991 updated version of
Thielemann et al. (1986).

the star by convection. If mixing is assumed to be modelled as a diffusive

process, the change in mass fraction X of the element i is governed by the

equation
d

dm

(
σ

dXi

dm

)
=

dXi

dt
+Ri − Si, (2.11)

where σ is the diffusion coefficient, Ri is the rate at which the species i

is being burnt by nuclear reactions and Si is the rate at which it is being

produced by nuclear reactions (Eggleton, 1972).

The remaining physical inputs include the equation of state for the mate-

rial, data covering reaction rates, neutrino losses and opacity of the material.

The equation of state is described in Eggleton et al. (1973) and was enhanced

and updated by Pols et al. (1995) to include the effects of Coulomb interac-

tions and pressure ionization. The reactions used in the code and the sources

from which they were obtained are listed in Table 2.1. The data on neutrino

losses is taken from Itoh & Kohyama (1983), Munataka et al. (1987), Itoh

et al. (1989) and Itoh et al. (1992). Opacities are taken from Alexander &

Ferguson (1994), Rogers & Iglesias (1992) and Itoh et al. (1983).
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2.2 Implementation

In order to implement the structure and composition equations, the stellar

model is first divided up into a set of mesh points. The number of mesh points

used depends on the complexity of the evolutionary phase being considered

and the desired resolution of the model. Typically a main-sequence model

is evolved with 199 mesh points while a TP-AGB model requires 999. Once

a model is started the number of mesh points remains fixed. Mesh points

are distributed at equal intervals of a mesh spacing function, Q, which is a

function of the pressure P , temperature T , mass m and radius r throughout

the star (Eggleton, 1971). This function is designed to push more mesh points

into regions where they are needed such as burning shells and ionization

zones. The mesh is adaptive so that as the star evolves, the mesh points

move around to stay with physically important regions. This is different

to the way most codes operate. In these codes, if additional resolution is

required extra mesh points are added. For problematic phases of evolution,

this can lead to models having thousands of mesh points in them making

it slower to calculate models. The stars mesh does not suffer from this

problem.

The form of the mesh spacing function used by the code is

Q = ln
(

(m/M)2/3

c1
+ 1
)

+ c2 ln
(

r2

c3
+ 1
)
− c4 ln T

T+c5
− c6 lnP

− c7 ln P+0.1PH

P+3PHe
− c8 ln P+0.3PHe

P+3PHe
(2.12)

where c1 . . . c8 are appropriately chosen constants, M is the total mass and

PH and PHe are the values of P at the position of the boundary of the H-

and He-exhausted cores respectively. The code uses units of 1030 kg for the

mass, 109 m for the radius, Kelvin for the temperature and dynes for the

pressure. The last two terms are included only during the TP-AGB phase.

Typical choices for the coefficients on the TP-AGB are given in Table 2.2.

They concentrate a large part of the mesh, about three-fifths, in the intershell

region (between 0.1PH and 3PHe) while at the same time ensuring that during

a TP, when T and P undergo rapid changes, the mesh does not move around

too much in the intershell region so that numerical diffusion is suppressed.

Within the code the structure and composition equations, and the mesh

spacing function, are written as implicit, finite difference equations. The
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c1 c2 c3 c4 c5 c6 c7 c8
3.00 3.00 0.05 0.01 0.60 0.35 0.05 10−4

Table 2.2: Typical coefficients used in the mesh spacing function on the
TP-AGB.

code then solves these equations using the Henyey method (Henyey et al.,

1959). Briefly, this involves taking a given model with a set of changes to

each of the variables at each mesh point and then relaxing that solution until

a new model is converged.

2.2.1 Convective Mixing and the Choice of σ

The issue of convection and convective mixing in evolution codes is a sensitive

one and particularly so on the TP-AGB. It is therefore necessary to detail

some important points on this subject. Convective mixing is is treated in the

framework of the mixing-length theory (Böhm-Vitense, 1958). Equation 2.11

is approximated by an implicit second-order difference equation of the form

σk+ 1
2

Xk+1 −Xk

δmk+ 1
2

− σk− 1
2

Xk −Xk−1

δmk− 1
2

=

(
Xk −X0

k

∆t
+RX,k

)
δmk, (2.13)

where Xk and X0
k are the abundances at mesh point k at the present and

previous timestep, ∆t is the timestep, δmk± 1
2

are the masses contained in

the zones above and below mesh point k, RX,k is the net consumption rate of

X by nuclear reactions, and σk± 1
2

are the diffusion coefficients corresponding

to these zones. The linear diffusion coefficient D is related to σ by σ =

(4πr2ρ)2D, where r and ρ are radius and density. The calculation of D is

discussed in further detail in section 2.4.1.

All the quantities including σ are defined only at each mesh point k so

it is not a priori obvious how σk± 1
2

should be calculated. In the standard

calculations made with this code, σk+ 1
2

= 1
2
(σk + σk+1) is used, following

Eggleton (1972). Pols & Tout (2001) investigated the effect of taking a

geometric mean σk+ 1
2

=
√
σk · σk+1 rather than an arithmetic mean. These

schemes effectively differ only in zones where the Schwarzschild boundary is

located between mesh points k and k+1. The arithmetic mean in effect allows

the radiative mesh point adjacent to a convective boundary to be mixed while
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the geometric mean does not. The choice is usually inconsequential but

becomes important in the presence of a composition discontinuity that leads

to a discontinuity in5r through the opacity dependence. Such discontinuities

arise during core-helium burning at the edge of the convective core and at

the bottom of the convective envelope during TDUP (Paczyński, 1977). The

standard arithmetic mean ensures that5r−5ad always approaches zero from

the convective side of a boundary, even in the case of a discontinuity, so a

convective boundary always corresponds to a stable Schwarzschild boundary

(5r = 5ad). However when there is a discontinuity in 5r at the boundary

even the slightest extra mixing makes it unstable and physically it is expected

that mixing will occur until 5r ≤ 5ad when material can mix across the

boundary. Pols and Tout demonstrated that use of the geometric mean for

σk± 1
2

suppresses this physical behaviour and prevents third dredge-up (see

also the discussion in Mowlavi 1999 and Herwig 2000) so the arithmetic mean

is always employed here.

2.3 Overview of the stars Code Structure

The stars code is a very compact program consisting of around 1500 lines of

Fortran (from various decades). It consists of a series of subroutines which

are outlined here and their inter-connections are displayed in Figure 2.1.

The main.f routine controls passes to two separate loops of the program.

The most used is the structure and evolution part of code. The physics

is encompassed in funcs1.f and the difference equations are in equns1.f.

This section of the code currently tracks the evolution of 1H, 4He, 12C, 14N,
16O and 20Ne, in addition to the variables relevant to the structure, namely

ln f, lnT, lnm, ln r and L. These routines make passes to the equation of state

routine (statef.f via statel.f which filters out any unnecessary passes),

the routine dealing with pressure ionization (pressi.f), the routine dealing

with nuclear reaction rates (nucrat.f) and the opacity calculator (opacty.f

which calls the spline fitting routine opspln.f). The second loop of the code,

which comprises of a second package of physics (funcs2.f) and difference

equations (equns2.f), is designed to track the evolution of minor composition

elements – i.e. those whose energy contribution is not significant to the

structure of the star. This part of the code has been left derelict for many
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Figure 2.1: Schematic depiction of the connections of the various subrou-
tines in the stars code. Input files are connected in green; output files are
connected in blue.

years but has now been resurrected. Its details are given in Chapter 5.

Both the structural evolution and minor element composition loops of

the code utilize a common set of routines for solving for the changes at

a given timestep. These routines are difrns.f, solver.f, elimn8.f and

divide.f. The first sets up the matrix of the difference equations that needs

to be inverted in order to determine the changes required at that timestep.

The routine solver.f has several functions. It controls the inversion of

the matrix created by difrns.f, which is solved by Gaussian elimination,

with divide.f and elimn8.f being called as appropriate. It also controls

the Newton-Raphson iteration process used to converge the desired solution,

and tests whether the new solution is within acceptable error limits.

In addition to these a set of routines for writing output from the code ex-

ists. These are printa.f, printb.f and printc.f. The first reads in model

and physics input data as well as the instructions for the given model run

and writes out full models for subsequent use. This routine is also responsi-

ble for controlling the timestep used when converging each model (see 2.4.3

below). The routine printb.f outputs detailed, human-readable physical

models and data useful for plotting purposes. The last routine is used for

debugging purposes. There is also a routine remesh.f that is called at the
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beginning of each new run to set the given model up on the desired mesh.

2.4 Numerical Instability

The bane of the existence of anyone involved in calculating models of stellar

evolution is numerical instability. It is a catch-all term used to describe why

models fail to work for whatever reason2. The TP-AGB is a particularly un-

forgiving place to be working and some modifications to deal with numerical

problems are necessary.

2.4.1 Mixing

During a thermal pulse a star has two separate convective zones active.

Strong convection and convective mixing takes place in the intershell due to

the intense burning taking place in the He-shell. In the envelope much weaker

convection and convective mixing takes place. In order to get accurate results

the mixing should be as close to the value predicted by mixing-length theory

(Böhm-Vitense, 1958) as possible. However, it is also important that the

model being calculated converges! In a trade-off between these two goals,

a value of the mixing coefficient that gives a uniform composition in fully

convective regions of the star is chosen.

Because the intershell convection is so much stronger, it is possible to

choose a smaller value for the mixing diffusion coefficient than is used in the

envelope and still satisfy the requirement that the composition be uniform

across the convective region. The use of a smaller mixing diffusion coefficient

greatly aids numerical stability. Pols & Tout (2001) found it useful to express

the mixing diffusion coefficient D as

D = DMLT
βW

1− (1− β)W
(2.14)

with

W ≡ 5r −5ad

5r

,

and DMLT = 1
3
vl with v and l the mean velocity and mean free path of

convective eddies. The value of β was treated as a free parameter and allowed

2The term does have a precise mathematical meaning other than that used here.
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to take on different values in the H-rich envelope and in the H-free intershell

region and core. A value of β � 1 gives the full mixing length diffusion

coefficient. In this work, β = 1 is used in the H-rich envelope while β =

5 × 10−5 in the H-exhausted regions. The H-rich region is defined as the

region in which the hydrogen mass fraction exceeds 10−6.

2.4.2 Viscous Mesh

At short timesteps, such as those required to resolve the peak helium lumi-

nosity of a thermal pulse, there is a numerical instability associated with the

luminosity equation

Lk+1 − Lk = (m′E1)k+ 1
2

+ (m′E2)k[ṁk]− (m′E2)k+1[−ṁk+1] (2.15)

where Lk is the luminosity at mesh point number k. The change in mass

with mesh point is denoted m′ = dm/dk. Square brackets signify a term

only included when it is positive. The first term containing E1 is related to

the usual energy generation terms but evaluated at constant mesh point and

the terms containing E2 are an upstream approximation for the advection

term owing to the adaptation of the mesh. When the timestep becomes small

these terms become large and this leads to numerical instability when two

large numbers are subtracted to give a small result.

To deal with this the mesh can be fixed in mass and so eliminate the

last two terms of the above equation. However, it is not desirable to fix the

entire mesh because the outer regions do not cause the same problems as the

inner ones and the mesh need only be fixed at small timesteps. This causes

a second problem – how can the fully adaptive behaviour be recovered after

using the fixed mesh? The mesh cannot just be instantaneously returned

to a fully adaptive state because, during the fixed phase, mesh points drift

away from where the mesh spacing function would place them. Rather, the

mesh must be returned to a fully adaptive state gradually and so the idea of

a viscous mesh has been developed.

The viscous mesh combines fixed and adaptive behaviours. A weighting

coefficient γ, a function of mesh point number and the timestep size, is

used to determine the nature of the mesh. In problematic areas the mesh is

gradually fixed by increasing the value of γ. If γ = 1 a mesh point is fully
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fixed in mass while if γ = 0 the point is fully adaptive. This is implemented

by solving ((
dQ

dk

)
k+1

−
(
dQ

dk

)
k

)
(1− γ) + γ

(
dm

dt

)
k

= 0 (2.16)

alongside the equations of stellar structure and composition. The weighting

coefficient γ is chosen to be a function of the timestep with γ becoming unity

for timesteps of 10−4 yr and below for the central mesh points. First it is

necessary to evaluate the expression

χ =
3

4

(
∆t

10−4
− 1

)
, (2.17)

where ∆t is the timestep in years. If this is greater than zero, this value is

taken; otherwise χ = 0 is used. The next step is to evaluate

ψ = exp(−√χ) (2.18)

and thus obtain a number between 0 and 1 that can be used as the weighting

coefficient γ.

It is also necessary that the mesh vary smoothly with mesh point number.

If the mesh is fixed with a sharp edge it is possible that the adaptive part

of the mesh can move mesh points (in terms of their location in mass) into

the region that is fixed. This means that the mass co-ordinate ceases to be

a monotonically decreasing function of the mesh point number – something

that is assumed in the set-up of the code’s equations. With a mesh that

has a smooth transition between fixed and adaptive regions the points in the

transition region act as a buffer and prevent this from occurring. This is

implemented in the code as

γ = ψ

[
1

2
+

1

2
tanh

(
k − ktrans

1.5

)]
, (2.19)

where k is the mesh point number and ktrans is the mesh point number up to

which fixed behaviour is desired. With such a form for γ the viscous mesh

has the desired properties. Typically ktrans = 900 in the 999 mesh point

models calculated in this work.
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2.4.3 Timestep Control

The stars code attempts to choose the most appropriate timestep size based

on the changes to the variables of the previous model required to produce

the current model. This is done within the routine printa.f. A sum of the

absolute values of these changes (excluding those made to the luminosity) is

made over all variables and over all mesh points producing a single numerical

value

d = ΣiΣk|xi,k|,

where xi,k are the values of the changes made to each variable i at a given

mesh point k. Usually the value of d is dominated by the temperature and

the degeneracy. This is then compared to a preset optimum value dopt. If

dopt/d is greater than one the timestep is increased by this fraction or 1.2,

whichever is smaller. If dopt/d is less than one the timestep is reduced by

this fraction or 0.8, whichever is larger. In this way an appropriate timestep

is chosen for the next model.

The value chosen for dopt depends on the number of mesh points in the

model. For a 999 mesh point model, a value of 5 is typically chosen. However,

if it is desirable to have smaller timesteps, lower values are used. In order

to deal with the range of timescales involved in TP-AGB evolution it may

become necessary to change the value of dopt at certain stages of the evolution.

As the helium burning luminosity begins to rise dopt is set to 0.5. This

gives the code opportunity to respond to the changes that occur at the onset

of a thermal pulse. As the peak of a thermal pulse is approached the timestep

drops to about 2 × 10−5 yr. To avoid numerical problems inherent at lower

timesteps the timestep is prevented from dropping below 10−5 yr. When

the helium luminosity begins to decline after the peak of the thermal pulse

the intershell convection zone (ICZ) shuts down and the convective envelope

of the star moves inward. During this phase dopt is returned to 5. As the

envelope reaches down into the region where the ICZ was active it begins to

dredge-up the products of helium burning. At this point it is necessary to

limit the size of the changes being made to the variables to avoid numerical

instability.

An algorithm has been written that records the position of the boundary

of the ICZ at its maximum outward extent. This is then compared to the

location of the boundary of the convective envelope. When the envelope
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reaches into the region where the ICZ was active the value of dopt is set to

1. This limits the timestep to the order of a few days. When the helium

luminosity reaches as low as 3× 103 L� and TDUP is over dopt is restored to

5.

2.5 Making Stellar Models

In all cases models are started on the pre-main sequence with a gas cloud that

has a temperature of less than 106 K throughout. This is because the stars

code does not consider any nuclear burning to occur below this temperature.

Initially, 199 mesh points are used and throughout the evolution the mixing

length parameter is set to α = 1.925 based on a calibration to a solar model.

Unless otherwise stated, no mass loss has been considered in these models.

The model is evolved through the main sequence, up the red giant branch and

on to the core helium burning phase. At core helium burning, the resolution

is enhanced to 499 mesh points. This is done to facilitate the transition to

the higher resolution required on the TP-AGB. At the end of the early AGB

(E-AGB) the model is remeshed with 999 mesh points. The full form of

the mesh spacing function, as given in Equation 2.12, is used and the above

modifications to deal with numerical instability are activated at this point.

This method can be used for stars of above around 2.3 M� because these

stars do not undergo a core helium flash at the tip of the red giant branch.

The core helium flash is a numerically demanding phase of evolution and

the stars code is currently not suitable for a calculation of the evolution

through it3. Instead a model of the desired mass is run from the pre-main

sequence up to the helium flash. The hydrogen exhausted core mass and

the envelope composition are recorded. A 3 M� model is then evolved from

the pre-main sequence up to the point where helium ignites in the core.

During this evolution helium burning reactions are allowed to produce energy

but not consume helium. Once helium has ignited under non-degenerate

conditions mass is stripped from the envelope and the core is allowed to

grow until the model has the desired envelope mass and core mass. The

envelope composition is then set to that of the pre-flash model. It is therefore

3The author spent much of the first year of his Ph.D. trying to get through the He-flash
but to no avail.
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being assumed that the helium flash proceeds so rapidly that the core mass

doesn’t change and that there is no change in the envelope composition.

These are both standard assumptions. Because the helium flash is bypassed,

the possibility that the post-flash models are not consistent must be accepted

and these models should be treated with a degree of caution. This method

has been used to create the models presented in the following chapters.



Chapter 3

TP-AGB Stars of Solar

Metallicity

In this chapter the results of evolution calculations of TP-AGB stars of be-

tween 1 and 7 M� of initially solar metallicity (i.e. Z = 0.02) and com-

position are presented. The initial abundances of the elements required for

starting these calculations are taken from Anders & Grevesse (1989). The

absence of mass loss in these calculations means that the sequences have no

natural termination point1 and in each case some insurmountable numerical

difficulty brings the evolution to a halt. In all but one case the evolution has

been followed far enough that further calculations are unnecessary.

3.1 Initial Attempt – a 5M� star

The first run with the new code was done on a 5 M� star as it was this

mass of star that Pols & Tout (2001) did their work on. The evolution was

followed through a total of 60 thermal pulses. Full details of the model can

be found in Appendix B. The sequence was terminated at this point because,

without mass-loss, it would not reach a natural end-point. The evolution of

the helium luminosity is shown in Figure 3.1. The model reaches a maximum

thermal pulse strength of logLHe/L� = 9.356 at pulse 20. The interpulse

helium luminosity initially decreases but after around 105 years it begins to

1Presumably evolution would continue until the H-shell can no longer sustain burning
or a degenerate core exceeding the Chandrasekhar mass is obtained. Both cases would
take hundreds of pulses and it is not feasible to follow this evolution within the timescale
of a standard Ph.D.

35
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Figure 3.1: Plot of the evolution of the helium luminosity of the 5 M� model.

increase again.

The evolution of the H- and He-exhausted core masses are displayed in

Figure 3.2 and the evolution of the surface CNO abundances are displayed in

Figure 3.3. TDUP starts to occur by the second pulse and rapidly becomes

very efficient with λ2 exceeding unity by pulse 5. It remains so for 5 pulses.

The efficiency of TDUP then drops slightly and the core begins to grow in

mass. The initial episodes of TDUP slightly enhance the surface carbon

abundance, but the efficient TDUP means that HBB begins to occur after

only about five pulses and this rapidly depletes the carbon abundance, whilst

significantly boosting that of nitrogen. HBB is sufficiently hot to cause a

noticeable depletion in the oxygen abundance.

The calculations presented here go significantly further than those of Pols

& Tout (2001) who calculated a total of six thermal pulses for their 5 M�

Z = 0.02 model. The early pulses of the model presented here display the

same behaviour as those of this earlier work. This, together with the length

of the run, demonstrates that the new code works and so it may be applied

to other stellar masses with confidence. The results of these calculations are

detailed below.

2The efficiency of third dredge-up is defined by λ = ∆MTDUP/∆Mc, where ∆Mc is
the amount by which the H-exhausted core grows in the preceding interpulse phase and
∆MTDUP is the amount of material dredged up.
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Figure 3.2: Plot of the evolution of the H-exhausted (solid line) and He-
exhausted (dotted line) core masses of the 5 M� model.

0

0.005

0.01

0.015

0.02

0.025

0 100000 200000 300000 400000 500000 600000 700000

M
as

s 
fr

ac
tio

n

Time since first TP (years) 

   

Figure 3.3: Plot of the evolution of the surface abundances of carbon (solid
red line), nitrogen (dashed green line) and oxygen (dotted blue line) for the
5 M� model.
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Mass ( M�) No. TPs M1TP( M�) TDUP? MTDUP ( M�) λmax HBB?
1 6 0.54166 No - - No

1.5 13 0.55666 Yes 0.58335 0.427 No
2 16 0.56786 Yes 0.57605 0.791 No
3 20 0.56351 Yes 0.57862 0.902 No
4 21 0.75332 Yes 0.75960 1.034 Yes
5 60 0.83723 Yes 0.83723 1.048 Yes
6 40 0.89346 Yes 0.89665 1.036 Yes
7 23 0.99440 Yes 0.99470 1.005 Yes

Table 3.1: General properties of the Z = 0.02 models. The mass of the
H-exhausted core at which a thermal pulse first occurs is M1TP. The mass of
the H-exhausted core at which TDUP first occurs is MTDUP. The maximum
efficiency of TDUP (see main text for a definition of dredge-up efficiency) is
λmax. The final column lists whether the star experiences hot-bottom burning
(HBB) or not.

3.2 General Properties

The general properties of the models are first reviewed. An overview of these

characteristics is presented in Table 3.1. Of all the models only the 1 M� does

not show third dredge-up. Only 6 pulses were calculated so the question

of whether this model should undergo TDUP or not cannot be assessed.

Defining the efficiency of third dredge-up as λ = ∆MTDUP/∆Mc, where

∆Mc is the amount by which the H-exhausted core grows in the preceding

interpulse phase and ∆MTDUP is the amount of material dredged up, it should

be noted that TDUP is very efficient in most of the models and exceeds unity

for stars of 4 M� or heavier. It should be noted that because the sequences

are all terminated due to numerical issues, in the low-mass cases the value of

λmax quoted in Table 3.1 may not represent the actual maximum efficiency

that the model could reach if it were evolved far enough. Hot-bottom burning

is found to occur in all the models of 4 M� and above.

3.3 Model-by-model

A detailed look at the models of different mass that have been generated

is presented, focusing on the evolution of the helium luminosity, H- and He-

exhausted core masses and evolution of the abundances of the CNO elements



39 3.3 Model-by-model

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

-100000 0 100000 200000 300000 400000 500000 600000

lo
g 

L
H

e/
L

 

�

Time since first TP (years) 

   

Figure 3.4: Plot of the evolution of the helium luminosity of the 1 M� model.

at the surface of the star. Further details are presented in Appendix B.

3.3.1 1M�

In many respects this is the most disappointing model of all those created

in this work. At a solar mass it represents a prediction of what will happen

to our own Sun. It is therefore unfortunate that only 6 thermal pulses could

be calculated before the model broke down. The reason for the breakdown

is unclear but it appears that the code has difficulty converging changes

that are occurring in the envelope of the star as it approaches the peak of

a thermal pulse. It is also unfortunate that the model breaks down before

there is any sign of third dredge-up. To date, no-one has found TDUP in

such a model and it would have been interesting to see if the stars code

would have confirmed or contradicted this result.

Figure 3.4 shows the evolution of the helium luminosity. With only a

few thermal pulses calculated the model has evidently not reached any sort

of equilibrium. Note also that there is variation in the strength from pulse-

to-pulse in the first few pulses. The pulse strength is not monotonically

increasing. In addition the helium luminosity during the interpulse phase

is also much higher prior to the weaker pulses. The strongest pulse has a

helium luminosity of logLHe/L� = 6.5. A plot of the evolution of the H-
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Figure 3.5: Plot of the evolution of the H-exhausted (solid line) and He-
exhausted (dotted line) core masses of the 1 M� model.

and He-exhausted core masses is shown in Figure 3.5. The H-exhausted core

mass starts out at around 0.54 M� and steadily grows to around 0.57 M� after

the last calculated pulse. The He-exhausted core mass starts off at around

0.51 M� and grows to around 0.54 M� with its growth becoming more rapid

in the later stages. Because no dredge-up occurs during the calculated phase

the surface composition is unchanged from when the star first began its

thermal pulses and retains the abundances it obtained during first dredge-

up. The mass fractions of carbon, nitrogen and oxygen at the surface are

2.18× 10−3, 2.98× 10−3 and 9.21× 10−3 respectively.

3.3.2 1.5M�

A total of 13 thermal pulses have been evolved for this model. The evolution

of the helium luminosity as a function of time since the first thermal pulse

is shown in Figure 3.6. The peak luminosity at each pulse increases mono-

tonically and has reached a value of logLHe/L� = 7.67 at the last full pulse

calculated. The model run does not appear to have reached an equilibrium

phase by the time the model suffered insurmountable numerical difficulty as

the peak helium luminosities seem to be increasing with each pulse. In ad-

dition the helium luminosity in the interpulse phase seems to be continually

decreasing with each pulse.
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Figure 3.6: Plot of the evolution of the helium luminosity of the 1.5 M�
model.

A plot of the evolution of the H- and He-exhausted core masses is shown

in Figure 3.7. The H-exhausted core mass starts off at around 0.56 M� but

its rate of growth is retarded by the onset of third dredge-up after the 9th

thermal pulse after around 6 × 105 years since the first pulse. The effect of

the onset of TDUP is manifested in the surface abundances, shown in Fig-

ure 3.8. The abundance of carbon begins to increase rapidly and the increase

becomes more rapid as the dredge-up becomes deeper with each subsequent

pulse. There is also a slight increase in the oxygen abundance. Both of these

are expected because the helium intershell is rich in the products of He-

burning. This model would be expected to continue dredging up and would

eventually become a carbon star, with a surface C/O ratio (by number, not

mass fraction) greater than unity.

3.3.3 2M�

A total of 16 thermal pulses have been evolved for this model. The evolution

of the helium luminosity is shown in Figure 3.9. In a similar way to the

1.5 M� model, the peak luminosity increases from pulse to pulse whilst the

interpulse helium luminosity steadily declines. The core of this model is more

massive than that of the 1.5 M� model and so the helium luminosity peaks

at a much higher value. By the time the model sequence breaks down the
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Figure 3.7: Plot of the evolution of the H-exhausted (solid line) and He-
exhausted (dotted line) core masses of the 1.5 M� model.
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Figure 3.8: Plot of the evolution of the surface abundances of carbon (solid
red line), nitrogen (dashed green line) and oxygen (dotted blue line) for the
1.5 M� model. The model breaks down before a carbon star is formed.
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Figure 3.9: Plot of the evolution of the helium luminosity of the 2 M� model.

rate of increase of the peak helium luminosity seems to be slowing down.

Another consequence of the larger core mass of this model is that TDUP

occurs much sooner. The first instance of dredge-up occurs at around 3 ×
105 yrs, as can be seen in Figure 3.10. Unlike the 1.5 M� model, dredge-up

deepens dramatically with the dredge-up efficiency reaching λ = 0.791 on

the last calculated pulse. This deep dredge-up prevents the H-exhausted

core from growing much over the course of the calculation.

The occurrence of TDUP once again causes enrichment of the envelope

and enhances the surface abundances of carbon and oxygen. Whilst the

dredge-up is deeper in this model than in the 1.5 M� case, the surface abun-

dances do not change as rapidly. This is because this model has a much larger

envelope than the previous one and the dredged-up material is mixed with

the whole envelope. The repeated action of TDUP leads to the formation of

a carbon star at a time of approximately 9 × 105 yrs after the first thermal

pulse.

3.3.4 3M�

The 3 M� model displays the same trends as the 2 M�. A total of 20 pulses

have been evolved and by the later phases it appears as if the pulse strength

is reaching a limiting value as shown in Figure 3.12. The last pulse calculated
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Figure 3.10: Plot of the evolution of the H-exhausted (solid line) and He-
exhausted (dotted line) core masses of the 2 M� model.
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Figure 3.11: Plot of the evolution of the surface abundances of carbon (solid
red line), nitrogen (dashed green line) and oxygen (dotted blue line) for the
2 M� model.
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Figure 3.12: Plot of the evolution of the helium luminosity of the 3 M� model.

reaches logLHe/L� = 8.80. Also the interpulse helium luminosities seem to

be reaching a minimum value as well.

This model also displays TDUP which begins to occur at a little before

5× 105 years as can be seen in Figure 3.13. Dredge-up is more efficient than

in the case of the 2 M� model, reaches a maximum efficiency of λ = 0.902,

and sets in at a slightly higher core mass. The effect of TDUP on the surface

composition can be seen in Figure 3.14. A carbon star is finally formed at

around 1.2× 106 years after the first thermal pulse. The additional mass in

the envelope slows down the formation of a carbon star because even more

material needs to be dredged-up to enrich the envelope.

3.3.5 4M�

The 4 M� model displays different behaviour to the lower masses. The evo-

lution of its helium luminosity is shown in Figure 3.15. Like the lower-mass

models it appears to have reached a limiting strength for the peaks of its

pulses, namely logLHe/L� = 9.56. Like the lower-mass models the inter-

pulse helium luminosity is first seen to decrease and then after about 3× 105

years it slowly begins to increase again. This behaviour is not seen in the

lower mass models.

A plot of the evolution of the H- and He-exhausted core mass for this



Chapter 3: TP-AGB Stars of Solar Metallicity 46

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0 500000 1e+06 1.5e+06

M
/M

�

Time since first TP (years) 

   

Figure 3.13: Plot of the evolution of the H-exhausted (solid line) and He-
exhausted (dotted line) core masses of the 3 M� model.
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Figure 3.14: Plot of the evolution of the surface abundances of carbon (solid
red line), nitrogen (dashed green line) and oxygen (dotted blue line) for the
3 M� model.
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Figure 3.15: Plot of the evolution of the helium luminosity of the 4 M� model.

model is shown in Figure 3.16. Note that TDUP sets in very quickly, starting

by just the third pulse. TDUP also becomes very efficient with λ exceeding

unity. This has the effect of inhibiting the growth of the He-exhausted core.

Between 105 and 2.5 × 105 years, when TDUP is at its most efficient, the

He-exhausted core mass barely grows.

The evolution of the surface abundance of the CNO elements (Figure 3.17)

also displays behaviour not seen in the lower mass models. Initially the action

of TDUP is seen to increase the abundance of carbon at the surface of the

model, just as it does in all the low-mass models. However, by the 10th pulse

with TDUP, the carbon abundance begins to decline in the interpulse period.

The decline increases in severity with each subsequent pulse and by the time

the model breaks down more carbon is being destroyed in the interpulse than

is brought to the surface by TDUP. At the same time the nitrogen abundance

is steadily being enhanced. This is a clear signature that HBB is active in

this model. It has become a carbon star (i.e. its C/O ratio by number is

greater than unity) but the action of HBB means it does not remain that

way.
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Figure 3.16: Plot of the evolution of the H-exhausted (solid line) and He-
exhausted (dotted line) core masses of the 4 M� model.
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Figure 3.17: Plot of the evolution of the surface abundances of carbon (solid
red line), nitrogen (dashed green line) and oxygen (dotted blue line) for the
4 M� model.
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Figure 3.18: Plot of the evolution of the helium luminosity of the 6 M� model.
Note that the break just after 5× 105 years is due to a corrupted datafile.

3.3.6 6M�

The properties of the 6 M� model are very similar to those of the 5 M� one.

However, the evolution of the helium luminosity of the 6 M� model (shown

in Figure 3.18) shows slightly less intense thermal pulses and the build-up to

maximum intensity takes more pulses. The model displays the same pattern

of behaviour for the interpulse luminosity, namely a decrease towards some

minimum followed by an increase.

In terms of the behaviour of the core masses (Figure 3.19) and surface

CNO abundances (Figure 3.20), the model is almost identical to the 5 M�

one. TDUP occurs after the second pulse and becomes extremely efficient

just as it did in the 5 M� case. The efficiency then reduces slightly and the

core begins to grow. As with the 5 M� model, HBB sets in very quickly

due to the efficient dredge-up and the model is soon nitrogen-enhanced and

carbon poor. HBB occurs at a higher temperature in this model and the

oxygen abundance is depleted more rapidly.

3.3.7 7M�

The 7 M� model continues the trends observed in the 6 M� model. The

helium luminosity (Figure 3.21) evolves towards a lower peak intensity than



Chapter 3: TP-AGB Stars of Solar Metallicity 50

0.888

0.89

0.892

0.894

0.896

0.898

0.9

0.902

0.904

0 50000 100000 150000 200000 250000

M
/M

�

Time since first TP (years) 

   

Figure 3.19: Plot of the evolution of the H-exhausted (solid line) and He-
exhausted (dotted line) core masses of the 6 M� model.
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Figure 3.20: Plot of the evolution of the surface abundances of carbon (solid
red line), nitrogen (dashed green line) and oxygen (dotted blue line) for the
6 M� model.
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Figure 3.21: Plot of the evolution of the helium luminosity of the 7 M� model.

the 6 M� model and its evolution towards this peak also takes more pulses.

The behaviour of the core masses (Figure 3.22) is comparable to that found in

the 5 and 6 M� models. The abundance of the surface CNO elements displays

a slightly different behaviour as can be seen in Figure 3.23. Unlike the 5 and

6 M� models, where HBB sets in after a few thermal pulses, the carbon

abundance is already decreasing and the nitrogen abundance is increasing

before thermal pulses start to occur. Second dredge-up is sufficiently deep

to permit CNO-cycling to occur before thermal pulses start.

3.4 Model Comparisons

Many models of TP-AGB stars have been presented in the literature. It is

therefore possible to make a detailed comparison of the models presented

here with those made with other codes.

Karakas et al. (2002) have calculated a grid of stellar models at solar

metallicity for the mass range investigated above. These calculations were

made with the Mount Stromlo Stellar Structure Program (MSSSP). Details

are presented in Table 3.2. Comparing this data with that presented in Ta-

ble 3.1 we find similar trends. In both cases the efficiency of TDUP initially

increases with increasing mass before reaching a maximum value and then it

decreases again. In the case of the MSSSP models, this turnover occurs at
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Figure 3.22: Plot of the evolution of the H-exhausted (solid line) and He-
exhausted (dotted line) core masses of the 7 M� model.
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Figure 3.23: Plot of the evolution of the surface abundances of carbon (solid
red line), nitrogen (dashed green line) and oxygen (dotted blue line) for the
7 M� model.
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Mass ( M�) M1TP ( M�) MTDUP ( M�) λmax

1.5 0.560 0.658 0.0486
2.0 0.554 0.632 0.457
3.0 0.595 0.635 0.790
4.0 0.793 0.799 0.977
5.0 0.862 0.866 0.955
6.0 0.915 0.918 0.922

Table 3.2: Models of metallicity Z = 0.02 calculated using the Mount Stromlo
Stellar Structure Program, taken from Table 2 of Karakas et al. (2002). M1TP

is the mass of the H-exhausted core at the first thermal pulse, MTDUP is the
H-exhausted core mass at which TDUP first occurs and λmax is the maximum
efficiency of TDUP.

4 M� whereas the models of this work display a turnover at 5 M�. The two

sets of models display similar H-exhausted core masses at the first thermal

pulse. However, it should be noted that in the case of the low-mass models

TDUP begins to occur at a much lower core mass for the models computed

with stars than it does for those computed with MSSSP. This is an in-

teresting result – it has been noted that in order to solve the carbon star

mystery (see Section 1.4) dredge-up must occur at lower core masses than

has been seen in previous calculations. This issue is discussed in more depth

in Chapter 4.

Models of solar metallicity AGB stars have also been computed by

Straniero et al. (1997, 2000) using the Frascati Raphson-Newton Evolution-

ary Code, FRANEC (Chieffi & Straniero, 1989). Models of 1-, 1.5- and 3 M�

stars without mass loss are presented in Straniero et al. (1997). The 1 M�

model has an H-exhausted core mass of 0.555 M� at the first thermal pulse,

which is consistent with the model presented in this work. No TDUP is found

to occur and a total of 20 pulses have been calculated. For the 1.5 M� model

the core mass at first thermal pulse is 0.562 M� and TDUP occurs when

the core mass is 0.625 M�. This is significantly higher than the results of

this work, but somewhat lower than the MSSSP calculations predict. TDUP

reaches a maximum efficiency of λ = 0.3404 and the maximum luminosity

from helium burning is logLHe/L� = 7.848. TDUP is less efficient in the

FRANEC model, even though the helium luminosity reaches a higher value

than in the stars model. It should be noted, however, that the stars model
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evolution has been terminated prematurely due to numerical instability. In

the case of the 3 M� FRANEC model, the core mass at first thermal pulse is

0.572 M� and TDUP begins to occur when the core mass reaches 0.611 M�.

Again, the former is comparable to the stars model but dredge-up occurs

at a much higher core mass. The FRANEC model gives a maximum dredge-

up efficiency of λ = 0.461 which is significantly less efficient that the stars

model. The stars model also produces more intense pulses.

The phenomena of deep dredge-up and high peak luminosities are related,

as was also found by Straniero et al. (2000). On the one hand, stronger shell

flashes cause greater expansion during the power-down phase and thereby

allow the convective envelope to reach deeper layers. Conversely, deeper

dredge-up leads to a longer interpulse period and greater values of ∆MH as

found in these models (see the tables in Appendix B). Hence a larger reser-

voir of helium is built up which may cause a larger peak helium luminosity.

Another factor that contributes to the more powerful shell flashes is that the

longer interpulse period gives the inactive He-burning shell more time to cool

and be compressed. Therefore the next shell flash occurs at higher density

and more work has to be done to expand the intershell region, i.e. a higher

peak luminosity is required. The upshot is that deep dredge-up and powerful

shell flashes mutually reinforce each other.

Straniero et al. (2000) have also made models of intermediate mass stars

at solar metallicity using the FRANEC code. These have not been presented

to the same degree of detail as the lower-mass models but a useful comparison

can still be made. Their 5 M� model evolved without mass loss gives dredge-

up and reaches a final C/O ratio of 0.9. The maximum temperature at the

base of the convective envelope is 4.6 × 107 K which is not hot enough for

HBB to occur. In contrast the 5 M� stars model reaches a temperature of

7.9 × 107 K at the base of the convective envelope and hence a depletion of

C via CNO cycling is observed. In the 6 M� model of Straniero et al. (2000),

they find a slightly hotter temperature at the base of the convective envelope,

namely 6.9×107 K which is hot enough for a limited amount of CNO cycling

and hence the final C/O ratio of there model is 0.52. In contrast, the stars

6 M� model experiences very efficient CNO cycling to the extent that the

C/O ratio is very low.
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3.4.1 Models with Convective Overshooting

It is generally agreed that models produced using only convective mixing

do not produce the correct abundance profiles for s-process nucleosynthe-

sis to occur. They do not produce a pocket of 13C in the intershell region

which is required to provide a neutron source via the reaction 13C(α,n)16O.

An additional mixing mechanism is required and no physical origin has yet

been established. One of the mechanisms that has been proposed is convec-

tive overshooting, where blobs of material penetrate into convectively stable

regions leading to partial mixing of protons and carbon-rich material.

TP-AGB models with convective overshooting have been published by

Herwig (2000). He has calculated the evolution of both 3 and 4 M� stars

in which he allows convective elements to penetrate the convectively stable

regime with an exponentially decaying velocity. This overshooting is applied

at all convective boundaries. These models are evolved with a Reimers’

mass-loss law with η = 1.

Selected details of Herwig’s models, taken from Tables 1 and 2 of Her-

wig (2000), are listed in Tables 3.3 and 3.4. Note that for the 3 M� model

the values of λ obtained are similar to the stars calculations even though

overshooting is not included in these models. However, the stars mod-

els dredge-up efficiencies do not exceed unity. Dredge-up in Herwig’s 4 M�

model is significantly more efficient.

Both models naturally start off with higher core masses than the respec-

tive stars models. This reflects the fact that evolution prior to the AGB

with convective overshooting produces larger cores. According to Herwig the

large dredge-up efficiency in his models is the result of overshooting below the

pulse-driven intershell convection zone. This leads to a higher temperature

at the bottom of this zone and a larger peak luminosity than without over-

shooting. Stronger shell flashes give rise to deeper dredge-up, as discussed

above. For the 3 M� models, the stars model produces similarly high peak

helium luminosities and similarly deep dredge-up to Herwig’s model even

though overshooting is not included. For the 4 M� model, similar peak he-

lium luminosities are reached in both models but Herwig’s model produces

significantly deeper dredge-up. Herwig’s model also shows no sign of HBB

occurring.

It should be noted that Herwig’s models produce a 13C pocket (albeit one
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TP LHe/106 L� λ MH/ M� C/O
1 0.46 - 0.63087 0.29
2 1.17 - 0.63288 0.29
3 2.13 - 0.63593 0.29
4 2.63 0.10 0.63962 0.30
5 3.18 0.23 0.64352 0.32
6 4.63 0.44 0.64726 0.38
7 6.71 0.53 0.65030 0.45
8 8.80 0.71 0.65289 0.54
9 13.9 0.82 0.65482 0.64
10 19.0 0.91 0.65616 0.74
11 29.4 0.98 0.65717 0.86
12 42.9 1.02 0.65773 0.97
13 59.9 1.04 0.65804 1.08

Table 3.3: Selected details of a 3 M� star evolved with convective overshoot-
ing and mass-loss taken from Table 1 of Herwig (2000). The data are TP –
the thermal pulse number, LHe – the peak luminosity from helium burning,
λ – the dredge-up efficiency parameter, MH – the hydrogen free core mass
and C/O – the surface carbon-to-oxygen ratio.

TP LHe/106 L� λ MH/ M� C/O
1 2.26 - 0.78259 0.31
2 3.70 1.63 0.78211 0.34
3 6.21 1.51 0.78160 0.42
4 11.5 1.51 0.78083 0.51
5 21.0 1.51 0.77962 0.62
6 38.1 1.43 0.77814 0.72
7 59.8 1.42 0.77667 0.82
8 92.6 1.33 0.77522 0.91
9 123.3 1.33 0.77389 0.99
10 142.6 1.37 0.77253 1.06
11 195.5 1.32 0.77102 1.13

Table 3.4: Selected details of a 4 M� star evolved with convective overshoot-
ing and mass-loss taken from Table 2 of Herwig (2000). The data are TP –
the thermal pulse number, LHe – the peak luminosity from helium burning,
λ – the dredge-up efficiency parameter, MH – the hydrogen free core mass
and C/O – the surface carbon-to-oxygen ratio.
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that is too narrow - see Denissenkov & Tout 2003) whereas the stars ones

require another mechanism.

3.5 Summary

In this chapter, the results of computations of TP-AGB stars in the mass

range 1-7 M� have been presented. These are the first fully simultaneous

calculations to be made of TP-AGB evolution. Whilst numerical instability

remains a problem extended calculations are now possible without too much

difficulty. Efficient third dredge-up is found in all the models barring the

1 M� and hot-bottom burning is found to occur in stars of 4 M� and above.

Comparison of the above results with calculations made with other evo-

lution codes yields some interesting differences. While the stars results pro-

duce similar trends across the mass range to those obtained by other codes,

there is a general tendency for the stars code to produce more efficient

dredge-up at lower core masses. This efficient dredge-up is not related to

the inclusion of convective overshooting. It is not clear why the stars code

should give more efficient dredge-up than other codes. It could be related to

the simultaneous solution of the equations of stellar structure and evolution

but this hypothesis has not been tested. The author has attempted to pro-

duce a decoupled version of the code that would have solved for the mixing

after structural calculations had been made but severe numerical problems

were encountered. Another possible explanation for the differences between

the codes is their treatment of mixing. This also needs to be thoroughly

investigated.

The fact that the stars code produces efficient dredge-up at lower core

masses than other codes could potentially be useful in attempting to solving

the carbon star mystery (Iben, 1981). Current models of AGB stars are too

luminous to reproduce the observed luminosity functions of carbon stars in

the Large and Small Magellanic Clouds, i.e. dredge-up begins at too high

a core mass and is not efficient enough. If the trends of the stars models

extend to lower metallicity then it may be possible to reproduce the LMC

and SMC carbon star luminosity functions for the first time.



Chapter 4

TP-AGB Stars of Low

Metallicity

In this chapter TP-AGB models of Z = 0.008 and Z = 0.004 (the metallicities

of the Large and Small Magellanic Clouds) are presented. These models

cover stars in the mass range 1 to 6 M�
1 and, as with the solar metallicity

models, they are computed without mass loss. In addition, the relevance of

these models to the problem of the carbon star luminosity function (CSLF)

is discussed. A detailed comparison of models computed with two different

evolution codes is also performed.

4.1 The Z = 0.008 Models – TP-AGB Stars

in the LMC

Table 4.1 presents the general properties of the models of metallicity Z =

0.008. Third dredge-up is found to occur in all the models. Numerical

problems led to the early termination of the 1 M� model and it is unlikely

that its maximum dredge-up efficiency represents the true value for this star.

As with the solar metallicity models, hot-bottom burning is found to occur

in stars of 4 M� and above. In comparison with the solar metallicity models,

the Z = 0.008 models generally begin thermally pulsing with more massive

cores reflecting the differences in their pre-AGB evolution. Lower-metallicity

objects tend to have more massive cores for the same total mass. While the

1No 7 M� models are evolved for these metallicities because they would ignite carbon
in their cores.

58
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Mass ( M�) No. TPs M1TP( M�) TDUP? MTDUP ( M�) λmax HBB?
1 8 0.54803 Yes 0.57981 0.278 No

1.5 40 0.56610 Yes 0.57735 0.752 No
2 15 0.56419 Yes 0.57866 0.880 No
3 7 0.63039 Yes 0.64135 0.992 No
4 9 0.81403 Yes 0.81676 1.100 Yes
5 17 0.87293 Yes 0.87602 1.085 Yes
6 11 0.95462 Yes 0.95696 1.098 Yes

Table 4.1: General properties of the Z = 0.008 models. The mass of the
H-exhausted core at which a thermal pulse first occurs is M1TP. The mass
of the H-exhausted core at which TDUP first occurs is MTDUP. The max-
imum efficiency of TDUP is λmax. The final column lists whether the star
experiences hot-bottom burning (HBB) or not.

difference is minimal for the low-mass objects (being as little as 0.007 M� for

the 1 M� models), it becomes more pronounced for the intermediate mass

models. The difference is greatest between the 3 M� models where the core

mass at first thermal pulse is 0.08 M� greater for the Z = 0.008 model.

Unlike the solar metallicity models, the Z = 0.008 1 M� model does

experience third dredge-up. This is shown in Figure 4.1. Owing to the low

envelope mass and also the low metallicity of this object the effect of a fairly

modest amount of TDUP is quite dramatic. Figure 4.2 shows the evolution

of CNO at the surface for this model. TDUP begins (barely!) at around

6 × 105 years and the third episode of TDUP is sufficient to make a carbon

star. From the beginning of the TP-AGB to this point only 8 thermal pulses

have happened. This model has significantly deeper dredge-up which begins

at a much smaller core mass than the corresponding model of Karakas et al.

(2002). This is seen to occur in models of 1 to 2 M�. Its relevance to the

problem of the carbon star luminosity function will be discussed in section

4.3.

Of all the Z = 0.008 models the 1.5 M� model was evolved for the longest

before insurmountable numerical difficulties terminated the run. A total

of 40 thermal pulses were evolved through. A plot of the evolution of the

helium luminosity is shown in Figure 4.3. Note how the peak helium burning

luminosity increases with each pulse, reaching a peak value of logLHe/L� =

8.42 by pulse 14, before declining again. The model starts off with an initial

interpulse period of 1.3×105 yrs which steadily declines to around 2×104 yrs
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Figure 4.1: Evolution of the core masses for the Z = 0.008 1 M� model. The
H-exhausted core mass is the solid line; the dashed line represents the He-
exhausted core mass. Note the occurrence of TDUP – the sudden reduction
in the H-exhausted core mass – in the last 3 pulses.

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 200000 400000 600000 800000 1e+06

M
as

s 
fr

ac
tio

n

Time since first TP (years) 

   

Figure 4.2: Evolution of the CNO abundances for the Z = 0.008 1 M� model.
Carbon is displayed in red, nitrogen in green and oxygen in blue.
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Figure 4.3: Evolution of the helium luminosity of the 1.5 M� model. The
evolution covers a total of 40 thermal pulses.

by the end of the calculation. The behaviour of the efficiency of TDUP shows

a steady increase over the first few pulses and reaches a maximum value of

0.752 by pulse 12. After this the dredge-up efficiency shows a steady but

persistent decline.

Carbon stars are formed for all models of between 1 and 3 M�. Above

this mass, HBB sets in and the dredged-up carbon is rapidly converted into

nitrogen. The 4 M� model is particularly interesting. Figure 4.4 displays the

evolution of the surface CNO abundances. HBB starts to occur at around

7× 104 yrs and it is possible to see its severity increase over the subsequent

interpulse periods. Once it has begun, the nitrogen abundance rapidly in-

creases and the rate of that increase steepens with each pulse while the carbon

becomes more rapidly depleted. After just two pulses with HBB more carbon

is depleted in the interpulse period than is brought to the surface by third

dredge-up. Above this mass HBB sets in very quickly and the behaviour

observed is similar to that seen in solar metallicity stars.
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Figure 4.4: Evolution of the CNO abundances for the Z = 0.008 4 M� model.
Carbon is displayed in red, nitrogen in green and oxygen in blue. Note the
onset of HBB at around 7×104 years and the increase in its severity over the
subsequent interpulse periods.

4.2 The Z = 0.004 Models – TP-AGB Stars

in the SMC

Table 4.2 presents the general properties of the models of metallicity Z =

0.004. As with the LMC metallicity models, TDUP is found to occur in

all the models and hot-bottom burning occurs for stars of 4 M� and above.

Once again, insurmountable numerical difficulties prevented further evolu-

tion of these models. In the case of the 1 M� object, this occurred during

the second episode of TDUP just after, but probably not related to, the for-

mation of a carbon star. Hence the value of λmax obtained for this model is

probably not a good indication of the maximum value that this object would

actually reach. Comparison of the core mass at first thermal pulse for a given

initial mass shows that lower metallicity objects tend to have more massive

cores, reflecting the differences in their evolution prior to the TP-AGB (see

Figure 4.5).

The trends observed at higher metallicity are again displayed in these

models. The models of between 1 and 3 M� all form carbon stars. In the

case of the 1 M� model it takes just two episodes of third dredge-up to do
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Mass ( M�) No. TPs M1TP( M�) TDUP? MTDUP ( M�) λmax HBB?
1 4 0.56326 Yes 0.58048 0.127 No

1.5 12 0.57680 Yes 0.58849 0.774 No
2 11 0.60032 Yes 0.60275 0.916 No
3 9 0.71385 Yes 0.71421 1.048 No
4 8 0.83004 Yes 0.83166 1.097 Yes
5 14 0.90159 Yes 0.90292 1.068 Yes
6 7 0.97297 Yes 0.97383 0.954 Yes

Table 4.2: General properties of the Z = 0.004 models. The mass of the
H-exhausted core at which a thermal pulse first occurs is M1TP. The mass
of the H-exhausted core at which TDUP first occurs is MTDUP. The max-
imum efficiency of TDUP is λmax. The final column lists whether the star
experiences hot-bottom burning (HBB) or not.
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Figure 4.5: Comparison of the hydrogen-exhausted core mass (Mc) at first
thermal pulse across the range of initial masses (M∗) for all three metallicities
present so far. Note that in nearly all cases, the lower metallicity objects have
larger core masses than the higher metallicity ones.
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Figure 4.6: Evolution of the surface CNO abundances for the Z = 0.004
4 M� model. Carbon is in red, nitrogen in green and oxygen in blue.

this. Models more massive than around 4 M� are seen to display hot-bottom

burning. The 4 M� model spends a short amount of time as a carbon star

before HBB becomes sufficiently strong to cause depletion of carbon. As

with the Z = 0.008 4 M� model, the severity of HBB can be seen to increase

with each subsequent pulse.

Problems with HBB led to the early termination of the 5 and 6 M� mod-

els. It was found that, during TDUP as the H-rich envelope penetrates into

the hot H-exhausted core regions, numerical instabilities set in. These are

linked to the movement of the mesh. If a mesh point that is rich in hydrogen

moves inward during TDUP (which it is likely to do given the form of the

mesh spacing function) it carries some of the hydrogen down with it. This

is numerical diffusion, an undesirable and (to a large degree) unavoidable

consequence of the adaptive mesh used by the stars code. In the present

case it also has an undesirable effect. The hydrogen finds itself suddenly at a

higher temperature which increases the energy generation and feeds back to

the structure with unfortunate consequences for the stability. This problem

must be solved if the higher mass objects are to be investigated further. The

viscous mesh could be employed here and used to prevent movement of the

mesh. This may alleviate the problem.
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4.3 The Carbon Star Luminosity Function

As a set of models of TP-AGB stars at the metallicities of the Large Mag-

ellanic Cloud (LMC) and Small Magellanic Cloud (SMC) have been pro-

duced, the luminosity function of carbon stars in these populations can be

investigated. Carbon stars are stars which show the features of carbon rich

molecules such as C2 and CN in their spectra, rather than oxides such as TiO,

indicating they have a surface carbon-to-oxygen ratio (by number) greater

than unity. They are typically identified in photometric surveys using the

colours from narrow band filters centred near 7800Å and 8100Å (Cook &

Aaronson, 1989). The first filter focuses on a TiO absorption feature whilst

the latter centres on a CN absorption feature. A census of carbon stars has

been performed in the LMC and SMC. In the LMC a total of 7750 carbon

stars have been found; in the SMC 1707 are known (Groenewegen, 2004).

The distances to the LMC and SMC are well determined and so we are able

to construct luminosity functions for the carbon stars in both these locations.

It is therefore possible to test models of stellar evolution.

It is believed that two populations of carbon stars exist. These reflect two

different formation routes. They are referred to as intrinsic and extrinsic.

The intrinsic carbon stars are believed to be thermally pulsing asymptotic

giant branch stars. As seen above, in low-mass stars repeated occurrence of

TDUP gives rise to carbon stars because the products of helium burning are

carbon plus a little oxygen. The extrinsic carbon stars are believed to be

formed by the accretion of carbon-rich material from a more evolved donor

(Van Eck et al., 1998).

There is a long-standing problem with forming intrinsic carbon stars. De-

tailed stellar evolution models have so far proved unable to produce dredge-

up at low enough core masses and hence at low enough luminosities. When

Iben formulated the carbon star mystery (Iben, 1981) calculations showed

that dredge-up did not occur for core masses below about 0.6 M� (e.g. Sack-

mann, 1980; Wood & Zarro, 1981). This is also borne out by more recent

calculations and leads to problems in reproducing the observed luminosity

functions of the LMC and the SMC as described below.

The stars code has been able to produce more efficient TDUP and in

some cases at lower core masses than other codes, so it is important to

investigate the impact that the LMC and SMC metallicity models have on
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the problem of the carbon star luminosity function (CSLF).

4.3.1 LMC Models

For the LMC models carbon stars are formed in all models of 3 M� and

below. The formation of carbon stars in these models is extremely rapid. It

requires only two or three thermal pulses with TDUP. This is because of the

low abundance of oxygen: only a small amount of carbon needs to be dredged

up for it to become more abundant than oxygen. The maximum λ value of

the 1 M� model quoted in Table 4.1 is unlikely to be a true representation of

the maximum efficiency reached because numerical instabilities prevent the

model from being evolved to a steady state.

For models of 2 M� or below the core masses at which the first episode of

dredge-up occurs are lower than those in other models. For example, Karakas

et al. (2002) find their 1 M� model without mass loss does not begin dredge-

up until its core mass is 0.657 M�. This is 0.084 M� more massive than the

model presented here. This is important because it is expected that the lower

mass stars become the lower luminosity carbon stars. More efficient third

dredge-up is also found in these stars.

With the results of Karakas et al. (2002), Izzard & Tout (2004) used

a synthetic evolution code to fit the observed CSLF. They found that the

minimum core mass for third dredge-up to occur would have to be lower by

0.07 M� and the minimum dredge-up efficiency would have to be 0.5 to get

a good fit. The results of this chapter are in very good agreement with these

predictions. They show deeper and earlier dredge-up. These models are also

consistent with the requirement of a minimum temperature at the base of

the convective envelope of 2.5 × 106 K for third dredge-up to occur as used

by Marigo, Girardi & Bressan (1999) in their synthetic code.

Figure 4.7 shows the evolution of the surface C/O abundance by number

with absolute bolometric magnitude. The data points are taken at the min-

imum luminosity occurring during the interpulse as this is what determines

the lowest luminosity carbon star that forms. The results are encouraging.

It is found that the two lowest-mass models are able to form carbon stars at

an absolute bolometric magnitude of about −4.2 well below the LMC CSLF

peak at Mbol = −4.9.
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Figure 4.7: The evolution of surface C/O with absolute bolometric magni-
tude, measured at the time of minimum luminosity in the interpulse, for
models of 1, 1.5 and 2 M�. The LMC carbon star luminosity function peaks
at Mbol = −4.9.

4.3.2 SMC models

As with the LMC models, carbon stars are formed in all models below 3 M�.

Again, carbon star formation follows rapidly once TDUP is established and

occurs even more readily due to the lower oxygen abundance. For the same

reasons as with the LMC model, λmax is unlikely to be truly representative

of the maximum efficiency reached.

The results of the SMC model runs are less encouraging from the point

of view of reproducing the SMC carbon star luminosity function. The low-

mass models give minimum core masses for third dredge-up similar to those

of Karakas et al. (2002). The only advantage is the occurrence of TDUP in

the 1 M� model. Figure 4.8 shows the evolution of the C/O abundance with

absolute bolometric magnitude. The lowest mass models become carbon

stars with Mbol = −4.2. This is only just below the peak of the SMC CSLF.

4.3.3 Population Synthesis

In order to see if these new models can reproduce the LMC and SMC CSLF

a population of stars based on these detailed models needs to be created.

The synthetic TP-AGB evolution code of Izzard et al. (2004) is utilized. The
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Figure 4.8: The evolution of surface C/O with absolute bolometric magni-
tude, measured at the time of minimum luminosity in the interpulse, for
models of 1, 1.5 and 2 M�. The SMC carbon star luminosity function peaks
at Mbol = −4.5.

luminosity core-mass relation therein, is found to fit the new data well and

so does not need to be refitted. If the core mass, Mc, is greater than 0.58 M�

at the first thermal pulse then the luminosity is given by

L = 3.7311× 104 ×max[(
Mc

M�
− 0.52629)(2.7812− Mc

M�
), 1.2(

Mc

M�
− 0.48)]

(4.1)

otherwise it is given by

L = max[4(18160 + 3980Z)(Mc − 0.4468)− 4000, 10]. (4.2)

As in Izzard & Tout (2004), the luminosity dip after each thermal pulse (see

Iben & Renzini 1983) is modelled by a factor of the form

fL = 1− 0.5×min

[
1, exp(−3

τ

τip
)

]
, (4.3)

where τ is the time from the beginning of the current pulse and τip is

the interpulse period. In this form the luminosity dip found in the detailed

models can be reproduced (see Figure 4.9). It is necessary to include this dip

in order to reproduce the low-luminosity side of the CSLFs. The core masses
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Figure 4.9: Plot of the exponential fit (solid line) to the post-flash luminosity
dip of the 4th pulse of the 2 M� Z= 0.008 model (dashed line). The fit leads
to an underestimate of the bolometric magnitude of about 0.1 mag.

at the first thermal pulse, M1TP, minimum core mass for third dredge-up to

occur, Mc,min, and λ values used by the synthetic code are fitted to the above

detailed models2. Additional models of 1.25, 1.75 and 2.25 M� were made

for the LMC in order to better model the behaviour of the core mass. The

fits are

M1TP = 0.9557 + 0.31741 exp

[
−(M∗ − 1.164)2

1.1192

]
− 0.82352

1 + 0.318312.7546−M∗
(4.4)

for the LMC and

M1TP = 0.56633 +
0.067603M∗

1 + 0.096788M∗−2.6354
(4.5)

for the SMC, where M∗ is the mass of the star at the beginning of the TP-

AGB. Third dredge-up begins in the models when the core mass reaches a

minimum value, Mc,min defined by

Mc,min = 0.9659 + 0.26309 exp

[
−(M∗ − 1.0724)2

1.2629

]
2The fits were calculated by Dr. R. G. Izzard.
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− 0.73763

1 + 0.33442.86280−M∗
(4.6)

for the LMC and

Mc,min = 0.58042 +
0.065376M∗

1 + 0.098049M∗−2.6691
(4.7)

for the SMC.

The behaviour of λ once TDUP has commenced is modelled by

λ = a[1− (1− 0.42n)e−
n
b ], (4.8)

a = max(0, 2.0369 + 15Z − 2.8775M∗ + 1.6206M2
∗

−0.335270M3
∗ + 0.023211M4

∗ ), (4.9)

b = 6.835− 4.44870

1 + 0.002M∗−2.5
, (4.10)

where Z is the metallicity and n is the pulse number counting the first pulse

where dredge-up occurred as 1. The last factor in Equation 4.8 allows λ

to rise to a maximum over several pulses and then begin to fall off as is

seen in the detailed models. The low number of thermal pulses calculated in

the 1 M� models makes a reliable estimate for λ difficult and so for stars of

between 1 and 1.5 M� the values as computed for the 1.5 M� case are used.

This makes dredge-up slightly more efficient but as carbon stars form rapidly

at such low masses this will not significantly affect the results.

A population of 10,000 stars was evolved for 16 Gyr. A Kroupa, Tout

& Gilmore (1993) initial mass function and a constant star formation rate

were assumed. Mass loss was included by the Vassiliadis & Wood (1993)

type prescription used by Karakas et al. (2002). The superwind phase is

turned on when the Mira pulsation period of the star reaches 500 d. The

synthetic code has been fitted to results from detailed models without mass

loss. Because the Vassiliadis & Wood formalism causes significant mass loss

only in the later pulses and the models form carbon stars rapidly, the impact

of this approximation on the results should be limited.

The results of the population synthesis runs are shown in Figures 4.10

and 4.11. The models are normalized such that the peak of a model matches

the peak of the corresponding observations. The model fits the observations
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Figure 4.10: The theoretical fit (solid line) to the LMC CSLF. The his-
togram is observational data taken from Groenewegen (2004). The CSLF is
reasonably well reproduced by the theoretical models.

of the LMC CSLF very well except for a slight underabundance of carbon

stars between Mbol = −4 and Mbol = −4.75. Note that the model does not

fit the very low-luminosity carbon stars. These are likely to be extrinsic,

rather than intrinsic, carbon stars (see Izzard & Tout, 2004).

The fit to the SMC CSLF is somewhat disappointing. The peak in the

model luminosity function is almost 1 magnitude too bright. If the minimum

core mass for dredge-up is reduced by 0.06 M� as in Izzard & Tout (2004)

then the SMC CSLF can be reproduced (see Figure 4.11). Again, the very

low luminosity tail is expected to be due to extrinsic carbon stars.

It should be noted that these models of the LMC and SMC CSLFs consist

only of a single metallicity and do not account for the finite size of the

clouds. Both these effects would broaden the luminosity function slightly.

The work of Harries, Hilditch & Howarth (2003) gives examples of systems

with distance moduli that can be as much as 0.2 magnitudes from the quoted

distance to the SMC. This is unlikely to have a great effect on the luminosity

function, given the binning is of this order but it may improve the LMC

model. The effect of metallicity variations is much more difficult to quantify,

though it should be noted that varying the metallicity by a factor of 2 (i.e.

going from Z= 0.008 for the LMC to Z= 0.004 for the SMC) does produce
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Figure 4.11: Theoretical fits to the SMC CSLF. The histogram is obser-
vational data taken from Groenewegen (2004). The unadjusted theoretical
model (solid line) reproduces the shape of the luminosity function well, but it
is too bright by almost 1 magnitude. If the minimum core mass required for
TDUP is reduced by 0.06 M� (dashed line) then the CSLF is well reproduced.

noticeably different results.

4.4 Detailed Model Comparison

It is not obvious why the models generated by the stars code should give

lower core masses than those produced by the Monash version of the Mount

Stromlo Stellar Structure Program (MSSSP) as used by Karakas et al. (2002).

In order to better understand these differences a set of detailed compar-

isons were carried out. Models calculated with the MSSSP were provided by

Dr. Amanda Karakas and are used here with her kind permission. Models

of 1, 3 and 5 M� at a metallicity of Z = 0.008 were evolved without the

use of mass loss or convective overshooting. Each code used a value for the

mixing length parameter, α, appropriate for that code based on calibration

to a solar model. Initial abundances were solar-scaled based on the values in

Anders & Grevesse (1989).

Before commencing a comparison of the models it is important to point

out some inherent problems. To make the discussion as meaningful as possi-

ble it would be desirable to have two codes that only differed in, for example,
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their treatment of mixing. In reality, a great many differences exist between

two separate codes. Everyone employs slightly different reaction rates, has

their own equation of state, treats semiconvection differently, couples their

equations differently and so on. Unfortunately, this makes it exceptionally

difficult to determine why code A’s models are different from code B’s and

tends to leave one describing how the models differ rather than why.

4.4.1 Evolutionary Properties

Figure 4.12 shows the evolution of the helium luminosity for the first few

pulses of a 1 M� model computed with both codes. At the beginning of

the TP-AGB the stars model has a H-exhausted core mass that is about

0.01 M� larger than the MSSSP model. It suffers more violent TPs than the

MSSSP model and the helium luminosity during the interpulse is much lower.

This is reflected in the temperature of the helium burning shell. The stars

code produces higher temperatures during thermal pulses (for example the

first pulse has a He-shell temperature about 14% higher than the first pulse

in the MSSSP model), while during the interpulse period these temperatures

are somewhat lower (see Figure 4.13). This behaviour is to be expected. A

more massive core binds the He-shell to itself more tightly. It therefore takes

a stronger pulse (i.e. a higher helium shell temperature during the pulse) to

overcome this effect.

Rather than looking at the evolution from the first thermal pulse, it is

perhaps more desirable to compare two pulses which take place at approx-

imately equal core mass. If it is assumed that the core mass controls the

characteristics of the pulse then any differences visible should be down to

differences in the codes as opposed to comparing physical situations that

are not alike. The 5th pulse of the stars sequence and the 9th pulse of the

MSSSP sequence have core masses within 0.001 M� of one another. Despite

the similarity of the core masses and the almost identical temperatures in

the preceding interpulse phase, the stars code gives a more violent pulse

(by a factor of about 3 in terms of the peak helium luminosity reached).

The situation is similar in the 3 M� models. While the two models enter

the TP-AGB with very similar helium luminosities (see Figure 4.14), the

stars model generates a slightly more violent first pulse and its pulses grow

in strength at a faster rate than the MSSSP one. As with the 1 M� model
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Figure 4.12: Comparison of the evolution of the helium luminosity for a 1 M�
model computed using the stars and MSSSP codes.
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Figure 4.13: Comparison of the evolution of the helium shell temperature for
a 1 M� model computed using the stars and MSSSP codes.
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Figure 4.14: Comparison of the evolution of the helium luminosities for 3 M�
models computed using the stars and MSSSP codes.

the stars model gives lower helium luminosities during the interpulse. At

the first thermal pulse the MSSSP model has a core mass which is lower than

the stars model’s by 0.01 M�. The evolution of the core masses is shown in

Figure 4.15. It should be noted that dredge-up begins in both models when

the core mass grows above around 0.644 M�. This happens on the second

pulse in the stars model and on the fourth pulse in the MSSSP model.

In both models, the peak helium luminosity of the pulse preceding the first

episode of dredge-up is approximately the same.

The 5 M� models start off with very similar helium luminosities. In fact,

the peak helium luminosity reached in the first thermal pulse is identical

in the two models (see Figure 4.16) despite the MSSSP model having a

core mass that is lighter than the stars model by about 0.008 M�. This

suggests that the pulse strength does not just depend on the core mass. The

subsequent evolution is the same as in the lower mass cases. The strength of

the pulses grows more rapidly in the stars model than it does in the MSSSP

model. The stars model may give deeper dredge-up because its pulses are

stronger than the MSSSP model’s. Note that the interpulse period of the

stars model is shorter. This is due to the model having a higher H-burning

shell temperature which enables H to be processed to He via the CNO cycle

more rapidly. A higher H-shell temperature is to be expected from a star
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Figure 4.15: Comparison of the evolution of the H-exhausted core masses of
3 M� models computed using the stars and MSSSP codes.

with a more massive core.

In all the comparisons it is noted that the models start off with different

core masses at the first thermal pulse. This difference is related to the evolu-

tion prior to the AGB, specifically the evolution during core helium burning

which is sensitive to the treatment of semiconvection (see the discussion in

Straniero et al., 2003, for example). Apart from the differences in the core

masses, there is no obvious indication as to why the models evolve differ-

ently. To search for possible sources of this divergence it is useful to focus

on a particular pulse and examine the changes that occur in the interior as

the pulse progresses.

4.4.2 Focusing on a Pulse

Considering the similarity in strength of the first thermal pulse of the 5 M�

models and their subsequent divergence, examining in detail what happens

during the pulse is a useful exercise. To this end detailed interior models

were produced at three points during this pulse. By examining details such

as the thermodynamic variables as a function of mass it may be possible

to detect why the models begin to diverge. The points chosen were at the

peak of the pulse and also at 500 and 1000 years after the peak of the pulse.

It should be noted that the points used in this comparison are not exactly
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Figure 4.16: Comparison of the evolution of the helium luminosity for 5 M�
models computed with the stars and MSSSP codes.

coincident in time but as close as the output of the codes allows.

Profiles of the pressure, density, temperature, degeneracy parameter (ψ),

opacity and thermal energy as functions of mass across the intershell region

are shown in Figures 4.17, 4.18 and 4.19. These are taken from the peak of

the pulse, 500 and 1000 years after the peak of the pulse, respectively. At

first glance, it looks like there may be some significant differences between

the two models. However this proves to be an artifact of the plots, owing

to the fact that the two models have different core masses. If one model

is shifted by about 0.008 M� the pressure, density and ψ plots are virtually

identical at each of the three times considered.

Looking at the profiles at the peak of the thermal pulse (Figure 4.17)

there are some minor differences in the plots of the temperature and thermal

energy profiles. The spike in the temperature profile is slightly higher in the

stars model and the thermal energy reaches more negative values (i.e. more

energy is being used up in expanding regions of the star). These differences

are likely to be due to their being a slight difference in the times at which the

two models were taken. Evolution around the peak of the pulse is extremely

rapid so a slight difference in time between the two models can lead to a

large difference in their internal structures. The core of the stars model

also appears to be slightly hotter than that of the MSSSP model. However
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Figure 4.17: Thermodynamically important variables as a function of mass
across the intershell at the peak of the first thermal pulse of the 5 M� model.
Note that the blocky profile for the degeneracy parameter ψ in the MSSSP
model is due to the low accuracy that this variable is stored to in the output
files.
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Figure 4.18: Thermodynamically important variables as a function of mass
across the intershell 500 years after the peak of the first thermal pulse of the
5 M� model. Note that the blocky profile for the degeneracy parameter ψ in
the MSSSP model is due to the low accuracy that this variable is stored to
in the output files.
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Figure 4.19: Thermodynamically important variables as a function of mass
across the intershell 1000 years after the peak of the first thermal pulse of
the 5 M� model. Note that the blocky profile for the degeneracy parameter
ψ in the MSSSP model is due to the low accuracy that this variable is stored
to in the output files.
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the difference is minimal and may just reflect that the stars model has a

more massive core.

The profiles of the two models at the other two times show the same

trends. In both cases, the pressure, density, ψ and thermal energy profiles

are virtually identical. As with the profiles at the peak of the thermal pulse,

the stars model shows temperatures that are slightly higher than in the

MSSSP model. However, there is one difference that does stand out. The

opacity profile in the stars model is noticeably higher above 0.89 M� at 500

years after the thermal pulse. By 1000 years after the pulse, the two opacity

profiles are back to being virtually identical in the region being plotted.

Looking at the opacity profile at greater masses (i.e. up into the envelope of

the star) shows that by about 1 M� the MSSSP model has a greater opacity

and that it becomes significantly greater in the outer regions of the star.

While this affects the luminosity and surface temperature of the star, it is

difficult to see how it would affect the intershell region and hence it cannot

be used to explain the divergence of the two models.

There is no obvious explanation as to why the two models should diverge

in their behaviour. This is perhaps not too surprising as the divergence is

only slight and so the cause must be a subtle one. The real cause is probably

hidden behind the myriad differences between the stars and MSSSP codes.

In an ideal world, the comparison would be done between two codes that

were identical in all but one respect but this would require a major effort on

the part of the users of one or both of the codes. Also the two codes should

probably be given the same starting model as well so that any differences

in behaviour can be solely attributed to something that happens on the

TP-AGB. However, there are occasions in which the author has found that

getting one of his own models to converge with his own code is impossible

and hence the prospect of converging a model from one code with another

code is somewhat daunting. More work needs to be done in this area if

the differences between models produced with different codes are to be truly

understood.
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4.5 Summary

In this chapter, the results of calculations of TP-AGB stars of between 1 and

6 M� calculated at metallicities appropriate to the LMC and SMC, have

been presented. These models give deeper dredge-up than has been found in

previous calculations. For stars of 1 to 2 M� at LMC metallicity, the models

show dredge up to begin at a smaller H-exhausted core mass than has been

found in previous calculations.

The models presented in this chapter have been applied to the problem

of the carbon star luminosity function. Details from the stars models have

been used as input parameters for a population synthesis program. In this

way it is possible to produce a theoretical CSLF for stars in the LMC and

SMC. It is found that the CSLF of the LMC can be reproduced using the

stars models but the SMC CSLF cannot be. It is unclear why this is.

In order to address why the stars models give notably different results

from other calculations a detailed comparison of models of metallicity Z =

0.008 computed using the stars and MSSSP codes has been made. Three

separate masses were examined and in each case the stars code had a more

massive core at the first thermal pulse and the thermal pulses were seen

to grow in strength at a faster rate. The difference in core mass is due to

evolution prior to the AGB. In the case of the 5 M� model, both models

produced an equally intense first thermal pulse but the subsequent evolution

diverged. A detailed examination of the profiles of the models at the peak

of the first pulse and at 500 and 1000 years afterwards failed to show any

reason for the divergence, although the core of the stars model was seen to

be slightly hotter.



Chapter 5

Nucleosynthesis on the

TP-AGB

In nova fert animus mutatas dicere formas corpora.

My mind is bent to talk of substances changed into new forms.

Publius Ovidius Naso, Metamorphoseon, Liber I

In this chapter updates to the portion of the stars code that deals with

the evolution of minor isotopes are described. The nucleosynthesis of light

isotopes in TP-AGB stars of 1.5, 3 and 5 M� at Z = 0.02, 0.008 and 0.004 is

discussed.

5.1 Updating the Algorithms

Chapter 2 briefly touched upon the existence of a couple of subroutines in

the stars code that were designed to be used to study the evolution of minor

isotopes. Minor isotopes are defined to be those whose abundances are too

low or whose reactions liberate insufficient energy to affect the structure of

the star. The main evolution code assumes that only 1H, 4He, 12C, 14N,
16O and 20Ne have reactions whose energy generation significantly affects the

structure of the star. The minor isotopes subroutines were put into the code

by Dr. Peter Eggleton in the code’s early days but it would appear that

they have not been touched since (other than to adjust the common blocks

to make sure the code will still compile and run).

83
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These subroutines, which hereinafter are referred to as the nucleosynthe-

sis subroutines, comprise the two files funcs2 and equns2. They are used

by the code as follows. First a model is converged with the main evolution

code. This gives the structure of the model at the new timestep. The de-

tails of this model are then passed into the nucleosynthesis subroutines in

order to calculate what the minor isotope compositions should be at the new

timestep. The subroutine funcs2 contains the physics required to compute

the changes in the compositions of the minor isotopes while equns2 sets up

the necessary difference equations. These can then be passed to solver and

its attendant matrix-solving subroutines in order to work out the changes to

the abundances of the minor isotopes.

The main evolution routines deal with equations that are complicated

functions of the variables that the code computes changes to. It therefore

makes sense to calculate the derivatives required by the code numerically,

rather than analytically. Analytic derivatives would be better but would

make it harder to implement changes in the code. The numerical derivatives

are calculated by making several passes through the physics package funcs1,

slightly changing each variable in turn and calculating the differences be-

tween each pass and an unchanged run. However as structural parameters

have already been determined by the main evolution routine, the derivatives

required by the nucleosynthesis subroutines only depend on the minor iso-

tope abundances. This means that the derivatives are simple functions of

the composition and can be computed analytically (and easily changed if

necessary) which gives a considerable saving of computing time if many iso-

topes are being dealt with. The difference equation for the evolution of the

composition of the element Xi is(
σ

k+1
2

δm
k+1

2

+ [−ṁk+1]

)
(Xi,k+1 −Xi,k)−

(
σ

k− 1
2

δm
k− 1

2

+ [ṁk]

)
(Xi,k −Xi,k−1)

−
(

Xi,k−X0
i,k

∆t
+RXi,k

)
δmk = 0 (5.1)

where Xi,k and X0
i,k are the abundances of element Xi at mesh point k at the

present and previous timestep, ∆t is the timestep, δmk± 1
2

are the masses con-

tained in the zones above and below mesh point k, RXi,k is the net consump-

tion rate of Xi by nuclear reactions, and σk± 1
2

are the diffusion coefficients

corresponding to these zones. Square brackets indicate that the quantity
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within is only to be considered if it is positive – these terms deal with the

fact that the mesh may move from one timestep to the next. The derivatives

of Equation 5.1 with respect to element Xj are

δij

{
σk+ 1

2

δmk+ 1
2

+ [−ṁk+1]

}
= 0 (5.2)

at mesh point k + 1,

δij

{
−

(
σk+ 1

2

δmk+ 1
2

+ [−ṁk+1]

)
−

(
σk− 1

2

δmk− 1
2

+ [ṁk]

)}
−δij

1

∆t
δmk +

dRXi,k

dXj

δmk = 0 (5.3)

at mesh point k and

δij

{
σk− 1

2

δmk− 1
2

+ [ṁk]

}
= 0 (5.4)

at mesh point k − 1. These quantities are all calculated within the subrou-

tine funcs2 and the difference equations and their derivatives are set up by

equns2.

The original nucleosynthesis subroutines were designed to deal with the

same isotopes as the main evolution code plus 3He. The routines have now

been expanded to include a total of 40 minor isotopes plus the six major

elements used in the main evolution code. It is necessary to include these

six because under some circumstances (e.g. during the formation of a 13C

pocket) the compositions are expected to deviate slightly from those used

in the main code. These deviations are unimportant from the point of view

of the structure of the star but can affect the nucleosynthesis. The new

nucleosynthesis subroutines cover all the stable isotopes (plus a few important

unstable ones) from deuterium up to 34S plus ten elements around the iron

group. These isotopes are listed in Table 5.1.

Unstable nuclei that are not included in the network are treated as if their

decay were instantaneous. This approximation is fair for all light isotopes

with half-lives from seconds to hours during most phases of stellar evolution.

For the unstable isotopes considered in the network, the decay lifetimes are

the terrestrial values given by Krane (1988).
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Light isotopes
1H,n,2H,3He,4He,7Li,7Be,11B,12C,13C,

14C ,14N,15N,16O,17O,18O,19F,20Ne,21Ne,22Ne,
22Na,23Na,24Mg,25Mg,26Mg,26Alm ,26Al g ,27Al,28Si,29Si,

30Si,31P,32S,33S,34S
Iron group isotopes

56Fe,57Fe,58Fe,59Fe,60Fe
59Co,58Ni,59Ni ,60Ni,61Ni

Table 5.1: Isotopes included in the nucleosynthesis code. Isotopes also in-
cluded in the structural part of the code are highlighted in bold. Unstable
isotopes are in italics.

5.1.1 Charged Particle Reaction Rates

In order to couple the nucleosynthesis network 63 charged particle reactions

are required. The rates are taken from a variety of sources and are listed

in Table 5.2 (proton captures) and Table 5.3 (α captures). The rate of the

reaction 3He(3He,2p)4He is that given by Caughlan & Fowler (1988), as are

the rates for carbon and oxygen burning reactions.

The nucleosynthesis routines were designed to employ the ready-to-use

fits to the reaction rates from the REACLIB library (1991 updated version

of Thielemann et al., 1986), updated where possible to include the latest

experimental results (see Lugaro et al., 2004, for full details). For some of

the rates involved in the production of 19F, such as 15N(α, γ)19F, the rates are

virtually the same as those presented in the NACRE compilation (Angulo &

et al., 1999). In other cases, such as the rates 14N(α, γ)18F and 18O(α, γ)22Ne,

the rates used are updates with respect to the NACRE rates.

5.1.2 Neutron Capture Rates

A total of 45 neutron capture reactions are required for the network. The

work of Bao et al. (2000) was used as the main source. Supplementary (n, γ)

data are taken from Rauscher & Thielemann (2000) for captures by 59,60Fe.

Rates for the reaction 33S(n, α)30Si were taken from Schatz et al. (1995).

For the reactions 26Alg(n, p)26Mg and 26Alg(n, α)23Na rates are from Koehler

et al. (1997). The important reaction rate for 14N(n, p)14C is from Gledenov

et al. (1995), which is in agreement with previous experimental (Koehler &
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Reaction Source
1H(p,β+ν)2H REACLIB
2H(p, γ)3He CF88
7Li(p, α)4He CF88

7Be(p, γ)24He CF88
12C(p, γ)13N CF88
13C(p, γ)14N NACRE
14C(p, γ)15N W90
14N(p, γ)15O CF88
15N(p, γ)16O CF88
15N(p, α)12C CF88
16O(p, γ)17F CF88
17O(p, γ)18F L90,B95
18O(p, γ)19F CF88
18O(p, α)15N CF88
19F(p, γ)20Ne CF88
19F(p, α)16O CF88

21Ne(p, γ)22Na EL95
22Ne(p, γ)23Na EL95
22Na(p, γ)23Mg SC95,ST96
23Na(p, γ)24Mg EL95
23Na(p, α)20Ne EL95
24Mg(p, γ)25Al 99tDC
25Mg(p, γ)26Alg I96
25Mg(p, γ)26Alm I96
26Mg(p, γ)27Al I90
27Al(p, γ)28Si CF88

27Al(p, α)24Mg T88,C88
28Si(p, γ)29P G90
29Si(p, γ)30P CF88
30Si(p, γ)31P CF88

Table 5.2: Proton capture reactions and the sources from which their rates
were taken. Key: C88 (Champagne et al., 1988), CF88 (Caughlan & Fowler,
1988), B95 (Blackmon et al., 1995), EL95 (El Eid & Champagne, 1995), G90
(Görres et al., 1990), I90 (Iliadis et al., 1990), I96 (Iliadis et al., 1996), L90
(Landre et al., 1990), NACRE (Angulo & et al., 1999), SC95 (Schmidt et al.,
1995), ST96 (Stegmüller et al., 1996), REACLIB (1991 updated version of
Thielemann et al. 1986), T88 (Timmermann et al., 1988), W90 (Wiescher
et al., 1990).
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Reaction Source
4He(αα, γ)12C CF88
7Li(α, γ)11B CF88
12C(α, γ)16O CF88
13C(α, n)16O D95
14C(α, γ)18O JG01
14N(α, γ)18F G00
15N(α, γ)19F deO96

16O(α, γ)20Ne CF88
17O(α, n)20Ne D95
18O(α, γ)22Ne D03
18O(α, n)21Ne D95
19F(α, p)22Ne U04

20Ne(α, γ)24Mg CF88
21Ne(α, γ)25Mg CF88
21Ne(α, n)24Mg D95
22Ne(α, γ)26Mg K94
22Ne(α, n)25Mg K94
23Na(α, n)26Alg CF88
23Na(α, n)26Alm CF88
24Mg(α, γ)28Si CF88
25Mg(α, γ)29Si CF88
25Mg(α, n)28Si CF88
25Mg(α, p)28Al CF88
26Mg(α, γ)30Si CF88
26Mg(α, n)29Si CF88
26Mg(α, p)29Al CF88
27Al(α, γ)31Si REACLIB

Table 5.3: Reactions involving α capture and the sources from which their
rates were taken. Key: CF88 (Caughlan & Fowler, 1988), D95 (Denker et al.,
1995), deO96 (de Oliveira et al., 1996), G00 (Görres et al., 2000), JG01
(Jorissen & Goriely, 2001), D03 (Dababneh et al., 2003), K94 (Kaeppeler
et al., 1994), REACLIB, 1991 updated version of Thielemann et al. (1986),
U04 (Ugalde, 2004).
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O’Brien, 1989) and theoretical (Bahcall & Fowler, 1969) estimates. This rate

is approximately a factor of two higher than the rate proposed by Brehm et al.

(1988) and used by Meynet & Arnould (1993, 2000). For neutron captures

by 59Ni reaction rates are taken from Holmes et al. (1976) and this is also

the source of the rate of the reaction 17O(n, α)14N.

In addition to this, two neutron sinks are included to account for neu-

tron captures by those elements not included in the network, following the

method of Jorissen & Arnould (1989). The first sink is emulated by the

reaction 34S(n, γ)35S and represents nuclei between 34S and the iron group.

The value of the cross-section for this sink is calculated by averaging over

the contribution from all the missing elements, i.e.

σlight =
Σ55

i=34Xiσi

Σ55
i=34Xi

(5.5)

where Xi is the abundance of isotope i and σi is the cross-section for neu-

tron capture by that isotope. The second sink is emulated by the reaction
61Ni(n, γ)62Ni and represents captures by all the heavy elements above 61Ni.

The cross-section of this heavy sink is computed in a similar way to the light

sink. The value used for the cross-sections of the sinks are dependent on

the mass and metallicity of the star being calculated. Appropriate rates for

the models computed in this section were provided by M.A. Lugaro (private

communication).

The heavy sink reaction also has another important function. It can be

used to give an approximate indication of how much s-process nucleosyn-

thesis takes place. This is done by assuming that neutron capture by 61Ni

generates 62Ni which then decays with an ad hoc decay rate of 1 per second.

The decay of 62Ni is assumed to produce 61Ni and an additional particle,

g. This g particle is affectionately, if unofficially, referred to as a gallino.

By counting the number of gallinos produced it is possible to estimate the

s-process nucleosynthesis that is occurring.

The introduction of neutrons into the network was found to produce

numerical instability. The capture cross-sections for the neutron reactions

give much faster reaction rates than the reactions involving charged particles

and the code is unable to simultaneously solve for changes associated with

both neutron and charged particle reactions. In order to circumvent this
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problem the following strategy was adopted. The changes due to charged

particle reactions are solved for first and any neutrons produced by these

reactions are noted. The rates of the neutron capture reactions are calculated,

but the neutrons are not yet allowed to react. Once the nucleosynthesis

model has been converged and the abundances at the next timestep have

been determined, the neutrons that have been produced during that timestep

are then captured by the appropriate isotopes based on the relative reaction

rates. In this way all the neutrons produced in one timestep are assumed to

used be up. Given the strength of the neutron reactions, this is a reasonable

assumption.

5.2 Light Isotope Nucleosynthesis

To investigate the nucleosynthesis of light elements in TP-AGB stars models

of 1.5, 3 and 5 M� were calculated at three different metallicities, Z = 0.02,

0.008 and 0.004. In order to make the models slightly more realistic than in

the previous two chapters mass loss was included in these simulations. On

the RGB and E-AGB, a Reimers’ type mass loss was applied with η = 0.4. At

the beginning of the TP-AGB, the value of η was increased to 1. While the

Reimers’ mass-loss law is almost certainly not the perfect mass-loss law to

apply to the TP-AGB (it does not produce a model with a superwind phase),

it does provide reasonable mass loss during the early pulses and enables some

comment to be made on the yields from these stars.

5.2.1 Nucleosynthesis During a Thermal Pulse

As an example of the capabilities of the nucleosynthesis subroutines and to

elucidate some of the nucleosynthesis that can occur in an AGB star, the

case of the Ne-Na cycle is considered. The Ne-Na cycle involves the isotopes
20Ne, 21Na, 21Ne, 22Na, 22Ne and 23Na (Arnould et al., 1999). The sequence

of reactions is

20Ne(p, γ)21Na(β+)21Ne(p, γ)22Na(β+)22Ne(p, γ)23Na(p, α)20Ne (5.6)

and there is some leakage into the cycle from 19F(p, γ)20Ne and out of the

cycle via 23Na(p, γ)24Mg.
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Figure 5.1 shows profiles of the abundances of the main evolution iso-

topes (to aid identification of the phase of the TP cycle) and the stable

isotopes involved in the Ne-Na cycle at four points of a thermal pulse cycle.

These are just after TDUP, during the interpulse phase when the H-shell is

moving outwards in mass, when the intershell convection zone is active and

finally during TDUP after the TP. The top two panels of Figure 5.1 show

the discontinuity in composition that has been left behind by TDUP – this

is located at just over 0.6 M�. The next pair of panels down show the point

where the H-shell has moved outward in mass. As the H-burning shell moves

outward it causes strong depletions in 19F, 21Ne, 22Ne as the Ne-Na cycle

favours creation of 23Na at the temperatures found in the H-burning shell of

such a model (Karakas & Lattanzio, 2003).

By the time the helium burning shell and the intershell convection zone

become active, the H-burning shell has moved outward in mass substantially

(third pair of panels in Figure 5.1). Note that small amounts of 21Ne and
22Ne have been produced at the mass co-ordinate of the point of re-ignition

of the H-burning shell after TDUP. This is to be expected. Limited proton

captures by 20Ne lead to the creation of 21Ne, some of which is converted to
22Ne (Karakas & Lattanzio, 2003). The effect on the 20Ne is unnoticeable

owing to its high abundance. The effect of the intershell convection zone

on the Ne-Na cycle isotopes is mostly to mixing material into the 21,22Ne

depleted region left by H-burning. Some α-capture may occur but it does not

substantially change the intershell abundances. As TDUP occurs (bottom

pair of panels, Figure 5.1) the envelope pushes into the intershell region where

the material is enhanced in 19F, 22Ne and 23Na. The envelope abundances of

these elements would be expected to show enhancements as a consequence

of TDUP.

5.2.2 Surface Composition Evolution

The evolution of the surface compositions of the models will now be described

in relation to the various constraints from observations and measurements of

isotopes in pre-solar grains.
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Figure 5.1: The effects of the Ne-Na cycle in the H-shell. The left hand panels
show the main isotopes and help to identify the phase of the TP. The right
hand panels show the corresponding abundances of the elements involved in
the Ne-Na cycle. From top to bottom the phases are: post-TDUP of the
previous pulse, growth of the H-exhausted core during the interpulse, part
way through a TP and TDUP after the TP.
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Constraints From Pre-solar Grains

The study of pre-solar grains has become a very important test of stellar

models. Laboratory techniques can give measurements of isotopic ratios

that are far more precise than is possible with spectroscopic measurements

of stars. While there are some caveats on which type of grains are formed in

which sources, they nonetheless provide a valuable tool for stellar modellers.

For the purposes of AGB stars the most important grains are silicon

carbide (SiC). It is currently believed that these grains can only form in

conditions where the C/O ratio exceeds unity, i.e. in carbon stars. Thus

isotopic measurements from these grains offer the chance to examine in detail

the surface composition of low-mass AGB stars (and also possibly that of

intermediate mass AGB stars in their last few thermal pulses when HBB has

shut down).

In addition to SiC grains, measurements of various kinds of oxide grains

have also been made. These grains include corundum (Al2O3), spinel

(MgAl2O4) and various types of silicate (SiO4). These grains are believed

to form in conditions where C/O is less than 1 and so offer a window on

the intermediate mass AGB stars as well as the early phases of the low-mass

AGB stars.

Plots of the evolution of the isotope ratios 12C/13C, 14N/15N, 16O/17O,
16O/18O, 25Mg/24Mg, 26Mg/24Mg and 26Al/27Al as a function of the 12C/16O

ratio are shown in Figures 5.2, 5.3 and 5.4. They are grouped together by

metallicity in order to show the differences in behaviour between stars of

different mass. In the case of Figure 5.2 the 1.5 M� model is represented by

a single point because no TDUP occurred before the model sequence was

terminated (owing to numerical instabilities). The last panel of this figure

shows a decline in the 26Al/27Al ratio because 26Al is an unstable isotope

and decays to 26Mg during the course of the evolution.

In the case of the 1.5 and 3 M� models the 12C/13C ratios rise with the

C/O ratio. This is to be expected because TDUP brings 12C-rich material

into the envelope. The different metallicities show the same rate of increase

in the 12C/13C ratio. For the 5 M� models, HBB is seen to deplete the star

of carbon-12, reducing the C/O ratio below that with which it entered the

TP-AGB. The 12C/13C ratio is also seen to decrease and in each case reaches

the CNO equilibrium value of around 4. Measurements of mainstream SiC
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Figure 5.2: Evolution of various isotope ratios as a function of the 12C/16O
ratio for stars of Z = 0.02. The 1.5 M� model is depicted in red and in most
cases is just a single point because no dredge-up was obtained in the model. A
decline in the 26Al/27Al ratio is observed because 26Al is an unstable element.
The 3 M� model is in green and the 5 M� model is in blue. All tracks begin
with a C/O ratio of around 0.3.
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Figure 5.3: Evolution of various isotope ratios as a function of the 12C/16O
ratio for stars of Z = 0.008. The 1.5 M� model is depicted in red, the 3 M�
model is in green and the 5 M� model is in blue. All tracks begin with a
C/O ratio of around 0.3



Chapter 5: Nucleosynthesis on the TP-AGB 96

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

12
C

/13
C

C/O

   

1.5 M �

3 M �

5 M �

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.5 1 1.5 2

14
N

/15
N

C/O

   

0

50

100

150

200

250

0 0.5 1 1.5 2

16
O

/17
O

C/O

   

620

640

660

680

700

720

740

0 0.5 1 1.5 2

16
O

/18
O

C/O

   

0.11
0.115

0.12
0.125

0.13
0.135

0.14
0.145

0.15
0.155

0.16

0 0.5 1 1.5 2

25
M

g/
24

M
g

C/O

   

0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23

0 0.5 1 1.5 2

26
M

g/
24

M
g

C/O

   

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2

26
A

l/27
A

l

C/O

   

Figure 5.4: Evolution of various isotope ratios as a function of the 12C/16O
ratio for stars of Z = 0.004. The 1.5 M� model is depicted in red, the 3 M�
model is in green and the 5 M� model is in blue. All tracks begin with a
C/O ratio of around 0.3
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grains show 12C/13C ratios from 10 to 100. Assuming that these grains form

at C/O> 1 then the models provide ratios around the upper end of this

range with 12C/13C ratios of around 60 when C/O is around unity. There

seems to be little variation with mass (at least among the low-mass stars)

and metallicity. The models therefore seem unable to account for the lower
12C/13C ratios observed in SiC grains. However, a model such as the 4 M�

Z = 0.02 presented in Chapter 3 which starts to undergo HBB just after it

becomes a carbon star may be able to provide these lower ratios. The CNO

cycle has an equilibrium 12C/13C ratio of around 4 and so its action will lower

the ratio. Another possibility is that some extra mixing mechanism is active

in these stars. This would mix envelope material to hotter temperatures

allowing greater CNO cycling and lowering the 12C/13C ratio.

The 14N/15N ratios predicted by the models are also in agreement with

measurements of pre-solar SiC grains. These predict ratios of between 200

and 20000. It seems that at lower metallicities the 14N/15N ratio becomes

higher at the TP-AGB. Along the TP-AGB there is little variation in the ratio

for the 1.5 and 3 M� models. The 5 M� models all show rapid enhancements

in the 14N/15N ratio which is to be expected because these objects undergo

HBB, i.e. CNO cycling at the base of their envelopes.

Information on oxygen isotopic ratios comes, unsurprisingly, from the

oxide rich grains which are presumed to have formed in an environment where

C/O<1. The 16O/17O and 16O/18O ratios in a large sample of corundum

grains have been measured by Nittler et al. (1997). They find 16O/17O ratios

of between 350 and 3600 and 16O/18O ratios of between 165 and over 5000.

In addition, recent measurements of spinel grains by Zinner et al. (2004)

have yielded 16O/17O ratios of between 500 and 5000, together with 16O/18O

ratios of between 350 and 20000. The models presented in this chapter are

all consistent with the measured 16O/18O ratios. In the case of the low-mass

models there is a slight elevation in the ratio as 16O is present in the ashes

of He burning that are brought to the surface during TDUP. The high mass

models display massive enhancements in the 16O/18O ratio because HBB

destroys 18O.

The 16O/17O ratios prove more problematic. The models are all consis-

tently lower that the lowest grain measurements. The change in this ratio

occurs primarily at first dredge-up when material that is 17O rich is brought
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to the surface (Boothroyd et al., 1994). In low-mass stars the effects of third

dredge-up on the 16O/17O ratios are limited. A slight increase in the ratio

occurs because 16O is brought to the surface by TDUP. In the intermediate-

mass stars HBB can create 17O at the expense of 16O and so the 16O/17O

ratio drops (Boothroyd et al., 1994). This is exactly the behaviour that is

seen in these models although the actual value of the ratio obtained does

not fit the measurements. This is not surprising because there is a large

uncertainty in the 17O(p, γ)18F reaction rate and many different simulations

predict very different 16O/17O ratios (Nittler et al., 1997). This rate needs

to be varied within the simulations in order to determine if it can produce

ratios closer to the observed values. However such a sequence of runs would

be time-consuming given the current status of the code and has not yet been

attempted.

On the TP-AGB magnesium isotopes can be produced in two regions of

the star the helium-rich intershell and the hydrogen-burning shell. At tem-

peratures above around 3.5×108 K (which may be reached during the thermal

pulses) the reaction 22Ne(α, n)25Mg can occur (a possible source of neutrons

for the s-process) but this temperature is not reached in stars of around one

solar mass. Note that for all metallicities, the 1.5 M� models show virtually

no change in their magnesium ratios. The 3 M� models show slight enhance-

ments in both of the heavy Mg isotopes. In the H-burning shell, the Mg-Al

cycle is expected to be active at temperatures of around 3×107 K and will de-

plete 25Mg and produce 26Al (Arnould et al., 1999). While this temperature

is reached in both the 1.5 and 3 M� models the effects are limited and only

slight depletions would be expected in the 1.5 M� models. The production of

magnesium in the 3 M� models swamps the effects of the H-burning shell. In

the 5 M� models the effects of both production sites are clearly visible. When

TDUP occurs and the C/O ratio is temporarily enhanced both magnesium

isotope ratios are enhanced, reflecting the dredging up of material from the

intershell. Increases in both ratios are again observed as the C/O ratio is

reduced owing to the action of HBB during the interpulse phase. The Mg-Al

cycle is active during this phase and both 25Mg and 26Mg are produced.

Isotopic ratios for magnesium have been measured in both carbon-rich

and oxygen-rich grains. In SiC and corundum the 26Mg contribution is dom-

inated by the decay of 26Al due to high aluminium to magnesium ratios (Zin-
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ner et al., 2004). These grains are generally used to infer 26Al/27Al ratios and

give rather imprecise measurements of 25Mg/24Mg owing to low magnesium

concentrations. However, magnesium-rich spinel grains afford a much more

precise look at both the 25Mg/24Mg and 26Mg/24Mg ratios. Zinner et al.

(2004) measured the magnesium ratios in 23 spinel grains. Excluding the

exceptional grain OC2 they found that the 25Mg/24Mg ratio was between

0.118 and 0.151 while the 26Mg/24Mg ratio was between 0.143 and 0.226.

The models presented in this section are all capable of producing magnesium

ratios within these ranges.

Finally, the 26Al/27Al ratios also fit the measured ratios from pre-solar

grains. Measurements of oxide grains give ratios in the range 10−4 to around

0.02 (Nittler et al., 1997), while in SiC the range is narrower1, being roughly

1− 4× 10−3 (Amari et al., 2000). 26Al is produced in the H-burning shell

as described above. In the case of low-mass stars, it only reaches the surface

when TDUP occurs and so an increase in the 26Al/27Al ratio is correlated

with a rise in the C/O ratio. For the intermediate-mass models, the effects of

HBB and the Mg-Al cycle can clearly be seen. As the C/O ratio is decreased

during the interpulse period, the 26Al/27Al rises while it is constant as TDUP

takes place.

Fluorine

The production site of 19F has been a major puzzle for nucleosynthesis for

a long time. It was predicted by Goriely et al. (1989) that 19F should be

manufactured in asymptotic giant branch stars. The sequence of reactions

that produces 19F is

14N(α, γ)18F(β+)18O(p, α)15N(α, γ)19F. (5.7)

Protons are provided by 14N(n, p)14C if a source of neutrons exists, such

as the 13C(α, n)16O reaction. Other sites and mechanisms for the Galactic

production of fluorine have been proposed. The neutrino process operating

during type-II supernovae can produce fluorine (Woosley & Weaver, 1995).

Fluorine can also be synthesized during core He-burning (via the pathway

given above) and ejected via the strong winds of Wolf-Rayet stars (Meynet &

1This excludes those SiC grains of type X which are believed to come from supernovae.
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Figure 5.5: Observed 19F abundances in AGB stars (Figure 6 from Jorissen
et al., 1992). Open squares are K stars; filled squares are Ba star; open circles
are M stars; filled circles are S stars; circles with crosses are SC stars; crosses
are N stars and triangles are J stars. Note that [19F/16O] is with respect to
the fluorine abundance in K giants, not the solar abundance.

Arnould, 1993, 2000). It appears that the contributions of asymptotic giant

branch and WR stars must be included in the computation of the chemical

evolution of the Galaxy to account for the observations of fluorine in the

Milky Way (Renda et al., 2004).

Currently the only observationally confirmed site for fluorine production

is in AGB stars (Jorissen et al., 1992). Figure 5.5 shows the observed 19F

abundance with respect to the C/O ratio (Figure 6 from Jorissen et al., 1992).

There is a strong correlation of 19F with C/O ratio. This is to be expected

because 19F is formed in the helium rich intershell and can only reach the

surface by the action of TDUP. Figures 5.6, 5.7 and 5.8 show evolution of

the surface fluorine abundance in the nine models generated with the stars

code. These figures show that, at a fixed mass, more fluorine is produced
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Figure 5.6: Fluorine-19 abundance as a function of 12C/16O for the 1.5 M�
models. The Z = 0.02 is represented by a single point as no TDUP was
obtained from this model.

at higher metallicities owing to the fact that the chain that produces 19F

starts from 14N which is a secondary isotope. The lower metallicity tracks

also appear flatter as a single TDUP event leads to a greater C/O ratio due

to the lower oxygen abundance.

The 5 M� models show completely different behaviour from the lower

mass ones. Initially their C/O ratios increase due to the occurrence of TDUP

but HBB quickly sets in (usually after as little as 2 TPs with TDUP) and

the C/O ratio is steadily depleted. As this happens, there is also a depletion

in the fluorine abundance. While 19F is still being produced in the intershell

region and to a lesser degree by proton captures involving 18O in the H-

burning shell, it is depleted by 19F(p, γ)20Ne in the hydrogen burning shell.

Note that none of the models presented here are able to reproduce the

observed fluorine abundances. What could be the reason for this? Some

of the discrepancy could be accounted for by uncertainties in the reaction

rates. Lugaro et al. (2004) studied the effects of reaction rate uncertainties

on fluorine production using models from the MSSSP code. They found that

the yield could be affected by as much as 50% for models of around 3 M�.

Other possibilities include the fact that the stars code does not produce a
13C pocket which could provide the mechanism to generate additional pro-

tons (via neutron production and subsequent capture by 14N) required by
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Figure 5.7: Fluorine-19 abundance as a function of 12C/16O for the 3 M�
models.
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Figure 5.8: Fluorine-19 abundance as a function of 12C/16O for the 5 M�
models. Note that fluorine becomes depleted in these models due to the
reaction 19F(p, γ)20Ne occurring in the H-burning shell.
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the reaction path. Additional protons could also be mixed into the inter-

shell region by extra mixing processes (convective overshooting, rotational

mixing, internal gravity waves). Lugaro et al. (2004) also suggest that some

cool-bottom processing (i.e. extra mixing process) might deplete the carbon

abundance slightly without affecting the fluorine. This solution is perhaps

less desirable for the stars code. The LMC carbon star luminosity function

can be reproduced with the stars models. Any adjustment to the carbon

abundance may disrupt the fit to this observation.

Lithium

Lithium is an element whose origins are poorly understood. It is expected

to be produced in AGB stars of intermediate mass. In these stars a process

known as the Cameron-Fowler mechanism is expected to operate (Sackmann

& Boothroyd, 1992). This mechanism involves the production of 7Be by

the reaction 3He(α, γ)7Be in a region deep in a stellar interior where there

is convection outward to cooler regions (Cameron & Fowler, 1971). The

beryllium can then decay by electron capture to form lithium-7 in cooler

regions where the reaction 7Li(p, α)4He is not rapid enough to destroy the

lithium. In order to produce 7Be temperatures of around 107 K are required.

Temperatures of 107 K are reached in the H-burning shells of AGB stars, and

in the case of intermediate-mass stars, the convective envelope extends down

as far as this shell and there is hot-bottom burning. Thus the Cameron-

Fowler mechanism is expected to operate in intermediate mass TP-AGB

stars.

Figure 5.9 shows the evolution of the surface lithium abundance as a

function of the star’s mass. The lithium abundance is expressed as

log ε(7Li) = log
N(7Li)

N(1H)
+ 12 (5.8)

where N is the number density of that element. Initially the lithium abun-

dance drops as the envelope delves into layers that are hot enough to deplete
7Li by proton captures but not hot enough to allow the production of 7Be.

This initial drop happens at a lower total stellar mass at lower metallic-

ity because TDUP occurs sooner at lower metallicity. As TDUP deepens

and the temperature at the base of the convective envelope becomes hotter
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Figure 5.9: Plot of the evolution of log ε(7Li) (see main text for the definition)
at the surface of the star as a function of the star’s mass at that time. The
initial mass of each star was 5 M�.

7Be can be produced and this rapidly decays to 7Li. While the Z = 0.02

and Z = 0.008 models produce similar amounts of lithium, the Z = 0.004

produces much more, reaching log ε(7Li) ≈ 2.2. These results do not agree

with those of Travaglio et al. (2001) whose models were computed with the

MSSSP and its post-processing code. They found that their 5 M� mod-

els of Z = 0.02, 0.008 and 0.004 all produced a peak lithium abundance of

log ε(7Li) ≈ 4. However, they note that lithium production is sensitive to

the mass loss rate used and their models are evolved with the Vassiliadis &

Wood (1993) formalism. Another possibility is that the mixing in the stars

code is not fast enough to allow all the 7Be that is formed to be moved to

cooler regions before it can react with the present protons.

The models compare reasonably well to observations though there are

some discrepancies. Smith et al. (1995) surveyed 112 red giants in the

LMC and SMC. In both populations, they observed lithium abundances of

log ε(7Li) ≈ 1.0 − 4.0. The luminosity of these objects was consistent with

the luminosity of intermediate-mass AGB stars undergoing HBB. While the

lower abundances are consistent with the models presented here, the upper

ones cannot be reproduced. Again, this may point to a problem with some

of the physics in the stars code.
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5.3 The 13C Pocket: a Warning on Numerical

Diffusion

The nucleosynthesis subroutines make it possible to investigate the formation

of a carbon-13 pocket in the intershell region of AGB stars. It is believed

that such a pocket must occur in order to provide a neutron source, the

reaction 13C(α, n)16O in low-mass AGB stars. A pocket forms if small quan-

tities of protons are mixed into the carbon-rich intershell at the end of third

dredge-up. However, the physical mechanism for such mixing has yet to be

established.

The Z = 0.02 3 M� model was used to look at the formation of a 13C

pocket in the stars models. The episode of TDUP immediately after the

12th thermal pulse was used because, by this point, TDUP is well established

in the model. The left hand panels of Figure 5.10 show the evolution of the

mass profiles of hydrogen, 12C, 13C and 14N towards the end of the episode

of TDUP. The top panel is taken from just before the end of TDUP. As

expected the composition profiles show a sharp discontinuity as the envelope,

of one composition, is pushing downward into the intershell region (the lower

mass region in the plots) which has an entirely different composition. In

the second panel down, the discontinuity is seen to have become softer and

there is a steep but smooth transition in the abundance profiles from the

intershell to the envelope. This means that there are now small quantities of

protons present in the 12C-rich regions. These protons are captured by the
12C and a pocket of 13C is formed (third panel down on the left hand side of

Figure 5.10). In fact, protons are present in sufficient quantities that the 13C

also captures protons to form a substantial pocket of 14N, as can be seen in

the bottom left-hand panel of Figure 5.10.

The formation of a 13C-pocket within the model is disturbing: it is gen-

erally believed that there should be no mixing of protons into the 12C-rich

intershell if only standard mixing (i.e. only in those regions where5r > 5ad)

is applied. So why do protons end up in the intershell region? The answer

is numerical diffusion. Suppose a profile with a sharp discontinuity is set

up over a series of mesh points as depicted by the solid line in Figure 5.11,

with the black circles representing the location of the mesh points. If the

mesh points move inward in mass, as indicated, to the locations marked by
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Figure 5.10: Evolution of the mass profiles of elements related to the for-
mation of a 13C pocket. The panels on the left are calculated with the fully
adaptive mesh while those on the right are calculated with the 500 outer-
most mesh points fixed in mass from just before the end of TDUP. Note the
movement of protons into the 12C-rich intershell in the left hand panels and
the subsequent formation of a 13C-rich region. The profiles in both columns
are taken at approximately similar times.
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Figure 5.11: A schematic depiction of why numerical diffusion occurs. A
sharp abundance profile (solid line) is set up over a few mesh points (black
dots). If the mesh points then move in mass to the positions indicated by
the grey circles, the abundance profile is modified to that indicated by the
dashed line.

the grey circles, the profile is modified to that indicated by the dashed line.

This is because when a mesh point moves the code works out the value of

the abundance (or whatever the quantity being considered is) at the new

location from the values from the old mesh point locations surrounding the

new one. This inevitably leads to the sharp profile being smeared out. It is

an unfortunate and very much undesirable consequence of using an adaptive

mesh.

The only way to prevent numerical diffusion is to prevent the movement

of the mesh points. This can be achieved using the viscous mesh. Instead of

fixing the mass location of the innermost mesh points, the outer ones can be

fixed instead, so that none of the mesh points in the envelope (and part of the

intershell) are able to move. However, as numerical diffusion only becomes
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a serious issue once TDUP has finished2 the outer mesh points need only

be fixed when the end of TDUP is approached. This retains the maximum

resolution possible in the interface between the envelope and the intershell

so that TDUP can be accurately calculated (see the discussion in Straniero

et al., 1997, regarding the need for high spatial resolution).

From the same initial model as the previous run, the 3 M� model was

evolved through TDUP and part of the interpulse period. This time the 500

outermost mesh points were fixed just before the end of TDUP. The profiles

of the 1H, 12C, 13C and 14N are shown on the right hand panels of Figure 5.10.

As with the original run, TDUP initially gives a sharp discontinuity in the

abundance profiles. TDUP also proceeds to the same depth as it did in

the original run so the resolution must be comparable in both calculations.

The sharp discontinuity in the abundance profiles is retained throughout the

interpulse unlike in the original run. There is no mixing of protons into the

carbon-rich intershell and so no 13C pocket is formed. This shows that the

pocket obtained in the original run was indeed the result of a numerical,

rather than a physical effect. With this established, and now knowing that

the numerical diffusion can be suppressed by locking the mesh it is also

possible to investigate additional mixing mechanisms (e.g. rotational mixing)

to see if they are able to produce a 13C pocket. This investigation is to be

carried out in the future.

5.4 Summary

The minor isotope evolution subroutines of the stars code have been ex-

tensively updated. These subroutines have been used to investigate the nu-

cleosynthesis of light elements during the TP-AGB. Nine models have been

produced at three masses across three metallicities and mass-loss has been

included. The surface abundances of the models have been compared to

known observational constraints.

The models do a very good job of reproducing the known constraints on

AGB stars from pre-solar grains. Most of the isotopic ratios are well matched

by the models though there are problems with the 16O/17O ratio. These may

be due to uncertainties in the reaction rates. The models presented are unable

2Prior to this the actual physical changes swamp the effects of numerical diffusion.
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to reproduce the observed abundances of fluorine in AGB stars. This may be

due to the absence of a 13C pocket and/or additional mixing processes. The

intermediate-mass models are able to reproduce some of the observations of

lithium abundance in AGB stars though they are not able to account for the

most extreme lithium enrichment. This suggests there is a problem with the

physics in the stars code as other codes are able to give sufficiently high

lithium abundances.

The nucleosynthesis routines have also been applied to make a prelimi-

nary assessment of whether the stars code can be used to investigate the

formation of a 13C pocket. It was found that the code produces such a pocket

for numerical, rather than physical, reasons owing to the motion of its mesh

points. This behaviour is undesirable and it was found that it could be sup-

pressed with the viscous mesh applied to the outermost mesh points. The

stars code is therefore suitable for use to investigate the formation of a

carbon-13 pocket.



Chapter 6

Post-AGB Stars

In this chapter, the evolution of a star as it leaves the TP-AGB is discussed.

In the course of attempting to produce post-AGB models, a new mode of

behaviour not reported in the literature was found. It was determined to be

an artifact caused by numerical diffusion. A model of a post-AGB object

undergoing a late thermal pulse has also been computed and TDUP is found

to occur after the pulse without convective overshooting in contrast to many

other simulations.

6.1 The End of the TP-AGB

The TP-AGB is finally brought to an end when mass loss strips the last rem-

nants of the envelope from the star. As this happens the star moves to hotter

temperatures at constant luminosity and eventually moves on to the white

dwarf cooling track. Simulations of this phase of evolution have been done

by several authors (e.g. Schönberner 1979;Wood & Faulkner 1986;Vassiliadis

& Wood 1994). Particular interest has gone into the production of hydrogen

deficient models in an attempt to explain the origin of objects like those of

the PG 1159 class (Blöcker, 2001).

The fate of a star as it leaves the TP-AGB depends on the phase of the

thermal pulse cycle at which the last remnants of the envelope are removed

(i.e. when the envelope mass drops as low as 10−2 M�). If the hydrogen

burning shell is inactive when the envelope is removed then the object pro-

ceeds straight to the white dwarf cooling track, becoming a hydrogen-rich

white dwarf. This requires the object to leave the AGB straight after the

110
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occurrence of a thermal pulse.

It is possible for a thermal pulse to occur after the object has left the

TP-AGB. In such cases, sufficient helium has been produced by hydrogen-

burning that as the object contracts the helium can heat up and ignite. If

the star was close to the end of its thermal pulse cycle (i.e. in the interpulse

phase) when the envelope mass is reduced to around 10−4 M� then the pulse

occurs as the object is crossing the HR-diagram to the white dwarf cooling

track. This is known as a late thermal pulse (LTP). Owing to the hydrogen

burning shell still being active at this time, the intershell convection zone

is inhibited from penetrating into the hydrogen envelope by the existence of

an entropy barrier, in the same way as it is on the TP-AGB (Iben, 1976).

If TDUP were to occur following this pulse, the tiny envelope would be

significantly enriched in carbon and depleted in hydrogen. However standard

evolutionary calculations (i.e. those not including convective overshooting)

have not produced TDUP to date (Blöcker & Schönberner, 1997).

If mass loss is sufficiently strong it is possible for the object to reach the

white dwarf cooling track before the helium ignites. If helium ignition occurs

on the white dwarf cooling track a very late thermal pulse (VLTP) is the

result. In this case the hydrogen burning shell is extinguished and there is no

barrier to the intershell convection zone. The intershell convection zone may

penetrate into the hydrogen rich envelope and this can result in a significant

depletion of hydrogen and the potential for interesting nucleosynthesis. The

first such model was produced by Iben & MacDonald (1995).

Both types of pulse cause the envelope to expand once again, briefly

returning the star to the AGB – the so-called born again scenario. The VLTP

scenario has recently received much attention in the literature (Herwig 2002;

Lawlor & MacDonald 2003; Althaus et al. 2005) because VLTPs are believed

to explain the behaviour of objects like FG Sagittae (Herbig & Boyarchuk,

1968) and Sakurai’s Object (V4334 Sgr) (Duerbeck & Benetti, 1996).

6.2 Producing a Post-AGB Model

The Z = 0.008 1.5 M� model begun in the previous chapter was used to create

a post-AGB object by continuing its evolution, with the same evolutionary

parameters. A total of 10 thermal pulses are evolved through before the star
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Figure 6.1: The evolution of the helium luminosity with time since the first
thermal pulse. The plot ends just as the star leaves the TP-AGB.

loses enough of its envelope that it leaves the TP-AGB. The evolution of

the helium luminosity with time since the first thermal pulse (TP) is shown

in Figure 6.1. Third dredge-up (TDUP) is found to occur from the fourth

pulse. In the last three pulses, when the envelope mass is low, numerical

instabilities occur as the envelope tries to encroach into the H-exhausted

core and begin the process of TDUP. In order to overcome these problems

it has been necessary to turn off mixing by convection. This is done by

allowing the model to run until the numerical problems become too severe

(hence allowing some TDUP to occur) and then restarting the model with

the convective mixing in the envelope switched off. Once the model reaches

the interpulse phase the convective mixing is turned back on.

This certainly introduces an error in the composition of the envelope –

it reduces the amount of carbon and other products of He-burning from the

intershell that are seen at the surface. However, the efficiency of TDUP is

expected to fall with a reduction in envelope mass (see e.g. Straniero et al.,

2003) and hence the envelope composition may not be that different from

what it would be if full TDUP were included. In order to test whether the

subsequent behaviour depended on the carbon abundance of the model, the

abundance of carbon throughout the envelope was enhanced by 10%. The

behaviour was identical to the unenhanced case.
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Figure 6.2: Plot of the evolution of the star’s mass (upper solid line), H-
exhausted core mass (dotted line) and He-exhausted core mass (lower solid
line) as a function of time since the first thermal pulse. Element exhausted
core masses are defined to be the mass at which the mass fraction for that
element drops below 0.3.

In the interpulse phase following the 10th pulse the mass of the star is

finally reduced to just 0.6482 M� and the star leaves the TP-AGB. At this

point the H-exhausted core mass is 0.6432 M� and the He-exhausted core

mass is 0.6299 M�. A plot of the evolution of the star’s total mass and the

mass of the H- and He-exhausted cores as a function of time since the first

thermal pulse is shown in Figure 6.2.

The star continues to lose mass and when its total mass is 0.6440 M� a

new phase of behaviour sets in. The luminosity of the star begins to rise and

the surface temperature increases by nearly an order of magnitude. When

the surface temperature reaches around 65,000K the luminosity falls and the

star’s surface temperature begins to drop. Both the luminosity and surface

temperature slowly return to close to their original values and the cycle

repeats again. The timescale to complete one of these loops is extremely

short – from the luminosity maximum in the first loop to the maximum in

the next takes just 30 yrs. A plot of the star’s evolutionary track in the

HR-diagram is shown in Figure 6.3 for the first three such loops.

This cyclic behaviour is persistent and the evolution through over 100

repetitions has been calculated with Reimers mass-loss with η = 1 still ap-
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Figure 6.3: Hertzsprung-Russell diagram showing 3 loops following the star’s
transition off the TP-AGB.

plied. The evolution of luminosity with time is shown in Figure 6.4. The time

taken to complete one loop is seen to decrease with time and the maximum

luminosity reached in the loop increases with time as well. The variation of

the surface luminosity seems to be caused by CNO cycling in the thin layer

of hydrogen left on the surface of the star. When the loops start the tem-

perature in the H-burning shell reaches over 6×107 K permitting CNO cycle

reactions to take place. The surface abundance of CNO elements is also seen

to change during the occurrence of the loops, with nitrogen being enhanced

at the expense of carbon (see Figure 6.5).

This cyclic phenomenon does not appear to have been described in the

literature. Is it really a consequence of the physics used by the evolution code

or a numerical artifact? The phenomenon displays similar characteristics to

the thermal pulses seen on the TP-AGB and it appears that it may be a

Schwarzschild-Härm instability (Schwarzschild & Härm, 1965), i.e. a thermal

instability. It is therefore necessary to test whether the shell is expected to

be thermally unstable. To do this the criterion developed by Yoon, Langer

& van der Sluys (2004) which is an extension of the original analysis by

Schwarzschild & Härm (1965) is used.

To determine whether the H-shell is thermally unstable two quantities
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Figure 6.4: Plot of the evolution of the star’s luminosity with time. Note
that the period of the loops decreases with time.
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Figure 6.5: The evolution of the CNO elements at the surface of the star.
Carbon (solid line) and oxygen (dotted line) are slowly being depleted as the
nitrogen (dashed line) is enhanced. This is a clear signature of the CNO-cycle
being active.
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(equations 6 and 12 of Yoon et al., 2004) need to be evaluated. These are

c∗ = cP

(
1−5ad

αsαT

αsαP − 1

)
(6.1)

and

σ =
ν − 4 + κT + αT

αsαP−1
(λ+ αs + κP )

c∗/cP
, (6.2)

where

αP =

(
∂ ln ρ

∂ lnP

)
T

,

αT = −
(
∂ ln ρ

∂ lnT

)
P

,

αs =
4

3
(3D/rs − 3(D/rs)

2 + (D/rs)
3),

κT =

(
∂ lnκ

∂ lnT

)
ρ

,

κρ =

(
∂ lnκ

∂ ln ρ

)
T

,

ν =

(
∂ ln εN
∂ lnT

)
ρ

and

λ =

(
∂ ln εN
∂ ln ρ

)
T

,

with D being the width of the shell and rs the radius of its upper boundary.

The nuclear energy generation rate is denoted by εN. For a shell to be

thermally unstable both c∗ and σ must be greater than zero. The quantity

c∗ is the gravothermal specific heat and must be positive if the deposition of

heat into the shell is to raise its temperature.

As the shell is believed to be burning hydrogen via the CNO-cycle only the
12C(p, γ) reaction is considered in the nuclear energy generation rate. If this

is done ν ≈ 12 and evaluation of σ yields a value of around 8, with c∗ > 0.

For comparison, on the TP-AGB the value of σ is below zero throughout

becoming no greater than -2. Typical values for the important variables on

the TP-AGB and during the H-shell instability are shown in Table 6.1.

The instability analysis seems to indicate that the model does indeed have

a thermally unstable hydrogen burning shell. However, there is a worrying

problem: the change in the surface abundance of the model. There is no
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Parameter During TP-AGB During H-shell instability
σ -2.85 8.31
κT -6.95 -2.88
κρ 0.24 0.0329
αs 0.0236 1.16
αP 1.12 1.48
αT 1.55 1.52
ν 8.51 12.64

Table 6.1: Typical values of the components of σ on the TP-AGB and when
the H-shell instability occurs.

convection in the model that could connect the surface with the hydrogen

burning shell. So how is it that the surface abundances can be changing?

The obvious answer is that there is numerical diffusion occuring in the model

which is dragging material that should have remained deeper within the star

to the surface (and vice versa). To test this hypothesis the viscous mesh

can be applied. If the mesh is fixed from the surface to below the hydrogen

burning shell (a total of less than 300 mesh points) then numerical diffusion

cannot occur.

Owing to the fact that mass loss is occuring and that the mass of each

mesh point is small the mesh cannot be fully locked. If this was to be done

the surface mesh point would have less mass that the next-to-surface point,

which is clearly undesirable. Instead the mesh can be made viscous but not

fully fixed using ψ = 0.9. This will reduce the amount of mesh movement

and hence the amount of numerical diffusion. The results of this simulation

run are shown in Figure 6.6. The model makes a direct transition to the

white dwarf cooling track and no periodic behaviour is detected. Increasing

the spatial and temporal resolution with which the model is evolved has no

effect and the cyclic phenomenon cannot be recovered. It therefore appears

that the phenomenon is indeed due to the occurrence of numerical diffusion.

Only one point remains to be explained: why does the instability criterion

define the shell as being unstable if the phenomenon is a numerical artifact?

This question cannot be answered to the author’s satisfaction. The solution

may lay in the definition of the thickness of the burning shell. Yoon et al.

(2004) define the edges of the burning shell as being the points at which the

energy generation rate is 2 × 10−3 times the peak energy generation rate.
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Figure 6.6: HR diagram showing the evolution of the model with the viscous
mesh applied to the 300 outermost mesh points (dotted line). No periodic
behaviour is detected. The solid line shows the original behaviour for com-
parison.

The algorithm employed in the stars code gives a width that is consistent

with the Yoon et al. (2004) definition. However, if the definition of the width

of the shell is changed slightly so that the shell is thinner, the gravothermal

specific heat capacity becomes negative and the model should be considered

stable.

6.3 Modelling a Late Thermal Pulse

In order to produce a LTP model the object must be made to leave the

TP-AGB at exactly the right point. The hydrogen-burning shell must have

already created a substantial amount of helium and that helium must be

about ready to ignite as the star leaves the TP-AGB. The point at which

the star leaves the TP-AGB can, to some extent, be controlled by varying

the parameter η in the Reimers’ mass-loss formula. A late thermal pulse

model was created from the same model run as above, i.e. a star initially of

1.5 M� and metallicity Z = 0.008, evolved along the TP-AGB with Reimers’

mass-loss with η = 1. A starting model was taken from when the helium

luminosity drops below 104 L� (roughly where the interpulse would begin)
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Figure 6.7: Hertzsprung-Russell diagram showing the evolution of a late
thermal pulse.

after the tenth pulse. Trial-and-error variation of η was used to alter the

mass loss in order to get the star to leave the TP-AGB at the desired point

with η = 0.4875 being found to give the required behaviour.

The pulse reaches a peak helium luminosity of logLHe/L� = 8.035 similar

to the values that it had reached towards the end of the TP-AGB. As the

pulse reaches its peak the star makes a very rapid transition to the blue,

reaching a surface temperature of around 63,000K. The evolution across the

HR-diagram is shown in Figure 6.7. The luminosity then drops before rising

again as the star moves back to the red, becoming a giant again. At this

point, some difficulty is encountered with the model and it is necessary to

turn off the mass loss in order to guarantee convergence. This should not

affect the final outcome of the model greatly as very little envelope is left by

this stage.

Figure 6.8 shows the evolution of the surface CNO element abundances

with model number. As the star recovers from the late thermal pulse an

episode of third dredge-up occurs with the surface carbon abundance being

enhanced by an order of magnitude. Oxygen is also enhanced whilst nitro-

gen is depleted. This episode of dredge-up mixes the remaining amount of

hydrogen in the envelope over a greater range in mass and so the surface

abundance of hydrogen drops from 0.691 to just 0.0493. At the same time
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Figure 6.8: Evolution of the surface CNO element abundances with model
number after the late thermal pulse. The enhancement of carbon (red) and
oxygen (blue) and the depletion of nitrogen (green) are characteristic of third
dredge-up. Model number is used in order to show the changes in the abun-
dances more clearly. Note the dip in the carbon abundance as material from
the H-burning shell is dredged up before that from the intershell.

the helium abundance rises from 0.291 to 0.661.

Blöcker (2001) investigated the formation of PG 1159 stars and the Wolf-

Rayet central stars of planetary nebula. He found that with the inclusion

of convective overshooting on the pulse-driven intershell convection zone,

TDUP could occur after a late thermal pulse. Prior to this LTPs had only

been considered in relation to their mass loss as possible routes to the forma-

tion of hydrogen deficient objects. Blöcker’s model (of mass 0.625 M�, about

0.02 M� lighter than the stars model) produced an object with a final sur-

face abundance by mass with the proportions (H,He,C,O)=(3,45,38,12). The

model produced with the stars code gives final surface abundances with pro-

portions (5,66,24,<1). The work of Dreizler & Heber (1998) gives the surface

abundance, in mass fraction, of non-pulsating PG 1159 stars with the propor-

tions (He,C,O)=(65,28,7) and (40,43,16) for pulsating PG 1159 stars. While

both models contain too much hydrogen, the stars model gives reasonable

agreement with the non-pulsating case (although it has far too little oxygen)

while Blöcker’s models gives good agreement with the pulsating case.

Once again, the stars code has been shown to give TDUP where other
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codes have not found it and have had to resort to the inclusion of extra-mixing

mechanisms. The issue may be one of pulse strength as a stronger pulse tends

to give more dredge-up. This was found to be the case by Herwig & Austin

(2004) who varied the strength of the triple-α rate and were thereby able to

obtain deeper dredge-up. Unfortunately, no information on the strength of

the LTP in Blöcker’s model is available and so it is not possible to make a

comparison. This issue needs to be investigated further.

6.4 Summary

In this chapter a brief examination of the behaviour of stars as they leave

the TP-AGB has been conducted. Numerical diffusion was shown to cause

periodic behaviour as the star crossed to the white dwarf cooling track. This

was suppressed using the viscous mesh. A model undergoing a late thermal

pulse was also described and its surface abundances were shown to be in

reasonable agreement with non-pulsating PG 1159 stars.



Chapter 7

Summary and Future

Directions

Climbing the Heron Pavilion

Wang Zhihuan

The white sun sets behind the mountain,

The yellow river flows to the sea;

Wishing to go as far as eyes can see,

I climb another level.

7.1 Evolution

The early attempts by Pols & Tout (2001) to make fully simultaneous cal-

culations of TP-AGB evolution managed only a few pulses for a 5 M� model

of metallicity Z = 0.02. This work has built substantially upon the founda-

tions provided by these authors. With a viscous mesh technique to enhance

122
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the numerical stability of the code, a total of 198 pulses across 8 different

masses at Z = 0.02 were calculated, with a further 105 pulses calculated over

7 different masses at Z = 0.008 and another 65 over 7 different masses at

Z = 0.004.

Unfortunately, this work has not been quite as successful as the author

would have liked. First, the code requires a certain degree of baby-sitting.

The early pulses of a sequence, which are usually weaker than the later ones,

can usually be evolved without any difficulty. However, the stronger pulses

prove more demanding and in general the code breaks down at least once a

pulse. This is undesirable – ideally the code would run through the entire

TP-AGB without any intervention from the user. There is still some work

to be done in terms of improving the numerical stability of the code. In the

intermediate-mass stars the main problem seems to be in dealing with hot-

bottom burning owing to the occurrence of numerical diffusion. Hydrogen is

dragged down into hotter regions by the movement of the mesh and burns

violently causing difficulties with convergence. This issue needs to be resolved

if the evolution of these objects is to be followed further. In the low-mass

stars the main problem seems to occur near the peak of the thermal pulses

but the cause is unclear.

In addition to resolving problems with numerical stability and getting

the code to run continuously, the models in chapters 3 and 4 were evolved

without mass loss. This is clearly not physical as we see the effects of mass

loss. While there is some debate as to what the morally superior mass-loss

law1 is, it is clear that models of TP-AGB evolution should include some

form of mass loss. The models presented in chapter 5 represent a first step

to achieving this and highlight some of the problems that come with mass

loss. It is noted that the models involving mass loss could not be evolved

through as many thermal pulses as those without, suggesting that mass loss

may make models more numerically unstable. This issue will need to be

addressed if models that are more physically realistic are to be generated. In

addition, there appears to be an issue with TDUP at low envelope masses

which generally leads to the model failing to converge. It is also unclear why

this is and it is very important to address this problem. TDUP is currently

believed to be substantially reduced if the envelope mass is very low but if

1Thanks to John Lattanzio for this phrase.
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TDUP does occur it will substantially affect the envelope composition.

The models presented in chapter 4 are the first fully simultaneous calcu-

lations of TP-AGB stars of metallicity other than solar. The LMC models

give more efficient third dredge-up at lower core mass than previous calcu-

lations. Using these models as input for a population synthesis code it has

been possible to reproduce the carbon star luminosity function of the LMC

for the first time. Unfortunately, the SMC CSLF cannot be reproduced using

the models from this work. The reason for this is unclear and needs to be

investigated.

The comparison of models computed using different codes is an inter-

esting one. In an attempt to understand why the stars models are able

to reproduce the LMC CSLF whereas the models of other codes cannot, a

detailed comparison of models computed using the stars and MSSSP codes

was undertaken. No obvious reason for the difference was found. Further

study of this problem is necessary and it would be useful to increase the

number of codes involved in the study. By making detailed comparisons of

many different codes it is hoped that the reasons why their models show

different behaviour can be ascertained. In addition to a comparison of codes

it would also be useful to investigate certain numerical effects. For example,

the stars code currently uses an arithmetic mean in order to compute the

mixing coefficients required by the diffusion equation. This is not the only

possible choice and the effect of other choices on particularly the amount of

TDUP should be considered. Another important issue is that of numerical

diffusion. In chapter 5 it was noted that numerical diffusion, owing to the

motion of the adaptive mesh, caused the formation of a 13C-pocket. Does

numerical diffusion affect other processes on the TP-AGB? How much nu-

merical diffusion can be expected to occur during particular phases of the TP

cycle and, if it is significant, can anything be done to reduce it? These are

questions that should be answered in order to increase the confidence that

can be held in the models.

Chapter 6 presented the first post-AGB star models computed using the

stars code. The loop phenomenon demonstrates the need to be wary of

numerical diffusion and suggests that it may be necessary to use the viscous

mesh on the outermost mesh points of models going through this phase. A

more thorough study of the phenomena of late and very late thermal pulses
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needs to be undertaken. This should include the effects of the efficiency of

mixing on the occurrence of TDUP in the case of the LTP models and on

H-ingestion by the intershell convection zone in the case of the very late

thermal pulse models.

This work has only examined evolution at three relatively high metallici-

ties. With the recent increase in spectroscopic observations of low metallicity

stars it would be interesting to examine the evolution of TP-AGB stars of low

metallicity. Recent work in this area has been done by Herwig (2004a,b). He

found some interesting behaviour not seen at higher metallicities including

hot dredge-up (Herwig, 2004a). Hot dredge-up occurs when TDUP pushes

into regions that are hot enough to burn protons via the CNO cycle. This

results in some of the carbon that is dredged up being processed into nitrogen

resulting in surface enhancements of both these elements. Low metallicity

models should be made with the stars code in order to see whether this

effect is also observed. It is conceivable that in such a situation the coupling

of structure, burning and mixing may be important.

The modifications to the stars code made in this work also open up

the possibility of studying the Super-AGB (S-AGB) stars. These are stars

that are more massive than the intermediate mass stars and are capable of

igniting carbon in their cores prior to entering the TP-AGB (Garcia-Berro &

Iben, 1994). The fate of these stars is uncertain making them fruitful objects

to study. One of three things could happen to an S-AGB star:

• Formation of a massive white dwarf. This would occur if the entire

envelope is removed during the TP-AGB and requires that the star

experience very strong mass loss and/or TDUP to inhibit the growth

of the core.

• Carbon detonation. If sufficient carbon remains unburnt in the core

after the initial episode of carbon burning then conditions in the core

may become right for explosive carbon burning to occur. This would

produce a detonation akin to a type Ia supernova.

• Core collapse. If TDUP does not occur or is shallow, or the stellar

winds are weak, then the core of an S-AGB star could grow enough to

reach the Chandrasekhar mass, producing a type II supernova.
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These objects pose some significant computational challenges. The igni-

tion of carbon under degenerate conditions is problematic and in addition

it is necessary to follow the propagation of the carbon flame very carefully

(Garcia-Berro et al., 1997).

7.2 Nucleosynthesis

In chapter 5 the details of a major overhaul of the nucleosynthesis subroutines

of the stars code have been described. These subroutines have been used

to examine the nucleosynthesis of minor isotopes during the TP-AGB. The

models produced were found to be consistent with constraints provided by

pre-solar grains, though problems were found with reproducing the measured
16O/17O ratio. Comparison of the surface abundances of fluorine and lithium

with observations was only partially successful. All the models considered

produced too little fluorine to match the observations. In the case of lithium

the models were unable to reproduce the most lithium-abundant stars. The

reason for these deficiencies should be investigated.

Owing to the computational demands of using the nucleosynthesis sub-

routines it was only possible to generate a small grid of nine models. A much

larger grid should be computed comprising the same masses as presented in

chapters 3 and 4. This would ideally extend over a greater range in metal-

licity than has been considered in this work. Such a grid would be useful for

population synthesis calculations and Galactic chemical evolution because

the yields from TP-AGB stars could be computed. Ideally, the yields would

be calculated for various different mass-loss laws to give some idea of the

uncertainty associated with the ignorance of the mechanism for mass loss in

AGB stars. The code is not currently at a state where such a study would be

feasible. A large amount of user intervention is required to evolve through

many of the pulses and the end of the TP-AGB has only been reached in a

couple of cases so it is currently impossible to compute full yields from the

code. In addition, the computer time required to produce such models may

be prohibitively long.

The nucleosynthesis subroutines open up the possibility of studying the

formation of a 13C-pocket. This would involve the inclusion of extra-mixing

mechanisms such as rotation, convective overshooting and internal gravity
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waves. The stars code already has convective overshooting included as an

option but it is different from the formalism employed by e.g. Herwig (2000).

Inclusion of the physics of internal gravity waves in either the formalism of

Garcia Lopez & Spruit (1991) or that of Montalbán & Schatzman (2000)

should be straight-forward as they only require information to be inserted

into funcs1. Inclusion of rotational mixing (e.g. Zahn, 1992) would be more

problematic because it requires the addition of angular momentum as a vari-

able and therefore also an equation for its transport. However, all these

mechanisms should eventually be included in the stars code as the origin

of the 13C-pocket is still one of the great unsolved problems of TP-AGB

evolution.

Closely related to the study of the 13C pocket is the study of the s-

process elements. These were not considered in the nucleosynthesis chapter.

A wealth of information on these elements is available both from pre-solar

grains and spectroscopic observations which could potentially be useful to

constrain models of TP-AGB evolution. Currently there is no means in the

stars code to study the s-process and this deficiency should be dealt with.

There are two possible approaches. First, the physical conditions in the in-

tershell region and the details of TDUP could be recorded and used as input

for a post-processing code (e.g. that of Gallino et al., 1998). Alternatively

subroutines for calculating the s-process within the stars code could be de-

veloped. These would take a similar form to the nucleosynthesis subroutines

described in chapter 5. This is perhaps not the best approach. To study the

s-process properly it is necessary to consider elements between nickel and

lead, each element having many isotopes. The code would therefore need

to be able to invert a large sparse matrix very quickly and this may prove

difficult.



Bibliography

Alexander D. R., Ferguson J. W., 1994, ApJ, 437, 879

Althaus L. G., Serenelli A. M., Panei J. A., Córsico A. H., Garćıa-Berro E.,
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Appendix A

Derivation of Gravothermal

Specific Heat Capacity and

Thermal Stability Criterion

A.1 The Gravothermal Specific Heat Capac-

ity

Consider a shell source of geometrical thickness D, with lower boundary at

r0 and upper boundary at rs = r0 + D. The mass of the shell is given by

∆Ms =
∫ rs

r0
4πr2ρ dr and assuming the density is constant

∆Ms =
4

3
π(r3

s − r3
0)ρ. (A.1)

As rs = r0 + D and assuming that the lower boundary of the shell remains

fixed then on perturbation δrs = δD. If the mass in the shell remains fixed

then perturbing equation A.1 yields

0 = [(r0 +D)3 − r3
0]δρ+ 3(r0 +D)2ρδD. (A.2)

Rewriting this in terms of rs gives

[r3
s − (rs −D)3]δρ = −3r2

sρδrs (A.3)

⇒ δρ

ρ
= − 3

3D/rs − 3(D/rs)2 + (D/rs)3

δrs
rs
, (A.4)
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which is equation 1 of Yoon et al. (2004). Assuming the shell ex-

pands/contracts homologously1 we have δP/P = −4δrs/rs which gives

δP

P
= αs

δρ

ρ
, (A.5)

where αs is as given in equation 1.8.

To derive the equation for the gravothermal specific heat capacity, we

start from the 1st law of thermodynamics

dq = du+ Pdv (A.6)

=

(
∂u

∂T

)
v

dT + T

(
∂P

∂T

)
v

dv, (A.7)

where we have used
(

∂u
∂v

)
T

= T
(

∂P
∂T

)
v
− P , which is the 1st law of thermody-

namics combined with a Maxwell relation. By definition(
∂P

∂T

)
v

=
PαT

TαP

, (A.8)

with αP and αT as defined by equations 1.9 and 1.10. Inserting this into

equation A.7 and using dv = −dρ/ρ2 we obtain

dq = cvdT −
PαT

ραP

dρ

ρ
(A.9)

as (∂u/∂T ) = cv by definition. Using the relation dρ/ρ = αP dP/P−αT dT/T

in the above we obtain

dq =

(
cv +

Pα2
T

ρTαP

)
dT − αT

ρ
dP. (A.10)

The term in brackets is cP and so we obtain

dq = cP

(
1− αT

cPρ

dP

dT

)
dT. (A.11)

But 5ad = (∂ lnP/∂ lnT )S = PαT/TρcP , and using dρ/ρ = αP dP/P −
1This assumption, while it may seem plausible, is hard to justify and the author finds

himself unable to do so.
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αT dT/T and equation A.5 we obtain

dq = cP

(
1−5ad

αsαT

αsαP − 1

)
dT, (A.12)

where comparison of the right-hand side with that of equation 1.6 gives the

expression for c∗, the gravothermal specific heat capacity.

A.2 The Thermal Stability Criterion

To derive equations 1.15 and 1.16 in section 1.2 we start from equation 1.14,

namely

δLrs = ∆MsδεN −∆Ms
dδq

dt
. (A.13)

Dividing this by equation 1.13 and recalling that Lrs � Lr0 and given LN �
Lg we have

δLrs

Lrs

=
δεN
εN

− ∆Ms

Lrs

dδq

dt
, (A.14)

where we have used LN ≈ εN∆Ms. But

δεN
εN

=

(
∂ ln εN
∂ lnT

)
ρ

δT

T
+

(
∂ ln εN
∂ ln ρ

)
T

δρ

ρ
(A.15)

=

(
ν +

λαT

αsαP − 1

)
δT

T
, (A.16)

where we have used
δρ

ρ
=

αT

αsαP − 1

δT

T
(A.17)

and the definitions ν = (∂ ln εN/∂ lnT )ρ and λ = (∂ ln εN/∂ ln ρ)T . Next we

perturb the equation for the radiative transfer of heat at rs, i.e.

∂T

∂Mrs

= − 3

64π2ac

κLrs

r4
sT

3
(A.18)

which yields
δLrs

Lrs

= −δκ
κ

+ 4
δrs
rs

+ 3
δT

T
+
δ(∂T/∂Mrs)

(∂T/∂Mrs)
(A.19)

The last term is just δT/T . But

δrs
rs

= −αs

4

δρ

ρ
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= − αsαT

αsαP − 1
(A.20)

and

δκ

κ
=

(
∂ lnκ

∂ lnT

)
ρ

δT

T
+

(
∂ lnκ

∂ ln ρ

)
T

δρ

ρ

=

(
κT +

κραT

αsαP − 1

)
δT

T
, (A.21)

where κT = (∂ lnκ/∂ lnT )ρ and κρ = (∂ lnκ/∂ ln ρ)T . Inserting all this into

equation A.19 yields

δLrs

Lrs

=

[
4− κT −

αT

αsαP − 1
(αs + κρ)

]
δT

T
. (A.22)

Inserting this into equation A.14, along with equation A.16 gives

∆Ms

Lrs

dδq

dt
=

[
ν − 4 + κT +

αT

αsαP − 1
(λ+ αs + κρ)

]
δT

T
. (A.23)

Now δq = c∗δT and defining θ = δT/T and τth = ∆MsTcp/Lrs so the above

equation becomes

τthθ̇ = σθ, (A.24)

which is equation 1.15, where

σ =
ν − 4− κT + αT

αsαP−1
(λ+ αs + κP )

c∗/cP
, (A.25)

as given in equation 1.16.



Appendix B

Details of the Solar Metallicity

Models

This appendix presents a more detailed look at the models of solar metallicity.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.54015 ... 5.28923 0.00355 ... ... 0.316
2 0.54367 6.96 4.53870 0.00154 ... ... 0.316
3 0.54519 8.82 5.88073 0.00346 ... ... 0.316
4 0.54863 9.49 5.56585 0.00315 ... ... 0.316
5 0.55176 11.2 6.53988 0.00555 ... ... 0.316
6 0.55729 11.6 6.46257 0.00538 ... ... 0.316

Table B.1: Details of the 1 M� model. The data are TP – the thermal pulse
number, MH – the hydrogen free core mass, τip – the interpulse period, Lmax

He

– the peak luminosity from helium burning, ∆MH – the hydrogen free core
mass growth during the interpulse, ∆MDUP – the mass of material dredged
up, λ – the dredge-up efficiency parameter and C/O – the surface carbon-
to-oxygen ratio by number.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.55666 ... 4.48155 0.00278 ... ... 0.315
2 0.55943 4.82 4.85986 0.00159 ... ... 0.315
3 0.56101 6.26 5.41023 0.00241 ... ... 0.315
4 0.56340 8.09 5.99830 0.00375 ... ... 0.315
5 0.56713 9.15 6.31095 0.00468 ... ... 0.315
6 0.57180 9.56 6.62407 0.00556 ... ... 0.315
7 0.57734 9.48 6.79679 0.00604 ... ... 0.315
8 0.58335 9.15 6.93533 0.00641 ... ... 0.315
9 0.58960 8.78 7.05152 0.00675 0.00073 0.108 0.337
10 0.59562 8.44 7.20161 0.00720 0.00159 0.221 0.402
11 0.60123 8.18 7.38089 0.00771 0.00262 0.340 0.518
12 0.60632 7.96 7.54158 0.00824 0.00352 0.427 0.672
13 0.61104 7.73 7.67271 0.00869 0.00352 0.427 0.844

Table B.2: Details of the 1.5 M� model. The columns are the same as in
Table B.1.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.56786 ... 5.77015 0.00326 ... ... 0.318
2 0.57110 9.20 6.56244 0.00496 ... ... 0.318
3 0.57605 9.91 6.76071 0.00574 ... ... 0.318
4 0.58174 9.53 6.93065 0.00628 0.00065 0.104 0.326
5 0.58737 9.10 7.08565 0.00684 0.00166 0.243 0.367
6 0.59255 8.83 7.26906 0.00755 0.00289 0.383 0.447
7 0.59721 8.68 7.46319 0.00830 0.00412 0.496 0.563
8 0.60139 8.58 7.64903 0.00904 0.00531 0.587 0.708
9 0.60512 8.49 7.81940 0.00973 0.00637 0.655 0.874
10 0.60848 8.37 7.97563 0.01033 0.00726 0.703 1.056
11 0.61155 8.22 8.11090 0.01081 0.00796 0.736 1.245
12 0.61440 8.03 8.21348 0.01117 0.00846 0.757 1.437
13 0.61711 7.80 8.30040 0.01141 0.00883 0.774 1.631
14 0.61969 7.55 8.36701 0.01157 0.00908 0.785 1.824
15 0.62218 7.29 8.41515 0.01163 0.00920 0.791 2.015
16 0.62461 7.01 8.44952 0.01160 0.00920 0.791 2.200

Table B.3: Details of the 2 M� model. The columns are the same as in
Table B.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.56351 ... 4.35813 0.00267 ... ... 0.318
2 0.56618 4.29 4.82547 0.00150 ... ... 0.318
3 0.56767 5.80 5.41396 0.00234 ... ... 0.318
4 0.56999 7.77 6.09662 0.00384 ... ... 0.318
5 0.57381 8.87 6.42628 0.00482 ... ... 0.318
6 0.57862 9.17 6.70970 0.00567 ... ... 0.318
7 0.58421 9.02 6.88355 0.00617 0.00095 0.154 0.329
8 0.58943 8.80 7.09839 0.00695 0.00243 0.350 0.369
9 0.59395 8.78 7.33534 0.00793 0.00408 0.514 0.439
10 0.59780 8.89 7.59374 0.00900 0.00586 0.651 0.538
11 0.60094 9.07 7.49979 0.0101 0.00751 0.741 0.658
12 0.60357 9.24 7.62277 0.0112 0.00897 0.801 0.793
13 0.60580 9.34 7.58352 0.0122 0.0102 0.837 0.936
14 0.60778 9.37 7.92539 0.0129 0.0111 0.863 1.084
15 0.60955 9.33 8.02578 0.0135 0.0119 0.884 1.237
16 0.61112 9.25 8.64986 0.0140 0.0125 0.893 1.392
17 0.61261 8.97 8.69738 0.0140 0.0126 0.896 1.544
18 0.61408 8.72 8.73807 0.0141 0.0127 0.900 1.694
19 0.61549 8.49 8.77433 0.0141 0.0128 0.901 1.841
20 0.61688 8.25 8.79855 0.0141 0.0128 0.901 1.986

Table B.4: Details of the 3 M� model. The columns are the same as in
Table B.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.75332 ... 4.75474 0.00200 ... ... 0.319
2 0.75532 1.12 5.73430 0.00167 ... ... 0.319
3 0.75698 1.41 6.31530 0.00222 0.00102 0.459 0.325
4 0.75818 1.60 6.85351 0.00301 0.00247 0.821 0.350
5 0.75872 1.84 7.35368 0.00398 0.00383 0.962 0.395
6 0.75887 2.10 7.82506 0.00499 0.00509 1.020 0.455
7 0.75877 2.35 8.24029 0.00596 0.00612 1.027 0.525
8 0.75861 2.56 8.59679 0.00683 0.00706 1.034 0.604
9 0.75838 2.75 8.89998 0.00762 0.00788 1.034 0.689
10 0.75812 2.89 9.13510 0.00827 0.00853 1.031 0.779
11 0.75786 3.00 9.33649 0.00886 0.00907 1.024 0.870
12 0.75765 3.04 9.46512 0.00922 0.00939 1.018 0.960
13 0.75748 3.03 9.53362 0.00939 0.00941 1.002 1.038
14 0.75746 2.97 9.56552 0.00940 0.00938 0.998 1.105
15 0.75748 2.91 9.57415 0.00934 0.00924 0.989 1.156
16 0.75758 2.84 9.57873 0.00920 0.00909 0.988 1.193
17 0.75769 2.78 9.58078 0.00909 0.00897 0.987 1.217
18 0.75781 2.73 9.58034 0.00900 0.00886 0.984 1.229
19 0.75795 2.69 9.57146 0.00892 0.00875 0.981 1.228
20 0.75812 2.63 9.56450 0.00882 0.00864 0.980 1.218
21 0.75830 2.59 9.55836 0.00874 0.00856 0.979 1.199

Table B.5: Details of the 4 M� model. The columns are the same as in
Table B.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.83723 ... 5.58461 0.00122 0.00010 0.082 0.321
2 0.83835 0.60 6.31654 0.00151 0.00107 0.709 0.326
3 0.83879 0.68 6.62647 0.00206 0.00188 0.913 0.340
4 0.83897 0.78 7.33847 0.00263 0.00260 0.989 0.348
5 0.83900 0.88 7.77935 0.00318 0.00329 1.035 0.328
6 0.83889 1.00 8.18597 0.00374 0.00392 1.048 0.277
7 0.83871 1.12 8.54076 0.00430 0.00450 1.047 0.207
8 0.83851 1.23 8.81693 0.00478 0.00493 1.031 0.139
9 0.83836 1.30 8.75116 0.00513 0.00521 1.016 0.092
10 0.83828 1.33 9.12846 0.00534 0.00532 0.996 0.069
11 0.83830 1.34 9.20431 0.00541 0.00536 0.991 0.062
12 0.83835 1.34 9.25091 0.00544 0.00534 0.982 0.062
13 0.83845 1.33 9.28176 0.00542 0.00531 0.980 0.063
14 0.83856 1.32 9.30913 0.00540 0.00528 0.978 0.065
15 0.83868 1.31 9.32451 0.00537 0.00524 0.976 0.068
16 0.83881 1.29 9.33374 0.00534 0.00521 0.976 0.070
17 0.83894 1.28 9.34200 0.00531 0.00516 0.972 0.073
18 0.83909 1.27 9.34833 0.00527 0.00514 0.975 0.075
19 0.83922 1.26 9.35482 0.00526 0.00511 0.971 0.078
20 0.83937 1.25 9.35649 0.00523 0.00509 0.973 0.081
21 0.83951 1.23 9.35407 0.00520 0.00505 0.971 0.084
22 0.83966 1.22 9.34385 0.00515 0.00501 0.973 0.086
23 0.83980 1.21 9.34588 0.00514 0.00498 0.969 0.089
24 0.83996 1.20 9.34909 0.00511 0.00498 0.975 0.092
25 0.84009 1.20 9.35486 0.00512 0.00497 0.971 0.095
26 0.84024 1.19 9.35479 0.00510 0.00495 0.971 0.097
27 0.84039 1.18 9.35090 0.00507 0.00491 0.968 0.100
28 0.84055 1.17 9.34841 0.00505 0.00489 0.968 0.103
29 0.84071 1.17 9.34439 0.00502 0.00486 0.968 0.106
30 0.84087 1.16 9.34249 0.00500 0.00484 0.968 0.109

Table B.6: Details of the first 30 pulses of the 5 M� model. The columns are
the same as in Table B.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
31 0.84103 1.15 9.34112 0.00498 0.00483 0.970 0.111
32 0.84118 1.14 9.33743 0.00497 0.00480 0.966 0.114
33 0.84135 1.14 9.33489 0.00495 0.00479 0.968 0.117
34 0.84151 1.13 9.33128 0.00493 0.00477 0.968 0.120
35 0.84167 1.12 9.32951 0.00492 0.00476 0.967 0.123
36 0.84183 1.11 9.32641 0.00490 0.00474 0.967 0.126
37 0.84199 1.11 9.32387 0.00489 0.00472 0.965 0.128
38 0.84216 1.10 9.32071 0.00487 0.00471 0.967 0.131
39 0.84232 1.09 9.31891 0.00486 0.00469 0.965 0.134
40 0.84249 1.09 9.31441 0.00484 0.00469 0.969 0.137
41 0.84264 1.08 9.31442 0.00484 0.00467 0.965 0.140
42 0.84281 1.08 9.31069 0.00482 0.00465 0.965 0.142
43 0.84298 1.07 9.30811 0.00480 0.00464 0.967 0.145
44 0.84314 1.06 9.30308 0.00479 0.00462 0.965 0.148
45 0.84331 1.06 9.29623 0.00477 0.00460 0.964 0.151
46 0.84348 1.05 9.29482 0.00475 0.00459 0.966 0.154
47 0.84364 1.05 9.29455 0.00475 0.00458 0.964 0.156
48 0.84381 1.04 9.28618 0.00474 0.00456 0.962 0.159
49 0.84399 1.03 9.28338 0.00471 0.00455 0.966 0.162
50 0.84415 1.03 9.27808 0.00471 0.00452 0.960 0.165
51 0.84434 1.02 9.26995 0.00468 0.00451 0.964 0.168
52 0.84451 1.02 9.26802 0.00467 0.00449 0.961 0.170
53 0.84469 1.01 9.26136 0.00466 0.00447 0.959 0.173
54 0.84488 1.00 9.25669 0.00463 0.00446 0.963 0.176
55 0.84505 1.00 9.25424 0.00463 0.00445 0.961 0.179
56 0.84523 0.99 9.25090 0.00463 0.00445 0.961 0.181
57 0.84541 0.99 9.24914 0.00462 0.00443 0.959 0.184
58 0.84560 0.98 9.24521 0.00460 0.00442 0.961 0.187
59 0.84578 0.98 9.24026 0.00459 0.00440 0.959 0.190
60 0.84597 0.97 9.23823 0.00458 0.00440 0.961 0.192

Table B.7: Details of the second 30 pulses of the 5 M� model. The columns
are the same as in Table B.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.89346 ... 4.14817 0.00167 ... ... 0.320
2 0.89513 0.24 4.95582 0.00070 ... ... 0.320
3 0.89583 0.28 5.33637 0.00082 ... ... 0.319
4 0.89665 0.31 5.53298 0.00093 0.00030 0.323 0.311
5 0.89728 0.33 6.10408 0.00114 0.00071 0.623 0.291
6 0.89771 0.37 6.56976 0.00141 0.00118 0.837 0.254
7 0.89794 0.42 7.01432 0.00170 0.00164 0.965 0.202
8 0.89800 0.48 7.45015 0.00205 0.00210 1.024 0.142
9 0.89795 0.55 7.86994 0.00245 0.00252 1.029 0.091
10 0.89788 0.63 8.23066 0.00281 0.00291 1.036 0.063
11 0.89778 0.69 8.51270 0.00315 0.00318 1.010 0.054
12 0.89775 0.73 8.70330 0.00337 0.00333 0.988 0.052
13 0.89779 0.76 8.84406 0.00351 0.00342 0.974 0.052
14 0.89788 0.79 8.95947 0.00360 0.00355 0.986 0.055
15 0.89793 0.74 9.01585 0.00361 0.00347 0.961 0.057
16 0.89807 0.74 9.05273 0.00356 0.00346 0.972 0.059
17 0.89817 0.75 9.09009 0.00357 0.00345 0.966 0.062
18 0.89829 0.74 9.11072 0.00354 0.00343 0.969 0.064
19 0.89840 0.74 9.13517 0.00354 0.00342 0.966 0.067
20 0.89852 0.73 9.15073 0.00351 0.00341 0.972 0.069

Table B.8: Details of the first 20 pulses of the 6 M� model. The columns are
the same as in Table B.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
21 0.89862 0.73 9.05670 0.00351 0.00339 0.966 0.071
22 0.89874 0.72 9.16440 0.00348 0.00337 0.968 0.074
23 0.89885 0.71 9.17105 0.00346 0.00336 0.971 0.076
24 0.89895 0.72 9.17874 0.00347 0.00335 0.965 0.078
25 0.89907 0.71 9.18051 0.00345 0.00339 0.983 0.081
26 0.89913 0.72 9.20458 0.00349 0.00340 0.974 0.083
27 0.89922 0.72 9.21410 0.00350 0.00340 0.971 0.086
28 0.89932 0.72 9.21844 0.00349 0.00339 0.971 0.088
29 0.89942 0.72 9.12852 0.00348 0.00338 0.971 0.090
30 0.89952 0.71 9.22097 0.00347 0.00338 0.974 0.093
31 0.89961 0.71 9.22994 0.00347 0.00337 0.971 0.095
32 0.89971 0.71 9.22432 0.00346 0.00336 0.971 0.098
33 0.89981 0.70 9.22443 0.00344 0.00334 0.971 0.100
34 0.89991 0.70 9.22248 0.00343 0.00333 0.971 0.103
35 0.90001 0.70 9.22253 0.00343 0.00333 0.971 0.105
36 0.90011 0.69 9.12995 0.00342 0.00332 0.971 0.108
37 0.90021 0.69 9.22142 0.00341 0.00331 0.971 0.110
38 0.90031 0.69 9.22200 0.00340 0.00330 0.971 0.113
39 0.90041 0.68 9.21998 0.00340 0.00329 0.968 0.115
40 0.90052 0.68 9.21815 0.00338 0.00330 0.976 0.118

Table B.9: Details of the second 20 pulses of the 6 M� model. The columns
are the same as in Table B.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.99440 ... 4.16770 0.00030 ... ... 0.287
2 0.99470 0.10 4.71606 0.00045 ... ... 0.260
3 0.99513 0.12 5.04937 0.00048 0.00018 0.375 0.229
4 0.99543 0.12 5.26627 0.00056 0.00039 0.696 0.194
5 0.99560 0.14 5.44382 0.00069 0.00060 0.870 0.157
6 0.99569 0.17 6.72365 0.00086 0.00079 0.919 0.123
7 0.99576 0.19 7.01860 0.00102 0.00094 0.922 0.095
8 0.99584 0.22 7.42977 0.00118 0.00113 0.958 0.076
9 0.99589 0.25 7.74868 0.00135 0.00130 0.963 0.064
10 0.99594 0.27 8.02857 0.00151 0.00141 0.934 0.059
11 0.99604 0.29 8.26324 0.00159 0.00155 0.975 0.058
12 0.99608 0.30 8.49702 0.00170 0.00172 1.012 0.058
13 0.99606 0.33 8.69651 0.00184 0.00175 0.951 0.059
14 0.99615 0.32 8.77714 0.00182 0.00183 1.005 0.061
15 0.99614 0.33 8.86045 0.00186 0.00185 0.995 0.063
16 0.99615 0.33 8.90296 0.00187 0.00182 0.973 0.065
17 0.99620 0.32 8.91540 0.00184 0.00185 1.005 0.067
18 0.99619 0.32 8.94352 0.00186 0.00186 1.000 0.069
19 0.99619 0.32 8.95981 0.00186 0.00185 0.995 0.071
20 0.99620 0.32 8.96395 0.00184 0.00183 0.995 0.073
21 0.99621 0.32 8.97152 0.00183 0.00183 1.000 0.074
22 0.99621 0.32 8.97534 0.00183 0.00174 0.951 0.076

Table B.10: Details of the 7 M� model. The columns are the same as in
Table B.1.



Appendix C

Details of the LMC Metallicity

Models

This appendix presents a more detailed look at the models of metallicity

Z = 0.008.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.54803 ... 5.78714 0.00412 ... ... 0.377
2 0.55213 8.57 4.85558 0.00171 ... ... 0.377
3 0.55382 12.66 6.81462 0.00588 ... ... 0.376
4 0.55968 14.53 6.77974 0.00595 ... ... 0.376
5 0.56561 13.72 7.04511 0.00704 ... ... 0.376
6 0.57262 13.09 7.19552 0.00749 ... ... 0.387
7 0.57981 12.38 7.32393 0.00801 0.00135 0.169 0.669
8 0.58647 11.63 7.49694 0.00868 0.00241 0.278 1.199

Table C.1: Details of the 1 M� model. The data are TP – the thermal pulse
number, MH – the hydrogen free core mass, τip – the interpulse period, Lmax

He

– the peak luminosity from helium burning, ∆MH – the hydrogen free core
mass growth during the interpulse, ∆MDUP – the mass of material dredged
up, λ – the dredge-up efficiency parameter and C/O – the surface carbon-
to-oxygen ratio by number.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.56610 ... 4.83119 0.00519 ... ... 0.324
2 0.57129 13.52 6.95453 0.00615 ... ... 0.324
3 0.57735 12.74 7.17958 0.00700 0.00147 0.210 0.438
4 0.58288 12.05 7.37811 0.00803 0.00306 0.381 0.740
5 0.58785 11.56 7.59024 0.00905 0.00465 0.514 1.213
6 0.59225 11.16 7.77483 0.00999 0.00588 0.589 1.763
7 0.59636 10.76 7.95930 0.01072 0.00704 0.657 2.354
8 0.60004 10.35 8.09785 0.01133 0.00779 0.688 2.928
9 0.60358 9.95 8.21257 0.01180 0.00869 0.736 3.497
10 0.60669 9.51 8.29678 0.01212 0.00904 0.746 4.017
11 0.60977 9.01 8.35664 0.01221 0.00917 0.751 4.488
12 0.61281 8.50 8.39208 0.01215 0.00914 0.752 4.913
13 0.61582 7.99 8.41192 0.01199 0.00898 0.749 5.296
14 0.61883 7.50 8.41773 0.01176 0.00874 0.743 5.641
15 0.62185 7.04 8.41151 0.01148 0.00841 0.733 5.953
16 0.62492 6.60 8.40012 0.01117 0.00809 0.724 6.235
17 0.62800 6.19 8.38109 0.01084 0.00771 0.711 6.491
18 0.63113 5.81 8.35469 0.01050 0.00732 0.697 6.724
19 0.63431 5.45 8.32794 0.01015 0.00693 0.683 6.936
20 0.63753 5.13 8.29946 0.00982 0.00656 0.668 7.130

Table C.2: Details of the first 20 pulses of the 1.5 M� model. The columns
are the same as in Table C.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
21 0.64079 4.83 8.27223 0.00949 0.00622 0.655 7.308
22 0.64406 4.56 8.17745 0.00919 0.00587 0.639 7.472
23 0.64738 4.31 8.16317 0.00889 0.00556 0.625 7.623
24 0.65071 4.08 8.10760 0.00861 0.00526 0.611 7.764
25 0.65406 3.80 8.09660 0.00818 0.00476 0.582 7.889
26 0.65748 3.63 8.09675 0.00798 0.00455 0.570 8.008
27 0.66091 3.46 8.09665 0.00778 0.00435 0.559 8.120
28 0.66434 3.30 8.09409 0.00758 0.00414 0.546 8.225
29 0.66778 3.15 8.09207 0.00737 0.00395 0.536 8.324
30 0.67120 3.01 8.08798 0.00719 0.00377 0.524 8.418
31 0.67462 2.88 8.08220 0.00700 0.00357 0.510 8.506
32 0.67805 2.75 8.08098 0.00681 0.00340 0.499 8.590
33 0.68146 2.64 8.07953 0.00665 0.00324 0.487 8.669
34 0.68487 2.53 8.07628 0.00649 0.00310 0.478 8.744
35 0.68826 2.43 8.08056 0.00633 0.00294 0.464 8.816
36 0.69165 2.33 8.07977 0.00618 0.00282 0.456 8.884
37 0.69501 2.24 8.08000 0.00605 0.00269 0.445 8.950
38 0.69837 2.15 8.08108 0.00590 0.00257 0.436 9.012
39 0.70170 2.07 8.08528 0.00578 0.00247 0.427 9.071
40 0.70501 2.00 8.08831 0.00566 0.00236 0.417 9.129

Table C.3: Details of the second 20 pulses of the 1.5 M� model. The columns
are the same as in Table C.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.56419 ... 6.84938 0.01451 ... ... 0.303
2 0.57866 12.78 7.08613 0.00644 0.00133 0.207 0.355
3 0.58377 11.98 7.33522 0.00764 0.00342 0.448 0.562
4 0.58799 11.66 7.58411 0.00899 0.00540 0.601 0.920
5 0.59158 11.55 7.50271 0.01030 0.00725 0.704 1.385
6 0.59463 11.48 7.42487 0.01151 0.00886 0.770 1.901
7 0.59728 11.36 7.38281 0.01251 0.01015 0.811 2.427
8 0.59964 11.16 8.40036 0.01328 0.01116 0.840 2.945
9 0.60176 10.87 8.50780 0.01383 0.01173 0.848 3.433
10 0.60386 10.48 8.58935 0.01409 0.01207 0.857 3.894
11 0.60588 10.09 8.64703 0.01427 0.01225 0.858 4.327
12 0.60790 9.65 8.69038 0.01427 0.01233 0.864 4.738
13 0.60984 9.23 8.71014 0.01421 0.01251 0.880 5.120
14 0.61154 8.82 8.72091 0.01410 0.01235 0.876 5.465

Table C.4: Details of the 2 M� model. The columns are the same as in
Table C.1.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.63039 ... 6.49293 0.01110 ... ... 0.302
2 0.64135 5.93 7.08140 0.00500 0.00288 0.576 0.387
3 0.64347 6.32 7.51294 0.00676 0.00555 0.821 0.605
4 0.64468 6.91 7.48296 0.00864 0.00809 0.936 0.937
5 0.64523 7.53 7.53573 0.01052 0.01027 0.976 1.332
6 0.64548 8.04 8.63257 0.01218 0.01208 0.992 1.751
7 0.64558 8.43 8.88031 0.01358 0.01208 0.992 2.168

Table C.5: Details of the 3 M� model. The columns are the same as in
Table C.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.81403 ... 4.95989 0.00273 ... ... 0.306
2 0.81676 0.75 5.86113 0.00135 0.00050 0.370 0.310
3 0.81761 0.91 6.49452 0.00187 0.00167 0.893 0.349
4 0.81781 1.09 7.09311 0.00263 0.00276 1.049 0.433
5 0.81768 1.27 7.63451 0.00342 0.00375 1.096 0.555
6 0.81735 1.45 8.12812 0.00422 0.00464 1.100 0.699
7 0.81693 1.62 8.56014 0.00502 0.00546 1.088 0.780
8 0.81649 1.78 8.90906 0.00575 0.00611 1.063 0.706
9 0.81613 1.90 9.15581 0.00633 0.00652 1.030 0.538

Table C.6: Details of the 4 M� model. The columns are the same as in
Table C.1.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.87293 ... 4.14393 0.00000 ... ... 0.313
2 0.87293 2.08 5.15585 0.00309 ... ... 0.313
3 0.87602 0.41 5.67881 0.00098 0.00033 0.337 0.314
4 0.87667 0.46 6.22055 0.00127 0.00100 0.787 0.328
5 0.87694 0.51 6.73890 0.00168 0.00164 0.976 0.322
6 0.87698 0.58 7.22688 0.00209 0.00221 1.057 0.252
7 0.87686 0.68 7.70803 0.00258 0.00280 1.085 0.143
8 0.87664 0.79 8.15053 0.00312 0.00334 1.071 0.077
9 0.87642 0.89 8.51251 0.00358 0.00376 1.050 0.063
10 0.87624 0.97 8.77354 0.00394 0.00405 1.028 0.065
11 0.87613 1.02 8.94464 0.00419 0.00417 0.995 0.070
12 0.87615 1.04 9.07818 0.00431 0.00430 0.998 0.076
13 0.87616 1.05 9.17313 0.00439 0.00433 0.986 0.083
14 0.87622 1.05 9.23337 0.00439 0.00433 0.986 0.091
15 0.87628 1.02 9.26370 0.00437 0.00433 0.991 0.098
16 0.87632 1.03 9.29625 0.00438 0.00429 0.979 0.106
17 0.87641 1.00 9.31505 0.00432 0.00428 0.991 0.113

Table C.7: Details of the 5 M� model. The columns are the same as in
Table C.1.



155

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.95462 ... 4.70162 0.00181 ... ... 0.296
2 0.95643 0.16 5.11913 0.00053 ... ... 0.263
3 0.95696 0.17 5.45018 0.00060 0.00016 0.267 0.211
4 0.95740 0.19 5.86281 0.00071 0.00049 0.690 0.148
5 0.95762 0.21 6.33273 0.00088 0.00081 0.920 0.094
6 0.95769 0.25 6.81847 0.00112 0.00123 1.098 0.064
7 0.95758 0.33 7.35535 0.00151 0.00149 0.987 0.059
8 0.95760 0.34 7.62715 0.00167 0.00168 1.006 0.059
9 0.95759 0.39 7.98463 0.00191 0.00187 0.979 0.062
10 0.95763 0.42 8.26238 0.00207 0.00203 0.981 0.066

Table C.8: Details of the 6 M� model. The columns are the same as in
Table C.1.
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Details of the SMC Metallicity

Models

This appendix presents a more detailed look at the models of metallicity

Z = 0.004.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.56326 ... 6.23517 0.00399 ... ... 0.367
2 0.56723 14.59 6.97912 0.00624 ... ... 0.367
3 0.57345 14.62 7.18632 0.00709 ... ... 0.367
4 0.58048 13.68 7.35656 0.00780 0.00099 0.127 0.693

Table D.1: Details of the 1 M� model. The data are TP – the thermal pulse
number, MH – the hydrogen free core mass, τip – the interpulse period, Lmax

He

– the peak luminosity from helium burning, ∆MH – the hydrogen free core
mass growth during the interpulse, ∆MDUP – the mass of material dredged
up, λ– the dredge-up efficiency parameter and C/O – the surface carbon-to-
oxygen ratio by number.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.57680 ... 4.35102 0.00335 ... ... 0.313
2 0.58014 6.71 5.94993 0.00294 ... ... 0.313
3 0.58306 11.24 6.85897 0.00546 ... ... 0.313
4 0.58849 11.92 7.13006 0.00646 0.00127 0.197 0.498
5 0.59368 11.51 7.40005 0.00773 0.00330 0.427 1.141
6 0.59811 11.13 7.66406 0.00903 0.00520 0.576 2.122
7 0.60194 10.79 7.57158 0.01018 0.00676 0.664 3.209
8 0.60536 10.46 7.54065 0.01112 0.00793 0.713 4.256
9 0.60855 10.09 8.25227 0.01180 0.00885 0.750 5.224
10 0.61150 9.68 8.27388 0.01226 0.00942 0.768 6.100
11 0.61434 9.20 8.44884 0.01248 0.00966 0.774 6.886
12 0.61716 8.66 8.49126 0.01244 0.00966 0.774 7.596

Table D.2: Details of the 1.5 M� model. The columns are the same as in
Table D.1.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.60032 ... 6.47451 0.00244 ... ... 0.290
2 0.60275 9.04 6.98190 0.00557 0.00117 0.210 0.374
3 0.60715 9.13 7.28519 0.00684 0.00336 0.491 0.769
4 0.61063 9.13 7.60773 0.00829 0.00565 0.682 1.488
5 0.61327 9.40 7.52308 0.00986 0.00779 0.790 2.404
6 0.61534 9.66 8.20353 0.01133 0.00958 0.846 3.366
7 0.61709 9.82 8.43709 0.01258 0.01108 0.881 4.305
8 0.61859 9.84 8.62304 0.01355 0.01219 0.900 5.191
9 0.61995 9.72 8.76118 0.01422 0.01293 0.909 6.013
10 0.62124 9.49 8.85653 0.01461 0.01339 0.916 6.767
11 0.62246 9.11 8.89618 0.01464 0.01331 0.909 7.445

Table D.3: Details of the 2 M� model. The columns are the same as in
Table D.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.71385 ... 5.46870 0.00037 ... ... 0.288
2 0.71421 2.51 6.57327 0.00279 0.00167 0.599 0.368
3 0.71533 2.99 7.11435 0.00401 0.00375 0.935 0.648
4 0.71559 3.47 7.65046 0.00553 0.00572 1.034 1.122
5 0.71540 3.98 8.13777 0.00708 0.00741 1.047 1.709
6 0.71507 4.41 8.56119 0.00850 0.00891 1.048 2.354
7 0.71466 4.78 8.50240 0.00979 0.01020 1.042 3.021
8 0.71425 5.11 9.22757 0.01101 0.01140 1.035 3.699
9 0.71386 5.28 9.43031 0.01183 0.01140 1.035 4.359

Table D.4: Details of the 3 M� model. The columns are the same as in
Table D.1.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.83004 ... 5.04250 0.00162 ... ... 0.302
2 0.83166 0.66 5.75606 0.00121 0.00042 0.347 0.306
3 0.83245 0.78 6.34611 0.00163 0.00138 0.847 0.368
4 0.83270 0.91 6.65654 0.00225 0.00231 1.027 0.508
5 0.83264 1.05 7.41039 0.00288 0.00309 1.073 0.711
6 0.83243 1.18 7.31972 0.00351 0.00385 1.097 0.943
7 0.83209 1.32 7.23935 0.00419 0.00451 1.076 0.980
8 0.83177 1.44 7.16595 0.00482 0.00512 1.062 0.733

Table D.5: Details of the 4 M� model. The columns are the same as in
Table D.1.
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TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.90159 ... 4.99690 0.00133 ... ... 0.304
2 0.90292 0.30 5.48545 0.00079 0.00019 0.241 0.304
3 0.90352 0.33 5.93746 0.00097 0.00065 0.670 0.304
4 0.90384 0.36 6.40131 0.00123 0.00112 0.911 0.257
5 0.90395 0.40 6.48791 0.00152 0.00160 1.053 0.155
6 0.90387 0.48 6.56577 0.00191 0.00204 1.068 0.083
7 0.90374 0.56 6.67817 0.00232 0.00245 1.056 0.069
8 0.90361 0.64 6.68474 0.00267 0.00283 1.060 0.073
9 0.90345 0.71 6.69246 0.00302 0.00308 1.020 0.082
10 0.90339 0.76 6.69539 0.00325 0.00333 1.025 0.093
11 0.90331 0.80 6.68890 0.00347 0.00348 1.003 0.106
12 0.90330 0.82 6.69067 0.00357 0.00357 1.000 0.120
13 0.90330 0.83 6.69423 0.00361 0.00360 0.997 0.134
14 0.90331 0.83 6.69620 0.00362 0.00363 1.003 0.149

Table D.6: Details of the 5 M� model. The columns are the same as in
Table D.1.

TP MH τip log (Lmax
He / L�) ∆MH ∆MDUP λ C/O

( M�) (104 yr) ( M�) ( M�)
1 0.97297 ... 4.48529 0.00041 ... ... 0.282
2 0.97338 0.13 4.92864 0.00045 ... ... 0.235
3 0.97383 0.14 5.20952 0.00050 0.00003 0.060 0.173
4 0.97430 0.15 5.54286 0.00056 0.00026 0.464 0.112
5 0.97460 0.16 5.91876 0.00066 0.00059 0.894 0.073
6 0.97467 0.20 6.40889 0.00087 0.00083 0.954 0.064
7 0.97471 0.20 6.36585 0.00107 0.00094 0.879 0.062

Table D.7: Details of the 6 M� model. The columns are the same as in
Table D.1.


